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Abstract. We obtain explicit solutions of certain systems of matrix equa-
tions which de�ne commuting generalized inverses. It is proved that the only
possible generalized inverse de�ned by (4) is the Drazin inverse. On the other
hand, the system (18) de�nes the generalized inverses which may di�er from
the Drazin inverse. Examples are given in order to show how the obtained
results can be extended to associative rings.

1.

Let M be the algebra of all complex square matrices of a �xed order, and for
l 2 N let f1(A;X); : : : ; fl(A;X) be matrix polynomials in A;X 2M with complex
coeÆcients.

Definition 1. We say that the system of equations in X :

f1(A;X) = 0; : : : ; fl(A;X) = 0(1)

de�nes a generalized inverse of A provided that:
(i) if A is nonsingular, then for X = A�1 the system (1) turns into a system of

identities;
(ii) for anu given A 2 M , the system (1) cannot have more than one solution

in X ;
(iii) for at least one singular matrix A the system (1) is consistent.

Definition 2. If (1) de�nes a generalized inverse of A and if one of the equa-
tions (1) is AX �XA = 0, we say that (1) de�nes a commuting generalized inverse
of A.

If (1) is to de�ne a commuting generalized inverse, then fi(A;X) must be
polynomials in A and X whose terms are of the form �AmXn, where m;n 2 N0 ,
� 2 C . We shall say that the term �AmXn is of the type m-n. If all the terms of

1991 Mathematics Subject Classi�cation. Primary 15A09.

51



52 KE�CKI�C

a polynomial f(A;X) are of the same type p, we say that f(A;X) is a polynomial
of type p.

We shall �rst describe all commuting generalized inverses de�ned by the system

AX �XA = 0; f1(A;X) = 0; : : : ; fl(A;X) = 0(2)

where fi(A;X) is a polynomial of type pi (i = 1: : : : ; l).

2.

Suppose that AX = XA and that f(A;X) is a polynomial of type p. Then
f(A;X) has the form P (AX) if p = 0; P (AX)Ap if p > 0 and P (AX)X�p if p < 0,
where P (t) is a complex polynomial in t. Hence, the system (2) has the form

AX �XA = 0; Hi(AX) = 0; Fj(AX)Aj = 0; Gk(AX)Xk = 0;(3)

where i = 1; : : : ; r; j = 1; : : : ;m; k = 1; : : : ; n, and Hi(t), Fj(t), Gk(t) are complex
polynomials in t (where some of them may be identically zero). Besides, in view of
condition (i) of De�nition 1, we must have Hi(1) = Fj(1) = Gk(1) = 0.

If H(0) 6= 0 for some i, then the equation Hi(AX) = 0 implies that AX is
nonsingular. But that means that if A is singular, the system (3) has no solutions,
contrary to the condition (iii) of De�nition 1. Hence, Hi(0) = 0 for all i = 1; : : : ; r.

If Fj(0) = 0 for all j = 1; : : : ;m, then for a nonsingular matrix A the system
(3) will have at least two solutions, namely X = 0 and X = A�1. Hence, Fj(0) 6= 0
for some j.

If Gk(0) = 0 for all k = 1; : : : ; n, then for A = 0, any matrix X will satisfy (3)
contrary to the condition (ii) of De�nition 1. Hence Gk(0) 6= 0 for some k. Let
� = minfk j Gk(0) 6= 0g. If � > 1, then for A = 0 the system (3) will have more
than one solution|it will be satis�ed by any matrix X such that X� = 0. Hence,
� = 1, that is to say, G1(0) 6= 0.

Let P1; : : : ; Ps be complex polynomials. In view of the above, we may write
the system (3) in the following form

AX �XA = 0

P1(AX)X = 0; P1(0) 6= 0; P1(1) = 0;

P2(AX)Am = 0; P2(0) 6= 0; P2(1) = 0; m > 0

Pi(AX)AmiXni = 0; Pi(1) = 0; i = 3; : : : ; s;

(4)

where mi = 0 or ni = 0 and mi = ni = 0 ) Pi(0) = 0 for i = 3; : : : ; s, and we
have, in fact, proved the following lemma.

Lemma 1. The system (2) can de�ne a commuting generalized inverse only if

it has the form (4).

3.

For s = 2, P1(t) = P2(t) = t� 1, the system (4) becomes

AX �XA = 0; AX2 �X = 0; Am+1X �Am = 0; m > 0(5)
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Let k = IndA be the index of A, that is to say, let k be the smallest positive integer
such that rankAk = rankAk+1. For a given matrix A of index k the system (5)
de�nes its so-called Drazin inverse AD if and only if m � k; see, for instance [1].

For Pi(t) = tpi � 1, m = m2 > 0, pi 2 N, i = 1; : : : ; s, the system (4) becomes

AX �XA = 0; Ap1Xp1+1 �X = 0; Am2+p2Xp2 �Am2 = 0;

Ami+piXni+pi �AmiXni = 0; i = 3; : : : ; s:
(6)

The system (6) was considered in [2] where it was shown that (6) de�nes a commut-
ing generalized inverse if and only if p1; : : : ; ps are relatively prime, in which the
case it is equivalent to the system (5) where m = minfmi j ni = 0; i = 2; : : : ; sg.
This means that if (6) has unique solution in X , then X = AD .

