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ON A THEOREM OF M. VUILLEUMIER
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ABSTRACT. We give an improvement of a well-known theorem on matrix
transforms of slowly varying sequences in the sense of Karamata.

1. Introduction
A sequence of positive numbers (£,,) is said to be slowly varying in the sense
of Karamata if '
lim<M> =1, VYe>0.
n\ 0,

The essential properties of these sequences were studied by Karamata [5], [6], Bo-
janic and Seneta [2] and many others.
Some examples of ¢, are:

1, log"2n, log’(log3n), exp(log®2n); a,beR; 0<c<1.

The main tool in dealing with matrix transforms of slowly varying sequences
is a theorem of Vuilleumier [4]. Her result specialized to triangular real-valued
matrices (Anr), 1<k < n can be stated as follows:

THEOREM A. In order that

> Apile ~ by (n— 0),

k<n

for each slowly varying sequence ({,), it is necessary and sufficient that

1) LY Au—=1 (n—>o0); IL D JAylk™"=0n"") (n— ),
k<n k<n
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for some n > 0.

This theorem plays a fundamental role in the theory of R-regular or R-mercer-
ian matrices [3], [10]. But, although it is self-sufficient, there are some inner limi-
tations as we are going to show.

Consider a real-valued sequence (a,), VM € N : 3  _, a, # 0, and let
Ank = ak/ Zign Q;-

Then, the condition I of the Theorem A is trivially satisfied and for II, using
an inequality for convex means (Lemma 3, below), we obtain

Z Aol = Dok<n k] X<y larlk™"

<n | Zkgn a| Zkgn |a|

D k<n k] (Zkgn kla| > -

| Zkgn a| Ekgn |ak|

R <| Yk<n ak|> - < 2 r<n Kla| )77‘
Ekgn |a| ”Ekgn |a|

Since both expressions in parenthesis are positive and not greater than one, we see
from (2) that if

—~

[\
~
v

. |Ekgn ax| . Ekgn klak|
liminf =—=——=0 or liminf———— =
" EkSn || noon Zkgn |a|

)

the condition II is not satisfied so that Theorem A is not applicable.
We will remove such obstacles and thus extend the field of applications.

2. Results

In order to produce a proof of Theorem B below, we need some well-known
properties of slowly varying sequences and some elementary inequalities.

LeEmMA 1. For each ¢ > 0, a slowly varying sequence ¢,, satisfies (cf. [1, p. 52])

CLa) ~ Llea) ~ Lefe)) (2 — 00).

LEMMA 2. Forn > 0, the following relations hold

sup k"l ~ y"lp,y; sup kT ~y My (y — 00).
k<y k>y

A variant of the convex means inequality (cf. [7, p. 76]) is
LEMMA 3. For a sequence of non-negative numbers ay and u <0 or u>1,
Zk“ak > (Zkak>“
Yo —\Xar )

and the converse inequality holds for 0 < p < 1.

For an application we need the following
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LEMMA 4. For each a,n € R, we have
n+a\k"
> (n - lc) T~ LY (1) (n = o),
1<k<n '

where L;“)(z) is the Laguerre polynomial [8].

Now, we can prove our main result. For a complex-valued triangular matrix
(ank), 1 < k < n, define

L |Ek§n a’nk|‘ - Zkﬁn k|a’nk|
Ekgn lank|” " Ekgn |ank|

We can prove the following

On

THEOREM B. If the matrix (any) satisfies for n — oo

N a1
(i) tn = 00, tn = o(n); (ii) liminfo, > 0; (iii) Lncn KM ane] _ o(t;")
n Zkgn |ank|

for some n > 0, then
Zkﬁn Liang
U, Zkgn Qnk

for all slowly varying sequences (£,,).

