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Abstract. We consider the problem of global uniform convergence of spectral

expansions and their derivatives,
1P

n=1
fn u

(j)
n (x) (j = 0; 1; : : : ), generated by

arbitrary self-adjoint extensions of the operator L(u)(x) = �u00(x)+q(x) u(x)

with discrete spectrum, for functions from the classes H
(k;�)
p (G) (k 2 N ,

� 2 (0; 1]) and W
(k)
p (G) (1 � p � 2), where G is a �nite interval of the

real axis. Two theorems giving conditions on functions q(x) , f(x) which are

suÆcient for the absolute and uniform convergence on G of the mentioned
series, are proved. Also, some convergence rate estimates are obtained.

1. Introduction

1.1. On the problem. Let G = (a; b) be a �nite interval of the real axis R .
Consider an arbitrary self-adjoint extension L of the formal Schr�odinger operator

L(u)(x) = �u00(x) + q(x)u(x)(1)

with a real-valued potential q(x) 2 L1(G), de�ned by the self-adjoint boundary
conditions

�10 u(a) + �11 u
0(a) + �10 u(b) + �11 u

0(b) = 0;

�20 u(a) + �21 u
0(a) + �20 u(b) + �21 u

0(b) = 0;
(2)

where (�i0; �i1; �i0; �i1) 2 R4 (i = 1; 2) are linearly independent vectors. (By this
we mean a self-adjoint extension L of the corresponding symmetric operator L0
in the sense of [1, x18]; the spectrum of such extension is discrete. Recall that
the operator L is de�ned in the following way. Let us denote by D(L) the set of
functions g(x) 2 L2(G) such that functions g(x), g0(x) are absolutely continuous
on G , L(g)(x) 2 L2(G), and g(x) satis�es the boundary conditions (2). If g(x) 2
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D(L), then L(g)(x)
def
= L(g)(x). Recall also that the conditions (2) are self-adjoint

if and only if

�10 �21 � �11 �20 = �10 �21 � �11 �20 :)

Denote by fun(x)g11 the orthonormal (and complete in L2(G)) system of eigen-
functions of the extension L , and by f�ng11 the corresponding system of eigenval-
ues enumerated in nondecreasing order. (By de�nition, un(x) 2 D(L) and satis�es
the di�erential equation

�u00n(x) + q(x)un(x) = �n un(x)(3)

almost everywhere on (a; b).)
Let f(x) 2 L1(G) and let � be an arbitrary positive number. We can form the

partial sum of order � of the expansion of f(x) in terms of the system fun(x)g11 :

��(x; f)
def
=

X
�n<�2

fn un(x);

where fn
def
=

bR
a

f(x)un(x) dx are the Fourier coeÆcients of f(x) relative to the

system.
In this paper the classical problem of uniform convergence on G of the functions

�
(j)
� (x; f) (j = 0; 1; : : : ), as � ! +1 , is studied. We prove two theorems giving

conditions on functions q(x), f(x) which are suÆcient for the absolute and uniform
convergence on G of the corresponding series. Also, we give some uniform, with

respect to x 2 G , asymptotic estimates of the di�erences f (j)(x) � �
(j)
� (x; f), as

�! +1 .

1.2. Main results. Let us denote by C(k;�)(G) the set of functions f(x) from
the class C(k)(G) such that f (k)(x) 2 Lip� (G); 0 < � � 1. We say that f(x)

belongs to W
(k)
p (G) if f(x) 2 C(k�2)(G); f (k�1)(x) is an absolutely continuous

function on [a; b] and f (k)(x) 2 Lp(G); 1 � p < +1 . Let H�
p (G) be the Nikol'ski��

class: f(x) 2 Lp(G) belongs to H�
p (G) if there is a constant D(f) > 0 such that

k f(x+ t)� f(x) kLp(Gjtj) � D(f) � j t j�(4)

for every t 2 ((a � b)=2; (b � a)=2), where Gjtj = (a + jtj; b � jtj). Also, we

say that f(x) 2 H
(k;�)
p (G) if f(x) 2 W

(k)
p (G) and f (k)(x) 2 H�

p (G). Then

C(k;�)(G) � H
(k;�)
p (G).

In the sequel, we will use the symbol

Lk(f)(x) def= �L Æ � � � Æ L Æ L| {z }
k times

�
(f)(x) (L0(f)(x) def

= f(x)) ;

Æ stands for the composition of mappings.
If L is a self-adjoint operator de�ned in the preceding section, then the following

propositions are valid.
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Theorem 1.1. (a) Let us suppose that q(x) 2 L1(G) , f(x) 2 W
(1)
1 (G); and

f 0(x) 2 L1(G) \ H�
1 (G) , 0 < � � 1 . If f(a) = 0 = f(b) , then for every x 2 G

the equality

f(x) =

1X
n=1

fn un(x)(5)

holds, and the series converges absolutely and uniformly on G .
Also, the following estimate is valid:

max
x2G

�� f(x)� ��(x; f)
�� = O

�
1

��

�
+ o

�
1

�1=2

�
:(6)

