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ABSTRACT. We obtain explicit solutions of certain systems of matrix equa-
tions which define commuting generalized inverses. It is proved that the only
possible generalized inverse defined by (4) is the Drazin inverse. On the other
hand, the system (18) defines the generalized inverses which may differ from
the Drazin inverse. Examples are given in order to show how the obtained
results can be extended to associative rings.

1.

Let M be the algebra of all complex square matrices of a fixed order, and for
leNlet fi(4,X),..., fi(4,X) be matrix polynomials in A, X € M with complex
coefficients.

DEFINITION 1. We say that the system of equations in X:
(1) fl(AaX):Oaafl(AaX):O

defines a generalized inverse of A provided that:

(i) if A is nonsingular, then for X = A~! the system (1) turns into a system of
identities;

(ii) for anu given A € M, the system (1) cannot have more than one solution
in X;

(iii) for at least one singular matrix A the system (1) is consistent.

DEFINITION 2. If (1) defines a generalized inverse of A and if one of the equa-

tions (1) is AX — X A = 0, we say that (1) defines a commuting generalized inverse
of A.

If (1) is to define a commuting generalized inverse, then f;(4,X) must be
polynomials in A and X whose terms are of the form aA™ X", where m,n € Ny,
a € C. We shall say that the term aA™X™ is of the type m-n. If all the terms of
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a polynomial f(A, X) are of the same type p, we say that f(A, X) is a polynomial
of type p.

We shall first describe all commuting generalized inverses defined by the system
(2) AX_XA:Oa fl(AaX):Oaafl(AaX):O

where f;(A, X) is a polynomial of type p; (i =1....,1).

2.

Suppose that AX = XA and that f(A,X) is a polynomial of type p. Then
f(A, X) has the form P(AX) if p=0; P(AX)A? if p > 0 and P(AX)X P ifp <0,
where P(t) is a complex polynomial in ¢. Hence, the system (2) has the form

(3) AX-XA=0, H;(AX)=0, Fj(AX)47=0, Grp(AX)X* =0,

wherei=1,...,r;j=1,...,m;k=1,... ,n,and H;(t), F;(t), Gi(t) are complex
polynomials in ¢ (where some of them may be identically zero). Besides, in view of
condition (i) of Definition 1, we must have H;(1) = Fj(1) = Gi(1) = 0.

If H(0) # 0 for some i, then the equation H;(AX) = 0 implies that AX is
nonsingular. But that means that if A is singular, the system (3) has no solutions,
contrary to the condition (iii) of Definition 1. Hence, H;(0) =0foralli=1,... ,r.

If F;(0) =0 for all j =1,...,m, then for a nonsingular matrix A the system
(3) will have at least two solutions, namely X =0 and X = A~'. Hence, F;(0) #0
for some j.

If G,(0) =0for all k=1,...,n, then for A =0, any matrix X will satisfy (3)
contrary to the condition (ii) of Definition 1. Hence G (0) # 0 for some k. Let
A = min{k | Gx(0) # 0}. If X > 1, then for A = 0 the system (3) will have more
than one solution—it will be satisfied by any matrix X such that X* = 0. Hence,
A =1, that is to say, G1(0) # 0.

Let Pi,...,P; be complex polynomials. In view of the above, we may write
the system (3) in the following form
AX —XA=0
PI(AX)X =0, Pi(0) #0, Pi(1) =0,
) P, (AX)A™ =0, P(0)#0, P,(1)=0, m>0

P(AX)A™ X" =0, Pi(1)=0, i=3,...,s,

where m; =0 orn; =0and m; =n; =0 = P;(0)=0fori=23,...,s, and we
have, in fact, proved the following lemma.

LEMMA 1. The system (2) can define a commuting generalized inverse only if
it has the form (4).
3.
For s =2, Pi(t) = P»(t) =t — 1, the system (4) becomes
(5) AX -XA=0, AX? - X =0, ALY — A™ =, m >0
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Let £ = Ind A be the index of A, that is to say, let k& be the smallest positive integer

such that rank A¥ = rank A**1. For a given matrix A of index k the system (5)

defines its so-called Drazin inverse A? if and only if m > k; see, for instance [1].
For Pi(t) =tPi —1,m=my >0,p; €N, i=1,...,s, the system (4) becomes

AX - XA=0, APt xPitl X =, Amatp2 P2 Am2 — (),
Amatps xnitpi _ gmi xni — () 1=3,...,5.

