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ON A THEOREM OF M. VUILLEUMIER
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Abstract. We give an improvement of a well-known theorem on matrix
transforms of slowly varying sequences in the sense of Karamata.

1. Introduction

A sequence of positive numbers (`n) is said to be slowly varying in the sense
of Karamata if

lim
n

�
`[cn]

`n

�
= 1; 8c > 0:

The essential properties of these sequences were studied by Karamata [5], [6], Bo-
janic and Seneta [2] and many others.

Some examples of `n are:

1; loga 2n; logb(log 3n); exp(logc 2n); a; b 2 R; 0 < c < 1:

The main tool in dealing with matrix transforms of slowly varying sequences
is a theorem of Vuilleumier [4]. Her result specialized to triangular real-valued
matrices (Ank); 1 � k � n can be stated as follows:

Theorem A. In order that

X
k�n

Ank`k � `n (n!1);

for each slowly varying sequence (`n), it is necessary and suÆcient that

(1) I:
X
k�n

Ank ! 1 (n!1); II:
X
k�n

jAnkjk�� = O(n��) (n!1);
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for some � > 0.

This theorem plays a fundamental role in the theory of R-regular or R-mercer-
ian matrices [3], [10]. But, although it is self-suÆcient, there are some inner limi-
tations as we are going to show.

Consider a real-valued sequence (an); 8M 2 N :
P

n�M an 6= 0, and let

Ank := ak=
P

i�n ai.
Then, the condition I of the Theorem A is trivially satis�ed and for II, using

an inequality for convex means (Lemma 3, below), we obtain

X
k�n

jAnkjk�� =
P

k�n jakj
jPk�n akj

P
k�n jakjk��P
k�n jakj

�
P

k�n jakj
jPk�n akj

�P
k�n kjakjP
k�n jakj

���
(2)

= n��
� jPk�n akjP

k�n jakj
��1�P

k�n kjakj
n
P

k�n jakj
���

:

Since both expressions in parenthesis are positive and not greater than one, we see
from (2) that if

lim inf
n

jPk�n akjP
k�n jakj

= 0 or lim inf
n

P
k�n kjakj

n
P

k�n jakj
= 0;

the condition II is not satis�ed so that Theorem A is not applicable.
We will remove such obstacles and thus extend the �eld of applications.

2. Results

In order to produce a proof of Theorem B below, we need some well-known
properties of slowly varying sequences and some elementary inequalities.

Lemma 1. For each c > 0, a slowly varying sequence `n satis�es (cf. [1, p. 52])

`[x] � `[cx] � `[c[x]] (x!1):

Lemma 2. For � > 0, the following relations hold

sup
k�y

k�`k � y�`[y]; sup
k�y

k��`k � y��`[y] (y !1):

A variant of the convex means inequality (cf. [7, p. 76]) is

Lemma 3. For a sequence of non-negative numbers �k and � � 0 or � � 1,P
k��kP
�k

�
�P

k�kP
�k

��

;

and the converse inequality holds for 0 < � < 1.

For an application we need the following
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Lemma 4. For each a; � 2 R, we have

X
1�k�n

�
n+ a

n� k

�
k�

k!
� n�=2L(a)

n (�1) (n!1);

where L
(a)
n (z) is the Laguerre polynomial [8].

Now, we can prove our main result. For a complex-valued triangular matrix
(ank), 1 � k � n, de�ne

�n :=
jPk�n ankjP

k�n jankj
; tn :=

P
k�n kjankjP
k�n jankj

:

We can prove the following

Theorem B. If the matrix (ank) satis�es for n!1

(i) tn !1; tn = o(n); (ii) lim inf
n

�n > 0; (iii)

P
k�n k

��jankjP
k�n jankj

= O(t��n )

for some � > 0, then P
k�n `kank

`[tn]
P

k�n ank
! 1 (n!1);

for all slowly varying sequences (`n).