(b) Let q(x) 2 L1(G) and f(x) 2 D(L) . Then, for every x 2 G the equalities

f (j)(x) =

1X
n=1

fn u
(j)
n (x); 0 � j � 1;(7)

are valid, and the series converge absolutely and uniformly on G .
Moreover, the following estimates hold:

max
x2G

�� f (j)(x)� �(j)� (x; f)
�� = o

�
1

�3=2�j

�
; 0 � j � 1:(8)

Theorem 1.2. (a) Let q(x) 2W (2k�1)
2 (G) , f(x) 2W (2k+1)

2 (G) , and Lk(f)0(x)
2 L1(G) \H�

1 (G) , where k 2 N , 0 < � � 1 . If the functions f(x) , L(f)(x); : : : ,
Lk�1(f)(x) satisfy the boundary conditions (2) and Lk(f)(a) = 0 = Lk(f)(b) , then
for every x 2 G the equalities

f (j)(x) =
1X
n=1

fn u
(j)
n (x); 0 � j � 2k;(9)

are valid, and the series are absolutely and uniformly convergent on G .
Moreover, the estimates

max
x2G

�� f (j)(x)� �(j)� (x; f)
�� = O

�
1

�2k�j+�

�
+ o

�
1

�2k�j+1=2

�
(10)

hold, where 0 � j � 2k .

(b) If q(x) 2W (2k�2)
2 (G) , f(x) 2W (2k)

2 (G) (k � 2), and the functions f(x) ,
L(f)(x); : : : , Lk�1(f)(x) satisfy the boundary conditions (2), then the equalities

f (j)(x) =

1X
n=1

fn u
(j)
n (x); 0 � j � 2k � 1;(11)

hold on G , the series being absolutely and uniformly convergent on G .
Also, the following estimates hold:

max
x2G

�� f (j)(x)� �(j)� (x; f)
�� = o

�
1

�2k�j�1=2

�
;(12)

where 0 � j � 2k � 1 .
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Remark 1.1. If the boundary conditions (2) additionally satisfy

�11 �21 � �21 �11 6= 0;

then conditions f(a) = 0 = f(b) in proposition (a) of Theorem 1, and conditions
Lk(f)(a) = 0 = Lk(f)(b) in proposition (a) of Theorem 2 can be removed.

Remark 1.2. Let us note some important special cases. Proposition (a) of
Theorem 1 is valid if f(x) 2 C(1;�)(G), and proposition (a) of Theorem 2 holds
if q(x) 2 C(2k�1;�)(G), f(x) 2 C(2k+1;�)(G). (Of course, the other conditions
imposed have to be satis�ed.) Proposition (b) of Theorem 1 holds if q(x) 2 L2(G),
f(x) 2W (2)

2 (G), and f(x) satis�es the boundary conditions (2).

Remark 1.3. The problem we study was considered in papers [6] and [8]{[9]
for a di�erent class of functions. The "�nal" results are contained in paper [9,
Proposition 4 ], where some assertions stated in Theorems 1 and 2 (\then" parts,
without the estimates) have been proved under the following assumptions:

(a) q(x) 2 Lp(G) (1 < p � 2); f(x) 2 W
(1)
1 (G), f(a) = 0 = f(b), and

f 0(x) is a bounded, piecewise monotone function on its domain D(f 0) � G or
f 0(x) 2 BV (G) (in the case of Theorem 1 (a));

(b) q(x) 2 AC(G); f(x) 2 W (3)
1 (G) and satis�es the boundary conditions (2),

L(f)(a) = 0 = L(f)(b), and L(f)0(x) is a bounded, piecewise monotone function
on its domain D(L(f)0) � G or L(f)0(x) 2 BV (G) (in the case of Theorem 2(a)
for k = 1).

Here AC(G) denotes the class of absolutely continuous functions on the closed
interval G = [a; b] , and BV (G) is the class of functions having the bounded vari-
ation on this interval.

Note that condition q(x) 2 Lp(G) (p > 1) in the case (a) can be improved by
q(x) 2 L1(G).

In this paper the above results are completed by the estimate

max
x2G

�� f(x)� ��(x; f)
�� = O

�
1

�

�
;(13)

which holds in the case of assumptions (a), and by the estimates

max
x2G

�� f (j)(x)� �(j)� (x; f)
�� = O

�
1

�3�j

�
; 0 � j � 2;(14)

which are valid in the case of assumptions (b).
These estimates will be proved in Section 6.
Let us add that the part of Theorem 1(b) concerning the convergence of series

(7) has been established in [9, Proposition 4(b)], under assumptions q(x) 2 L2(G),
f(x) 2 W

(2)
2 (G), and f(x) satis�es the boundary conditions (2). The estimates

(8) are new.

Remark 1.4. Samarskaya [5] has established the absolute and uniform con-

vergence on [0; 1] of a biorthogonal expansion for functions f(x) 2W (1)
2 (0; 1) cor-

responding to a non-selfadjoint operator de�ned by (1), with q(x) = 0, and certain
non-local boundary conditions.
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Using a technique based on some \equiconvergence" arguments, Lomov [7,
Theorem 6] has obtained results that are close to the Theorem 1(a). They are con-
cerned with biorthogonal expansions corresponding to non-selfadjoint Schr�odinger
operators (1).