The system (6) was considered in [2] where it was shown that (6) defines a commut-
ing generalized inverse if and only if py,...,ps are relatively prime, in which the
case it is equivalent to the system (5) where m = min{m; |n; =0, i =2,... ,s}.
This means that if (6) has unique solution in X, then X = AP,

Notice that the condition “py, ... ,ps are relatively prime” is equivalent to the
condition “¢t — 1 is the highest common factor of the polynomials tPi — 1, i =
1,...,s".

4.

We shall now show that a similar conclusion holds for the system (4).

LEMMA 2. Let A be k-nilpotent, i.e., A¥ =0, A¥=1 £0 for some k € N. The
system (4) has unique solution X = 0 if and only if

(7) m >k and m; >k orn; >0 or P;(0)=0 fori=3,...,s.

PROOF. Let Pi(t) = apt? + --- + a1t + ag (where ap # 0). From the second
equation of (4) we get

p
. a;
X = ; b; AT X+ (bj = a—é)

p p
= bAl (Z bjAjXHl)Xj =... =0,
j=1 j=1

since A¥ = 0, and so X = 0 if the only solution of that equation. It is also a
solution of the first equation AX — XA = 0, but it will satisfy the remaining
equations of (4) only if (7) holds. If the condition (7) is not fulfilled, the system
(4) is inconsistent. O

LEMMA 3. Let A be a nonsingular matriz. The system (4) has unique so-
lution X = A~ only if t — 1 is the highest common factor of the polynomials
Pl(t)) te ;Ps(t)'

ProOOF. If A is nonsingular, from the third equation of (4) we get Po(AX) =0,
with P»(0) # 0, implying that AX is nonsingular and hence that X is nonsingular.
Therefore, the system (4) becomes
(8) AX —XA=0, P(AX)=0, PB(1)=0, i=1,...,s,

and X = A~! is its solution. Since P;(1) = 0, t — 1 is a common factor of the
polynomials P;(t). Suppose that (¢t — 1)* for k > 1 is a common factor of those
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polynomials. Then the system (8) for A = I will have more than one solution;
namely, X = B + I, where B is any matrix such that B*¥ = 0 will be a solution
of (8). If t — A, where A\ # 1 is a common factor of the polynomials P;(t), then
X = AA~! will also be a solution of (8). Hence, X = A~ is the unique solution of
(4) only if t — 1 is the highest common factor of P;(t),i=1,...,s. O

THEOREM 1. The system (2) defines a commuting generalized inverse if and
only if:

(Cy) it has the form (4);

(Cs) t — 1 is the highest common factor of the polynomials Py (t),... , Ps(t).

ProoF. Unless it has the form (4), according to Lemma 1, the system (2)
cannot define a commuting generalized inverse. Also, if the polynomials P;(¢) have
an other common linear factor besides t — 1, the system (4) can have more than one
solution in X. Hence, the conditions (C;) and (Cz) are necessary. We now show
that they are also sufficient.

First, it is clear that the system (4) satisfies the condition (i) of Definition 1.

If A is nilpotent, according to Lemma 2, the system (4) is either inconsistent
or it has unique solution X = 0. If A is nonsingular, according to Lemma 3, (Cs)
implies that the system (4) has unique solution X = A~!. If A is neither nilpotent
nor singular, there exist nonsingular matrices S, R and a nilpotent matrix N such
that A = S(N®R)S~!. The equation AX — X A = 0 implies that X must be of the
form X = S(U @ V)S™1, and the system (4) splits into two systems in U and V:
In the first A is replaced by N and X by U, and in the second A is replaced by R
and X by V. The first system is either inconsistent or has unique solution U = 0.
The second system, in view of (C3) and Lemma 3, has unique solution V = R™L.
Hence, for any A € M the system (4) cannot have more than one solution, and the
condition (ii) of Definition 1 is fulfilled.

Let

(9) E={m;|n;=0, P,(0)#0, i=2,...,s}  (ma=m).

For instance, ms € F and so E # (). Let A = S(N @ R)S™!, where S, R are
nonsingular and N¥ = 0, N¥=1 £0,ie., IndA =k, and let 1 < k¥ < min E. The
matrix A is singular, but according to Lemmas 2 and 3, the system (4) has (unique)
solution: X = S(0® RS !, i.e.,, X = AP, which means that the condition (iii)
of Definition 1 is also fulfilled. O

THEOREM 2. If the condition (Cs) is satisfied, the system (4) is equivalent to
the Drazin system
(10) AX - XA=0, AX?-X =0, A*'X-Ak=0
where k = min E, and E is defined by (9).

The proof follows from the fact that both systems (4) and (10) are inconsistent
if Ind A > k and the fact that under the condition (Cz) both systems (4) and (10)
have the same unique solution X = AP if Ind A < k.
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5.