Proof. The condition (ii) guarantees that, for suÆciently large n, we haveP
k�n ank 6= 0 and 1=�n = O(1). Therefore, for such n and all �xed c, 0 < c < 1,

we obtain

�n

����
P

k�n `kank
`[tn]

P
k�n ank

� 1

���� = jPk�n ank(`k=`[tn] � 1)jP
k�n jankj

�

1P
k�n jankj

���� X
k�ctn

���+
��� X
ctn<k<tn=c

���+
��� X
k�tn=c

���
�
= S1 + S2 + S3: (B1)

Applying Lemmas 1 and 2, by (iii), we get

S1 �
P

k�ctn jankjj`k=`[tn] � 1jP
k�n jankj

=

P
k�ctn k

��jankjjk�`k=`[tn] � k�jP
k�n jankj

�

sup
k�ctn

(k�`k=`[tn] + k�)

P
k�n k

��jankjP
k�n jankj

� 2(ctn)
� �O(t��n )� c�: (B2)

Similarly, using Lemmas 1, 2 and 3 with 0 < � < 1, we obtain

S3 � sup
k� 1

c tn

(k��`k=`[tn] + k��)

P
k�n k

�jankjP
k�n jankj

� 2(
1

c
tn)

�� �O(tn)� � c�: (B3)
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Finally, arguing as before and using (i), one has

S2 �
P

ctn<k<1=ctn
jankjj`k=`[tn] � 1jP

k�n jankj
� sup

ctn<k<1=ctn

j`k=`[tn]�1j = o(1) (tn !1);

by the uniform convergence (see [1, pp. 6{11]).
Since c can be taken arbitrarily small, from (B1); (B2); (B3) we deduce

����
P

k�n `kank
`[tn]

P
k�n ank

� 1

���� = 1

�n
(S1 + S2 + S3) = O(1)o(1) = o(1) (n!1);

i.e., Theorem B is proved.

Remark. Comparing theorems A and B, two advantages of the second one be-
come clear. Firstly, Theorem A is not applicable when tn = o(n) (see Introduction),
while in Theorem B it is enough that tn !1 (n!1). Secondly, Theorem B is
valid for complex-valued matrices. Closer connection between theorems A and B
can be established if we replace the condition (i) by: tn !1 and limn tn=n exist.
The proof is carried out as before.

To illustrate the power of the assertion from Theorem B, we give a nontrivial
example.

Consider the class of Laguerre polynomials L
(a)
n (z) de�ned by

L(a)
n (z) :=

X
k�n

�
n+ a

n� k

�
(�z)k
k!

and take ank :=
�
n+a
n�k

� exp(ibkn�1=4)
k! , b 2 R. Then

X
k�n

ank = L(a)
n (� exp(ibn�1=4));

X
k�n

jankj = L(a)
n (�1); tn =

L
0(a)
n (�1)
L
(a)
n (�1)

:

Perron's formula for the asymptotic behavior of Laguerre polynomials in the com-
plex plane cut along the positive part of the real axis says that (cf. [9, p. 197])

L(a)
n (z) = 1=2��1=2ez=2(�z)�a=2�1=4na=2�1=4 exp(2(�nz)1=2)(1 +O(n�1=2))

when n ! 1. Using this formula and the properties of Laguerre polynomials we
get tn �

p
n, (n!1) i.e., Theorem A is not applicable in this case.

On the other hand, taking into account Lemma 4, we see that the condition
(iii) is satis�ed and

�n � j exp(2pneib=2n�1=4)j
exp(2

p
n)

= exp(2
p
n(cos(b=2n�1=4)� 1)! e�b

2=4 (n!1);
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i.e., (ii) is also valid; hence, applying Theorem B, we obtain for n!1

X
k�n

�
n+ a

n� k

�
exp(ibkn�1=4)

k!
`k = L(a)

n (� exp(ibn�1=4))`[pn](1 + o(1)):

In addition, by separating the real and imaginary parts on the left and applying
Perron's formula on the right side of the last expression, we obtain the following
two asymptotic relations for n!1

X
k�n

�
n+ a

n� k

�
cos(bkn�1=4)

k!
`k � 1

2
p
�e

na=2�1=4`[pn]e
2
p
n�b2=4 cos(bn1=4);

X
k�n

�
n+ a

n� k

�
sin(bkn�1=4)

k!
`k � 1

2
p
�e

na=2�1=4`[pn]e
2
p
n�b2=4 sin(bn1=4):
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