Our approach to the problem considered is based only on uniform and exact
(with respect to order) estimates for the moduli of the eigenfunctions and their
derivatives (see Propositions 1{2 bellow). This allows us to consider arbitrary
regular self-adjoint operators de�ned by di�erential expression (1) and boundary
conditions (2). For such an operator we establish the global uniform and absolute
convergence of eigenfunction expansions for a large class of functions not necessarily
belonging to its domain (Theorem 1(a)). For every function from the domain
of the operator it is possible to establish not only the uniform convergence of
its eigenfunction expansion(which is a known fact), but also the global uniform
and absolute convergence of \the �rst derivative" of the eigenfunction expansion
(Teorem 1(b)). (By increasing the smoothness of q(x) and f(x) properly, we obtain
an expansion for higher order derivatives of the function.) Finally, we give some
uniform on G estimates of the convergence to zero of the di�erences

f (j)(x)� �(j)� (x; f); �! +1:

From the point of view of applications, Theorem 1 and Theorem 2(a) (for
k = 1) may be used to prove the existence and uniqueness of classical solutions
to a large class of "self-adjoint" mixed boundary problems for one{dimensional
hyperbolic or parabolic equations of second order. In the hyperbolic case, for
example, these problems have the form:

@2u

@t2
(x; t) � @2u

@x2
(x; t) + q(x)u(x; t) = f(x; t); (x; t) 2 G� (0; T );

u(x; 0) = '(x); u0t(x; 0) =  (x); x 2 G;

�10 u(a; t) + �11 u
0
x(a; t) + �10 u(b; t) + �11 u

0
x(b; t) = 0;

�20 u(a; t) + �21 u
0
x(a; t) + �20 u(b; t) + �21 u

0
x(b; t) = 0; t 2 [0; T ];

where T > 0 is an arbitrary number. Note that, following this line, in papers
[8]{[10] we have established the existence and uniqueness of classical solutions to
the mentioned boundary problems for classes of functions cited in Remark 3.

Let us add that the method used is applicable in the case of an arbitrary
self-adjoint extension of the Sturm{Liouville operator

L1(u)(x) = �(p(x)u0(x))0 + q(x)u(x)

with a discontinuous coeÆcient p(x), as well as in the case of a nonself-adjoint
Schr�odinger operator de�ned by (1) (with a complex-valued potential q(x)) and by
a large class of nonself-adjoint boundary conditions (2).

1.3. Auxiliary propositions. Proofs of the theorems are based on known
estimates concerning the eigenvalues and eigenfunctions (and their derivatives) of
the operator (1), which have been obtained in papers [2]{[4]. The central point is



64 LA�ZETI�C

the following: uniform estimates of eigenfunctions and their derivatives (see (15),
(17) bellow) allow us to derive necessary upper{bound estimates for the Fourier
coeÆcients fn .

Let fun(x)g11 be the system of eigenfunctions of an arbitrary non-negative self-
adjoint extension of the operator (1), and let f�ng11 be the corresponding system
of eigenvalues enumerated in nondecreasing order. Then the following propositions
hold.

Proposition 1.1. [2], [4] (a)If q(x) 2 L1(G) , then there exists a constant
C0 > 0 , independent of n 2 N , such that

max
x2G

jun(x) j � C0; n 2 N:(15)

(b) If q(x) 2 L1(G) , then there exists a constant A > 0 such thatX
t�p�n�t+1

1 � A(16)

for every t � 0 , where A does not depend on t .

Proposition 1.2. [3] (a)If q(x) 2 L1(G) , then there exist constants �0 =
�0(G) > 0 and C1 > 0 , not depending on n 2 N , such that

max
x2G

ju0n(x) j �
(
C1

p
�n if �n > �0;

C1 if 0 � �n � �0:
(17)

(b) Suppose q(x) 2 C(k�2)(G) (k � 2) . Then un(x) 2 C(k)(G) , and there exist
constants Cj > 0 (2 � j � k) , independent of n 2 N , such that

max
x2G

ju(j)n (x) j �
(
Cj �

j=2
n if �n > �0;

Cj if 0 � �n � �0:
(18)

Note that the constants A , Ci (i = 0; 1; : : : ) depend on G and q(x).
The estimate (16) has been �rst obtained in paper [2], under assumption that

q(x) 2 Lp(G)(p > 1). In paper [4] that estimate has been extended to a class of
nonself-adjoint operators (1) with a complex valued potential q(x) 2 L1(G).

Let us now suppose that L is an arbitrary self-adjoint extension of the operator
(1). In this case only a �nite number �1; : : : ; �n0 of negative eigenvalues of L can

exist. Let d
def
= max f j�1j; : : : ; j�n0 j g , and let Ld be a self-adjoint operator de�ned

by (1), with q(x)+d instead of q(x), and by the same boundary conditions (2) that
de�ne the operator L . Then the operators L and Ld have the same eigenfunctions,
and all the eigenvalues of Ld are non-negative. So we see that Propositions 1 and
2 are valid in the general case also, with obvious minor changes in formulation.

For the sake of simplicity we will work with a non-negative operator L , and
estimates (17){(18) will be used supposing that �0 = 1.