If each polynomial P;(t) in (4) has only two terms, then the system (4) can be
written using only multiplication, and hence such matrix systems can be transferred
to the more general framework of arbitrary semigroups. Indeed, the result of [2],
regarding the matrix system (6) was generalized in [3] to arbitrary semigroups. If
one of the polynomials P;(t) has more than two terms, the matrix system (4) can be
transferred to associative rings, and the following example suggests that Theorems
1 and 2 may also hold within this more general setting.

ExaMPLE 1. Let K be an associative ring and for a given a € K consider the
system in z € K:

ar = za, 2ad°z® —az® —x=0, 4a°z? —3a'z—a®>=0,

" 4 20t 2 — @l — 222" =0,

(11)

where n is a nonnegative integer, and a2x° is, by definition, a®. The system (11) is
equivalent to the system:

12 ar = ra, ar’® ==z, a’c=ad>
) ) )

if n =0, and to the system
13 ar = za, ax’® =2z, ada‘z=ad
( ) ) )

ifn>0.

Indeed, the implication (12) = (11) for any n, and the implication (13) = (11)
for n > 0 are both trivial.

Conversely, from the first three equations of (11) we get:

ar = 2a®2% — a®2% = (2a32” — a’x)(2d*2® — az?)
= (4a°2? — da*z + a®)2® = —a'z? + 2632 (2d°2° — az?)

=4a°z® — 3a*z* = o*2®

Putting a2 = ax into the second equation of (11), multiplied by a, we get a?z? =
az, and substituting this last equality into the second equation of (11) we obtain
ar? = z. Finally, putting az®> =  into the third equation of (11) we get a*z = a3.
In other words, (13) follows from the first three equations of (11).

Putting a*z = a® into the fourth equation of (11) we get
(14) a’z"t —a?z" =0
Hence, if n = 0 the implication (11) = (12) is proved. If n > 0, the equation (14)

gives nothing new—it is simply a consequence of the equality a?z? = az, proved
earlier.
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In this example we have s = 3, Py(t) = 2t> —t — 1, Po(t) = 4> — 3t — 1,
m = mo = 3 and

Py(t) =t3 +2t> —t — 2, ms=2 ifn=0
Ps(t)=tt+2t3—t>—-2t, mz3=1 ifn=1
Ps(t) =t> +2t* =3 —2t%, m3=0 ifn>2

The conditions of Theorem 1 are satisfied and for the set E, defined by (9), we have:
E ={2,3}ifn =0 and E = {3} if n > 0. Hence, the equivalence (11) < (12) if
n =0 and (11) & (13) if n > 0 are in accordance with Theorem 2.

6.

If each one of the polynomials f;(A, X) is of a fixed type, then we have seen that
the only possible commuting generalized inverse defined by (2) is the Drazin inverse.
However, without this restriction upon the polynomials f;(A4, X) the system (2) may
define commuting generalized inverses different from the Drazin inverse.

ExXAMPLE 2. For k € N the system
(15) AX = XA, Akl x — Ak, X = ARXHkHL _ gk k=14 4

was considered in [4] where it was shown that it defines a generalized inverse of A,
given by X = AP 4 A(I — AAP), provided that Ind A < k. This generalized inverse
coincides with the Drazin inverse only if Ind A = k = 1.

We shall now solve a system which generalizes (15), and in order to do this, we
first prove two lemmas.

LEMMA 4. Let K be an associative ring and for a € K consider the following
system in v € K:

(16) ar =za, a"lz=a* z=_S(a,x),

where k € N and S(a,z) is a finite sum of terms of the form aa™z™, where a’s
are integers, m’s are positive and n’s are nonnegative integers, and aca™z° is, by
definition, aa™.

The system (16) cannot have more than one solution.

PROOF. Suppose that u and v are solutions of (16). Then we have:
a*u = (a*o)u = v(a*u) = va* = aFo.

Suppose that a*u” = a*v" for some r € N. Then

k+1ur+1 k

= vafu" = va*

akur+1 — (ak+lv)ur+1 k r+1_

= va v" = a"v

Hence, a?u” = aPv” for all p > k and all r € Ny.

If £ =1, then aa™u™ = aa™v" for allm € N, n € Ny and so S(a,u) = S(a,v),
ie., u=w.

If k£ > 1, then the right-hand side of the equality a*~'u = a*~'S(a,u) consists
of terms of the form aaPu™, where p > k and so aaPu™ = aaPv™, implying that
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a*=1'S(a,u) = a*~'S(a,v), ie., a*"'u = a*~'v. Continuing this procedure we
arrive at au = av, implying that S(a,u) = S(a,v), i.e., u = v. O

LEMMA 5. Let Py(t), Pi(t),...,Pn(t) be complex polynomials in t such that
P;(0) =0 fori=0,1,...,n, and let N* =0 for some k € N. Then the system

(17) NU =UN, U=PFPN)+P(N)U+---+P,(N)U"
implies that U is a polynomial in N.