=1 (n— o00),

Proof. The condition (ii) guarantees that, for sufficiently large n, we have
Y k<n @nk # 0 and 1/0,, = O(1). Therefore, for such n and all fixed ¢, 0 < ¢ < 1,

we obtain
o | Zkn brtne ‘ 2 k<n @k (G /) — 1)
! é[tn] Ekgn Gnk Zkgn |a’nk|
1
ﬁ(‘i‘-l-‘ Z ‘+‘Z‘>251+52+S3. (B1)
k<n [k k<cty ctn <k<tn/c k>t /c

Applying Lemmas 1 and 2, by (iii), we get
Do<etn [Onkllle /ey =1 Dpcer, B ankl K70k /€1, — K|

Ekgn |ank| a Zkgn |an]

> k<n B ank]
sup (K"l /by 1 + k) —=—=————"—
kgcli?n( k/ [tn] ) Ekgn |ank|

S1 <

~2cty)" Ot < . (By)

Similarly, using Lemmas 1, 2 and 3 with 0 < g < 1, we obtain

e kH|an 1
Sy < sup (k™M [l + k‘“)M ~2(=ty)TH - O(ty)* < . (Bs)
E>1t, Ekgn |ank| ¢
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Finally, arguing as before and using (i), one has

Ank| e/l 1 — 1
thn<k<1/ctn |ankl|lr/ [tn] | sup |€k/£[tn]_1| —o(1) (£ = o0),

S
Ekgn || T ctn<k<l/cty,

IN

by the uniform convergence (see [1, pp. 6-11]).
Since ¢ can be taken arbitrarily small, from (B;), (B2), (Bs) we deduce

Ek<n Lrang 1
Cit) X< Onk an( 1+ 52+ 55) (Do(1) =o(1) (n — o)

i.e., Theorem B is proved.

Remark. Comparing theorems A and B, two advantages of the second one be-
come clear. Firstly, Theorem A is not applicable when ¢,, = o(n) (see Introduction),
while in Theorem B it is enough that ¢, = oo (n — 00). Secondly, Theorem B is
valid for complex-valued matrices. Closer connection between theorems A and B
can be established if we replace the condition (i) by: ¢, — oo and lim,, t,/n exist.
The proof is carried out as before.

To illustrate the power of the assertion from Theorem B, we give a nontrivial
example.

Consider the class of Laguerre polynomials L%a) (z) defined by

o)=Y (Z * Z) (_]:!)k

k<n

and take a,; := ("1 exp(ibkn™ %) 'y ¢ B Then

n—=k k!
L’(a) -1
Zank:L%a —exp(ibn~1/%)) Z|a W= LO(=1); ¢, =2 ( )
L (-1)
k<n kE<n n

Perron’s formula for the asymptotic behavior of Laguerre polynomials in the com-
plex plane cut along the positive part of the real axis says that (cf. [9, p. 197])

LM (z) = 1/207 ' 2e2/? (—2) 702 Ana 2= exp(2(—n2) ' ?) (1 + O(n™1/?))

when n — oo. Using this formula and the properties of Laguerre polynomials we
get t, ~ y/n, (n = 00) i.e., Theorem A is not applicable in this case.

On the other hand, taking into account Lemma 4, we see that the condition
(iii) is satisfied and

i n=/%
 le(ymete )
" exp(2y/n)

= exp(2y/n(cos(b/2n %) — 1) = e P4 (n = 00),
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i.e., (ii) is also valid; hence, applying Theorem B, we obtain for n — oo

n + a\ exp(ibkn='/%) . o
I; (n ~ k) —— b = L (—exp(ibn ™' /") ) (1 + (1))

In addition, by separating the real and imaginary parts on the left and applying
Perron’s formula on the right side of the last expression, we obtain the following
two asymptotic relations for n — oo

n + a\ cos(bkn='/*) 1 _ 2
0 ~ a/2 1/45 2/n—b%/4 b 1/4y.
kzg <n - k) k! ko me v cos(bn %);

n + a\ sin(bkn /%) L a/2-1/4 2v/n—b2/4 1/4
> (n—k> b~ g et A sin(on ).
k<n
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