2. Proof of Theorem 1(a)

2.1. A mean-value formula. Suppose x 2 G is a �xed point and h > 0 is
a number such that x + h 2 G . Let �n 6= 0 be a �xed eigenvalue. We wish to
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establish a "mean{value" formula for the function u0n(�). We will start from the

integral
x+hR
x

u00n(�) sin
p
�n (� � x� h) d� . Using the integration by parts twice, we

can obtain the equality

x+hZ
x

u00n(�) sin
p
�n (� � x� h) d� = u0n(x) sin

p
�n h�

p
�n un(x+ h) +

+
p
�n un(x) cos

p
�n h� �n �

x+hZ
x

un(�) sin
p
�n (� � x� h) d�:

But u00n(�) = q(�)un(�) � �n un(�) a.e. on G , by di�erential equation (3). So we
have

x+hZ
x

q(�)un(�) sin
p
�n (� � x� h) d� = u0n(x) sin

p
�n h�

�
p
�n un(x+ h) +

p
�n un(x) cos

p
�n h;

or, if
p
�n h 6= k �(k 2 Z), the desired formula

(19) u0n(x) =
p
�n

sin
p
�n h

un(x+ h)�
p
�n cos

p
�n h

sin
p
�n h

un(x) +

+
1

sin
p
�n h

�
x+hZ
x

q(�)un(�) sin
p
�n (� � x� h) d�:

This formula will be used in the next section for obtaining an appropriate
estimate for the modulus of the Fourier coeÆcient fn .

2.2. An estimate for fn . Let the functions q(x); f(x) satisfy conditions
imposed in proposition (a) of Theorem 1. Suppose �n 6= 0. Using di�erential
equation (3) and the integration by parts, we obtain the equalities

fn =

bZ
a

f(x)un(x) dx =
1

�n
�
�
�

bZ
a

f(x)u00n(x) dx +

bZ
a

f(x) q(x)un(x) dx

�

=
1

�n
�
� bZ

a

f 0(x)u0n(x) dx +

bZ
a

f(x) q(x)un(x) dx

�
:(20)

(Recall that f(a) = f(b) = 0.)
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Consider the integral
bR
a

f 0(x)u0n(x) dx . Let h 2 (0; b� a) be a number which

will be de�ned bellow. By formula (19) we have

bZ
a

f 0(x)u0n(x) dx =

b�hZ
a

f 0(x)u0(x) dx +

bZ
b�h

f 0(x)u0n(x) dx

=

bZ
b�h

f 0(x)u0n(x) dx +
p
�n

sin
p
�n h

�
b�hZ
a

f 0(x)un(x+ h) dx�

�
p
�n cos

p
�n h

sin
p
�n h

�
b�hZ
a

f 0(x)un(x) dx +

+
1

sin
p
�n h

�
b�hZ
a

f 0(x)
� x+hZ

x

q(�)un(�) sin
p
�n (� � x� h) d�

�
dx;

(21)

There is a number n0 2 N such that
�

4
p
�n

< b� a if n � n0:(22)

Now, let �n satis�es (22). De�ne h = h(n) in the following way:
�

8
< h

p
�n <

�

4
:(23)

That is why we have the estimate

0 <
h
p
�n

sin
p
�n h

<
1

�
; where �

def
=

2
p
2

�
:(24)

In the sequel we will estimate integrals on the right{hand side of (21). In the
case of the �rst one, using estimates (17) and (23), we have����

bZ
b�h

f 0(x)u0n(x) dx
���� � C1 kf 0kL1(G)

p
�n h � C1 �

4
� kf 0kL1(G):(25)

The second integral can be transformed in the following way:

b�hZ
a

f 0(x)un(x+ h) dx =

bZ
a+h

�
f 0(t� h)� f 0(t)

�
un(t) dt+

+

bZ
a+h

f 0(t)un(t) dt =

bZ
a+h

�
f 0(t� h)� f 0(t)

�
un(t) dt�

�
a+hZ
a

f 0(t)un(t) dt+

bZ
a

f 0(t)un(t) dt:

(26)
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According to the estimates (4) and (15), the following is valid:

����
bZ

a+h

�
f 0(t� h)� f 0(t)

�
un(t)dt

���� � C0 kf 0(t� h)� f 0(t)kL1(a+h;b�h) +

+2C0 kf 0kL1(G) � h � C0D(f 0) � h� + 2C0 kf 0kL1(G) � h ;����
a+hZ
a

f 0(t)un(t) dt
���� � C0 kf 0kL1(G) � h:

Therefore, by the force of equality (26) and estimate (24), one can obtain the
estimate

p
�n

sin
p
�n h

�
����

b�hZ
a

f 0(x)un(x+ h) dx

����
� C0D(f 0)

�
� 1

h1��
+

3C0 kf 0kL1(G)

�
+

1

�
� 1
h
� (f 0)n:

(27)

According to the equality

b�hZ
a

f 0(x)un(x) dx = �
bZ

b�h

f 0(x)un(x) dx + (f 0)n;

for the third integral the following estimate holds:

p
�n cos

p
�n h

sin
p
�n h

�
����

b�hZ
a

f 0(x)un(x) dx
����

� C0 kf 0kL1(G)