PROOF. Since P;(0) = 0,4 =0,1,...,n, all the terms of the polynomials P;
are of degree > 1. From the second equation of (17) we get

U = By(N) + (Pi(N) + - - + Py (N)U" ) (By(N) + Pi(N)U + -+~ + P, (N)U™)
and after rearranging
Qo(N) + QuN)U + -+ + Qan1 (N)U T,

but now all the terms of the polynomials Q;, ¢ =1,... ,2n — 1, are of degree > 2.
Since N* = 0 for some k € N, continuing this procedure we see that v must be a
polynomial in N. [l

THEOREM 3. Let k,r,s € N and let Py,... ,P.,Qo,Q1,...,Qs be complex
polynomials such that P;(0) = 0 fori = 1,...,r; Pi(1) = 1, Pi(1) = 0 for
i=2,...,r; QO0) =0, Q;i(1) =0 fori =0,1,...,s. For A € M the system
of equations in X :

T s
(18) AX =XA, AIX =4, X =) PAX)X +) Qi(AX)A'

i=1 i=0
defines a generalized inverse of A. Moreover, if the system (18) is consistent, there
exists a complex polynomial P such that the unique solution of (18) is given by

(19) z+ AP + P(A) — AP(A)AP

PROOF. The system (18) clearly satisfies the condition (i) of Definition 1. Fur-
thermore, all the terms on the right-hand side of the third equation of (18) are
of the form aA™X"™ where a’s are complex numbers, m’s are positive and n’s are
nonnegative integers, and by the reasoning of Lemma 4, (18) cannot have mor than
one solution, Finally, for the singular matrix A = 0 the system (18) has (unique)
solution X = 0. Hence, (18) defines a commuting generalized inverse.

If Ind A > k, the system (18) is inconsistent. If 1 < Ind A < k, then there exist
nonsingular matrices S, R and the matrix N such that A = S(N @ R)S™!, where
NU =UN. From the third equation of (18) we obtain

i=1 =0

which can be written in the form

U = So(N) + S (N)U + -+ + Sp (N)U™,
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where S; are polynomials such that S;(0) =0 fori =0,1,...,n. Hence, by Lemma
5, there exists a polynomial P such that U = P(N), and we get

(20) X=S[P(N)eR ")S

Since P(A) = S(P(N) ® P(R))S™" and AP = S(0 ® R~')S™!, then it is easily
verified that (20) can be written in the form (19). O

In Example 2 we had r = s = 1, Pi(t) = t*, Qo(t) = 0, Q1(t) = 1 — t* ! and
P(t) = t. The following example will show that the polynomial P which appears
in (19) is determined not only by the system (18) but also by the index of A.

EXAMPLE 3. fk e N, r = 1,5 =2, Pi(t) =2, Qo(t) = Q1(t) = 0, Q2(t) =
1 — ¢, the system (18) becomes

(21) AX = XA, AMIX =AF X = A2X3 4 A% - A3X.
Let 1 = IndA. If 4 > k, the system (21) is inconsistent. If i < k < 14, the

unique solution of (21) is given by (19), whee P(t) = 0 for i = 1,2; P(t) = t*
for i +3,4,5; P(t) = t> —t° for i = 6,7,8; P(t) = t> — 5 + 2t® for i = 9,10, 11;
P(t) = t2 — 5 + 2t8 — 5t!! for i = 12,13,14. Of course one could say that P(t) =
2 —t>4+2t8 5t foralli =1,...,14, since N> — N> +2N8 —5N'! will reduce for
example to N2 — N? if 4 < 8, but still the polynomial P depends upon i = Ind A.
Indeed, if i = 15, then P(t) = 2 — 5 + 28 — 5¢11 + 9¢14,

In this final example we indicate how the conclusions of the last section can be
carried over to associative rings.

ExaMPLE 4. Let K be an associative ring, let a € K and consider the following
two systems in x:

(22) ar =za, a'z=ad x=az?

(23) ar =za, a'r=a% =x=d’2®+ad®-ad’x

neither of which, according to Lemma 4, can have more than one solution. The
systems (22) and (23) are not equivalent, but they are equiconsistent. Indeed, if
x = d is the solution of (22), then the solution of (23) is given by: z = d + a* —

a® —add+aSd. Conversely, if z = c is the solution of (23), then the solution of (22)

is given by z = a?c>.
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