�
+

1

�
� 1
h
� (f 0)n :

(28)

In the case of the fourth integral on the right{hand side of (21), we have

1

sin
p
�n h

�
����

b�hZ
a

f 0(x)
� x+hZ

x

q(�)un(�) sin
p
�n (� � x� h) d�

�
dx

����
� C0

p
�n h

sin
p
�n h

�
b�hZ
a

j f 0(x) j
� x+hZ

x

j q(�) j d�
�
dx

� C0 (b� a) kf 0kL1(G) � kqkL1(G) �
1

�
:

(29)
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Finally, from relations (21), (23), (25) and (27){(29) the following estimate
results:

1

�n
�
����

bZ
a

f 0(x)u0n(x) dx
����

�
�
C1 �

4
+

4C0
�

+
C0 (b� a) kqkL1(G)

�

�
kf 0kL1(G) � 1

�n
+

+
16

� �
� 1

�
1=2
n

(f 0)n +
81�� C0D(f 0)

� �1��
� 1

�
(1+�)=2
n

:

Let us return to the equalities (20). These equalities, the condition (22), and
the preceding inequality give us the �nal estimate for fn :

j fn j � K(G; f 0; q) �
�

1

�
(1+�)=2
n

+
1

�
1=2
n

� (f 0)n
�
;(30)

where the constant K(G; f 0; q) is de�ned as the maximum of the numbers�
C1 �

4
+

4C0
�

+
(b� a)C0 kqkL1(G)

�

�
kf 0kL1(G)

�
4 (b� a)

�

�1��
+

+ C0 kfkC(G) � kqkL1(G)

�
4 (b� a)

�

�1��
;

16

� �
;

81�� C0D(f 0)
� �1��

:

In order to simplify the use of estimate (30), we can suppose, with no loss of
generality, that it is valid for every �n > 1. In this case, the multiplicative constant�
4(b� a)=�

�1��
may be replaced by 1.

2.3. Convergence of the spectral expansion. Now we can prove the part
of proposition (a) of Theorem 1 concerning the convergence of series (5).

The absolute and uniform convergence of this series will result from the follow-
ing formal chain of inequalities, which holds for every point x 2 G :

1X
n=1

j fn un(x) j =
X

0�p�n�1
(�) +

X
p
�n>1

(�) � AC2
0 kfkC(G) +

+C0K(G; f 0; q) �
X

p
�n>1

1

�
(1+�)=2
n

+ C0K(G; f 0; q) �
X

p
�n>1

1

�
1=2
n

j (f 0)n j

� D1 +D2 �
1X
k=1

� X
k<
p
�n�k+1

1

�
(1+�)=2
n

�
+

+D2 �
� X
p
�n>1

1

�n

�1=2

�
� X
p
�n>1

j (f 0)n j2
�1=2

� D1 +AD2 �
1X
k=1

1

k1+�
+A1=2D2 �

� 1X
k=1

1

k2

�1=2

� kf 0kL2(G) :
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Here the estimates (15){(16) and (30) are used ; the constants D1; D2 have an
obvious meaning.

Therefore, there is a continuous function g : [a; b]! R such that

g(x) =

1X
n=1

fn un(x)

on G . But using completeness of the orthonormal system fun(x)g11 , one can easily
prove that g(x) = f(x) almost everywhere on G , and then, by continuity of f(x),
that g(x) = f(x) for every x 2 G .

2.4. Proof of estimate (6). Having equality (5) established, we can write

f(x)� ��(x; f) =
X

p
�n��

fn un(x)(31)

for every x 2 G . Let us suppose � � 2. Now, using estimates (15){(16) and (30),
as in the preceding section, we obtain���� X

p
�n��

fn un(x)

���� � D2 �
X

p
�n��

1

�
(1+�)=2
n

+D2 �
X

p
�n��

1

�
1=2
n

j (f 0)n j

� D2 �
1X

k=[�]

� X
k�p�n<k+1

1

�
(1+�)=2
n

�
+

+D2 �
� 1X
k=[�]

� X
k�p�n<k+1

1

�n

��1=2
�
� X
p
�n��

j (f 0)n j2
�1=2

� AD2 �
1X

k=[�]

1

k1+�
+A1=2D2 �

� 1X
k=[�]

1

k2

�1=2

� g1;f (�)(32)

� AD2 �
+1Z

[�]�1

dt

t1+�
+A1=2D2 � g1;f (�) �

� +1Z
[�]�1

dt

t2

�1=2

� AD2
2�

�
� 1

��
+ (2A)1=2D2 � g1;f (�) � 1

�1=2
;

where g1;f (�)
def
=

� P
p
�n��

j (f 0)n j2
�1=2

. Note that lim
�!+1

g1;f (�) = 0 by the

convergence of series
1P
k=1

j (f 0)k j2 . Therefore, by virtue of (31){(32), we conclude

that estimate (6) holds.
Proposition (a) of Theorem 1 is proved.

2.5. On Remark 1. In this section we will prove the assertion stated in
Remark 1 and related to the proposition (a). Suppose f(a) 6= 0 or/and f(b) 6= 0.
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Let the coeÆcients �ij ; �ij from boundary conditions (2) satisfy

�11 �21 � �21 �11 6= 0:(33)

Then for fn (�n > 1) an estimate of the form (30) is still valid. Indeed, in this
case instead of (20) we have the equalities

fn =

bZ
a

f(x)un(x) dx

=
1

�n
�
�
�f(x)u0n(x)

��b
a
+

bZ
a

f 0(x)u0n(x) dx +

bZ
a

f(x) q(x)un(x) dx

�
:(34)

By (33), equations (2) can be solved with respect to u0n(a) and u0n(b):

u0n(a) = R1a(�ij ; �ij)un(a) +R1b(�ij ; �ij)un(b);

u0n(b) = R2a(�ij ; �ij)un(a) +R2b(�ij ; �ij)un(b);
(35)

where the constants R do not depend on n . Using estimates (15), from (35) we
can obtain that�� f(a)u0n(a)� f(b)u0n(b)

�� � 2C0R0 ( j f(a) j+ j f(b) j );

where R0
def
= max f jRka(�) j; jRkb(�) j j k = 1; 2 g . Let D3(G; f; q) denote the

constant on the right{hand side of the above inequality.
Hence, by virtue of (34), the following inequality holds:

j fn j � D3(G; f; q)

�n
+

1

�n
�
����

bZ
a

f 0(x)u0n(x) dx +

bZ
a

f(x) q(x)un(x) dx

����:
But for the second term the estimate (30) is valid. So we see that for j fn j an
estimate of the form (30) holds, with K(G; f 0; q) replaced by

K(G; f; f 0; q) def= K(G; f 0; q) +D3(G; f; q):

The rest of the proof of proposition (a) is the same as before.

3. Proof of Theorem 1(b)

3.1. Convergence of the spectral expansion. Assumptions stated in The-

orem 1(b) are ful�lled if, especially, q(x) 2 L2(G); f(x) 2 W (2)
2 (G), and f(x) sat-

is�es the boundary conditions (2). As it was said in Remark 3, in this special case
the part of proposition (b) of Theorem 1 concerning the convegrence of series (7)
had been obtained in [9, Proposition 4(b)]. There is no essential di�erence in the
proofs of both cases. However, in order to keep the exposition complete and to
prove estimates (8), and having in mind proof of Theorem 2, we describe here the
idea behind the proof of the proposition.
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Let f(x) belongs to the domain of the operator L considered. Then, applying
the integration by parts to the �rst integral appearing on the right{hand side of
the second equality (34), we obtain the equality

fn =
1

�n
�
�
�f(x)u0n(x) jba + f 0(x)un(x) jba �

�
bZ

a

f 00(x)un(x) dx +

bZ
a

f(x) q(x)un(x) dx

�
:

But �f(x)u0n(x) jba + f 0(x)un(x) jba = 0 because of the self-adjointness of L .
Therefore we have the equalities

fn =
1

�n
�

bZ
a

L(f)(x)un(x) dx =
1

�n
� L(f)n:(36)

These equalities, combined with estimates (15){(16) and inequalities of Cauchy{
Schwarz and Bessel, allow us to prove the uniform and absolute convergence on G
of series (7) in the case j = 0: as in section 3 x 2, we �rst obtain

1X
n=1

j fn un(x) j � D1 + C0

� X
p
�n>1

j L(f)n j2
�1=2

�
� X
p
�n>1

1

�2n

�1=2

� D1 + C0 kL(f)kL2(G) �
� 1X
k=1

� X
k<
p
�n�k+1

1

�2n

��1=2

� D1 +A1=2 C0 kL(f)kL2(G) �
� 1X

k=1

1

k4

�1=2

;

and then the equality (7) for j = 0.
Now we can prove the estimate (8) for j = 0. It follows from

�� f(x)� ��(x; f) j � C0

� X
p
�n��

j L(f)n j2
�1=2

�
� X
p
�n��

1

�2n

�1=2

� C0 � g2;f (�) �
� 1X
k=[�]

� X
k�p�n<k+1

1

�2n

��1=2

� A1=2 C0 � g2;f (�) �
� 1X

k=[�]

1

k4

�1=2

� A1=2 C0 � g2;f (�) �
� +1Z
[�]�1

dt

t4

�1=2

�
�
8

3

�1=2

A1=2 C0 � g2;f (�) � 1

�3=2
;
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where x 2 G;� � 2, and g2;f (�)
def
=

� P
p
�n��

j L(f)n j2
�1=2

. Note that the equality

lim
�!+1

g2;f (�) = 0 by the convergence of series
1P
k=1

j L(f)k j2 .

3.2. Convergence of the di�erentiated spectral expansion. Let us con-
sider the convergence of series (7) in the case j = 1. Using equalities (36), estimates
(15){(17) (for j = 1) and the inequalities of Cauchy{Schwarz and Bessel, we obtain
that for every x 2 G the following holds:

1X
n=1

j fn u0n(x) j =
X

0�p�n�1
(�) +

X
p
�n>1

(�)

� AC0 C1 kfkC(G) + C0 C1 �
X

p
�n>1

j L(f)n j
�
1=2
n

� D4 + C0 C1 kL(f)kL2(G) �
� 1X
k=1

� X
k<
p
�n�k+1

1

�n

� �1=2

� D4 +A1=2 C0 C1 kL(f)kL2(G) �
� 1X

k=1

1

k2

�1=2

:

Hence the series considered is uniformly and absolutely convergent on G . This fact
and equality (7) for j = 0 give us equality (7) for j = 1.

Now, as above, we have�� f 0(x) � �0�(x; f)
�� � C0 C1 �

X
p
�n��

j L(f)n j
�
1=2
n

� A1=2 C0 C1 � g2;f (�) �
� 1X

k=[�]

1

k2

�1=2

� D5 � g2;f (�) �
� +1Z
[�]�1

dt

t2

�1=2

� 21=2D5 � g2;f (�) � 1

�1=2
;

where x 2 G;� � 2, and g2;f (�) is de�ned in the preceding section. So, estimate
(8) is valid when j = 1.

Proposition (b) of Theorem 1 is proved. Proof of Theorem 1 is completed.

4. Proof of Theorem 2(a)

4.1. An estimate for fn . We already have a model for the proof of Theorem
2. Let q(x); f(x) satisfy assumptions stated in the proposition (a), for k 2 N and
� 2 (0; 1] arbitrarily �xed. Then functions Lj(f)(x)(0 � j � k � 1) belong to the
domain D(L) of the operator L considered. Hence, starting from the �rst equality
(36), after the multiple use of equation (3) and the integration by parts, we can
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obtain

fn =
1

�n
�

bZ
a

L(f)(x)un(x) dx =
1

�2n
�

bZ
a

L2(f)(x)un(x) dx

= � � � = 1

�kn
�

bZ
a

Lk(f)(x)un(x) dx

=
1

�k+1n

�
� bZ

a

Lk(f)0(x)u0n(x) dx +
bZ

a

Lk(f)(x) q(x)un(x) dx
�
;

(37)

where �n 6= 0. (Note that Lk(f)(a) = 0 = Lk(f)(b); the intermediate terms of the
form

�Lj(f)(x)u0n(x) jba + Lj(f)0(x)un(x) jba
vanish by the self-adjointness of the operator L .)

Now, having in mind that Lk(f)0(x) 2 L1(G) \ H�
1 (G) and using equalities

(37), one may repeat, step by step, the procedure described in Section 2.2 and
obtain the estimate

j fn j � K(G;Lk(f)0; q) �
�

1

�
(2k+1+�)=2
n

+
1

�
(2k+1)=2
n

j (Lk(f)0)n j
�
;(38)

where �n satis�es condition (22) and the constant K(G;Lk(f)0; q) has the same
structure as the constant K(G; f 0; q) appearing in estimate (30), with f replaced
by Lk(f). As in the case of estimate (30), we can suppose, with no loss of generality,
that estimate (38) is valid for every �n > 1.

4.2. Convergence of the spectral expansion and its derivatives. Let
us prove now the assertion of Theorem 2(a) concerning the convergence of series
(9).

By virtue of estimates (15){(18) and (38), the following formal chain of in-
equalities holds for every j 2 f0; 1; : : : ; 2kg and x 2 G :

1X
n=1

j fn u(j)n (x) j =
X

0�p�n�1
(�) +

X
p
�n>1

(�) � AC0 Cj kfkC(G) +

+Cj K(G;Lk(f)0; q) �
X

p
�n>1

�
1

�
(2k+1�j+�)=2
n

+
1

�
(2k+1�j)=2
n

j (Lk(f)0)n j
�

� D6 +D7 �
� 1X

i=1

� X
i<
p
�n�i+1

1

�
(2k+1�j+�)=2
n

�
+

+

� 1X
i=1

� X
i<
p
�n�i+1

1

�2k+1�jn

��1=2

� kLk(f)0kL2(G)

�
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� D6 +D8 �
� 1X

i=1

1

i2k+1�j+�
+

� 1X
i=1

1

i2 (2k+1�j)

�1=2 �
:

Therefore, the majorizing numerical series being convergent, we can conclude that

the series
1P
n=1

fn u
(j)
n (x) converge absolutely and uniformly on G .

Finally, using completeness of the orthonormal system fun(x)g11 , one can
establish, as before, the equality (9) in the case j = 0, and then prove, by the
known theorem on di�erentiability of uniformly convergent functional series, the
equalities (9) in the cases 1 � j � 2k .

4.3. Proof of estimates (10). Having equalities (9) established, we can write

f (j)(x)� �(j)� (x; f) =
X

p
�n��

fn u
(j)
n (x);(39)

for every x 2 G , where 0 � j � 2k . Let us suppose � � 2. Then applying
estimates (15){(18) and (38), we can obtain, as in the preceding section, that���� X

p
�n��

fn u
(j)
n (x)

���� � D8 �
1X

i=[�]

1

i2k+1�j+�
+

+A1=2D7 �
� 1X

i=[�]

1

i2 (2k+1�j)

�1=2

�
� X
p
�n��

j (Lk(f)0)n j2
�1=2

� D8 �
+1Z

[�]�1

dt

t2k+1�j+�
+A1=2D7 � g3;f (�) �

� +1Z
[�]�1

dt

t4k+2�2j

�1=2

(40)

� D9 � 1

�2k�j+�
+D10 � g3;f (�) � 1

�2k�j+1=2
;

where g3;f (�)
def
=

� P
p
�n��

j (Lk(f)0)n j2
�1=2

. By lim
�!+1

g3;f (�) = 0, the estimates

(10) follow from (39){(40).
Proposition (a) of Theorem 2 is proved.
Proof of the assertion stated in Remark 1 and related to the proposition (a)

is based on the same arguments as the proof given in Section 5.2. So we omit the
details.

5. Proof of Theorem 2(b)

5.1. Equalities (11). The proof has the same structure as the proof of The-
orem 1(b). If functions q(x); f(x) satisfy assumptions stated in proposition (b) of
Theorem 2, then instead of (36) the following equalities hold:

fn =
1

�kn
�

bZ
a

Lk(f)(x)un(x) dx =
1

�kn
� Lk(f)n;(41)
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where �n 6= 0. Now, using estimates (15){(18), equalities (41), and the inequalities
of Cauchy{Schwarz and Bessel, we can obtain

1X
n=1

j fn u(j)n (x) j � AC0 Cj � kfkC(G) + Cj �
X

p
�n>1

j Lk(f)n j
�
(2k�j)=2
n

� D11 + Cj �
� 1X

n=1

j Lk(f)n j2
�1=2

�
� X
p
�n>1

1

�2k�jn

�1=2

� D11 +A1=2Cj � kLk(f)kL2(G) �
� 1X

i=1

1

i4k�2j

�1=2

;

where 0 � j � 2k�1. Therefore, the series (11) converge absolutely and uniformly
on G . Proof of equalities (11) is based on the same arguments as the proof of
equalities (9).

5.2. Estimates (12). It follows from equalities (11) that

f (j)(x) � �(j)� (x; f) =
X

p
�n��

fn u
(j)
n (x)

for x 2 G and 0 � j � 2k � 1. Let � � 2. Then, as in the preceding section, we
have ���� X

p
�n��

fn u
(j)
n (x)

���� � Cj

� X
p
�n��

j Lk(f)n j2
�1=2

�
� X
p
�n��

1

�2k�jn

�1=2

� A1=2 Cj � g4;f (�) �
� 1X

i=[�]

1

i4k�2j

�1=2

� A1=2 Cj � g4;f (�) �
� +1Z
[�]�1

dt

t4k�2j

�1=2

� D12 � g4;f (�) � 1

�2k�j�1=2
;

where g4;f (�)
def
=

� P
p
�n��

j Lk(f)n j2
�1=2

. By lim
�!+1 g4;f (�) = 0, we conclude

that estimates (12) are valid.
Proof of Theorem 2(b) is completed. Theorem 2 is proved.

6. On Remark 3

6.1. Proof of estimate (13). If functions q(x); f(x) satisfy conditions (a)
described in Remark 3, then the estimate

j fn j � K1(G; f
0; q) � 1

�n

is valid if �n 6= 0, and the equality f(x) =
1P
n=1

fn un(x) holds on G , the series

being absolutely and uniformly convergent (see [9, x 1 ]). Now, the estimate (13)
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results from the following:�� f(x)� ��(x; f)
�� = ���� X

p
�n��

fn un(x)

����
� C0K1(G; f

0; q) �
X

p
�n��

1

�n
� AC0K1(G; f

0; q) �
1X

i=[�]

1

i2

� D13 �
+1Z

[�]�1

dt

t2
dt � 2D13 � 1

�
;

where � � 2.
Recall that a real-valued function g , de�ned on a set D(g) � G , is called

piecewise monotone on D(g) if there is a set fx0; x1; : : : ; xn(g) g � G such that
a = x0 < x1 < � � � < xn(g) = b and functions g jD(g)\[xi�1;xi] are monotone for
every i = 1; : : : ; n(g).

6.2. Proof of estimates (14). Let the functions q(x); f(x) satisfy condi-
tions (b) formulated in Remark 3. Then the estimate

j fn j � K1(G;L(f)0; q) � 1=�2n
holds if �n 6= 0 (see [9, x 1 ]). Using this estimate and estimates (15){(18), one can

prove that the equalities f (j)(x) =
1P
n=1

fn u
(j)
n (x)(j = 0; 1; 2) hold on G , and that

the series are absolutely and uniformly convergent on this closed interval. Now, the
estimates (14) result from the following:�� f (j)(x)� �(j)� (x; f)

�� = ���� X
p
�n��

fn u
(j)
n (x)

����
� Cj K1(G;L(f)0; q) �

X
p
�n��

1

�
2�j=2
n

� ACj K1(G;L(f)0; q) �
1X

i=[�]

1

i4�j

� D14 �
+1Z

[�]�1

dt

�4�j
dt � 23�j

3� j
D14 � 1

�3�j
;

where � � 2.
Note that results presented in this paper were reported on the Seminar for real

and functional analysis (Faculty of mathematics, Belgrade) in the spring semester
1999.
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