Notice that the condition \p1; : : : ; ps are relatively prime" is equivalent to the
condition \t � 1 is the highest common factor of the polynomials tpi � 1, i =
1; : : : ; s".

4.

We shall now show that a similar conclusion holds for the system (4).

Lemma 2. Let A be k-nilpotent, i.e., Ak = 0, Ak�1 6= 0 for some k 2 N. The

system (4) has unique solution X = 0 if and only if

m � k and mi � k or ni > 0 or Pi(0) = 0 for i = 3; : : : ; s:(7)

Proof. Let P1(t) = apt
p + � � � + a1t + a0 (where a0 6= 0). From the second

equation of (4) we get

X =

pX
j=1

bjA
jXj+1

�
bj =

aj

a0

�

=

pX
j=1

bjA
j

� pX
j=1

bjA
jXj+1

�
Xj = � � � = 0;

since Ak = 0, and so X = 0 if the only solution of that equation. It is also a
solution of the �rst equation AX � XA = 0, but it will satisfy the remaining
equations of (4) only if (7) holds. If the condition (7) is not ful�lled, the system
(4) is inconsistent.

Lemma 3. Let A be a nonsingular matrix. The system (4) has unique so-

lution X = A�1 only if t � 1 is the highest common factor of the polynomials

P1(t); : : : ; Ps(t).

Proof. If A is nonsingular, from the third equation of (4) we get P2(AX) = 0,
with P2(0) 6= 0, implying that AX is nonsingular and hence that X is nonsingular.
Therefore, the system (4) becomes

AX �XA = 0; Pi(AX) = 0; Pi(1) = 0; i = 1; : : : ; s;(8)

and X = A�1 is its solution. Since Pi(1) = 0, t � 1 is a common factor of the
polynomials Pi(t). Suppose that (t � 1)k for k > 1 is a common factor of those
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polynomials. Then the system (8) for A = I will have more than one solution;
namely, X = B + I , where B is any matrix such that Bk = 0 will be a solution
of (8). If t � �, where � 6= 1 is a common factor of the polynomials Pi(t), then
X = �A�1 will also be a solution of (8). Hence, X = A�1 is the unique solution of
(4) only if t� 1 is the highest common factor of Pi(t), i = 1; : : : ; s.

Theorem 1. The system (2) de�nes a commuting generalized inverse if and

only if:

(C1) it has the form (4);
(C2) t� 1 is the highest common factor of the polynomials P1(t); : : : ; Ps(t).

Proof. Unless it has the form (4), according to Lemma 1, the system (2)
cannot de�ne a commuting generalized inverse. Also, if the polynomials Pi(t) have
an other common linear factor besides t�1, the system (4) can have more than one
solution in X . Hence, the conditions (C1) and (C2) are necessary. We now show
that they are also suÆcient.

First, it is clear that the system (4) satis�es the condition (i) of De�nition 1.
If A is nilpotent, according to Lemma 2, the system (4) is either inconsistent

or it has unique solution X = 0. If A is nonsingular, according to Lemma 3, (C2)
implies that the system (4) has unique solution X = A�1. If A is neither nilpotent
nor singular, there exist nonsingular matrices S, R and a nilpotent matrix N such
that A = S(N�R)S�1. The equation AX�XA = 0 implies that X must be of the
form X = S(U � V )S�1, and the system (4) splits into two systems in U and V :
In the �rst A is replaced by N and X by U , and in the second A is replaced by R
and X by V . The �rst system is either inconsistent or has unique solution U = 0.
The second system, in view of (C2) and Lemma 3, has unique solution V = R�1.
Hence, for any A 2M the system (4) cannot have more than one solution, and the
condition (ii) of De�nition 1 is ful�lled.

Let

E = fmi j ni = 0; Pi(0) 6= 0; i = 2; : : : ; sg (m2 = m):(9)

For instance, m2 2 E and so E 6= ;. Let A = S(N � R)S�1, where S, R are
nonsingular and Nk = 0, Nk�1 6= 0, i.e., IndA = k, and let 1 � k � minE. The
matrix A is singular, but according to Lemmas 2 and 3, the system (4) has (unique)
solution: X = S(0� R�1)S�1, i.e., X = AD, which means that the condition (iii)
of De�nition 1 is also ful�lled.

Theorem 2. If the condition (C2) is satis�ed, the system (4) is equivalent to

the Drazin system

AX �XA = 0; AX2 �X = 0; Ak+1X �Ak = 0(10)

where k = minE, and E is de�ned by (9).

The proof follows from the fact that both systems (4) and (10) are inconsistent
if IndA > k and the fact that under the condition (C2) both systems (4) and (10)
have the same unique solution X = AD , if IndA � k.
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5.

If each polynomial Pi(t) in (4) has only two terms, then the system (4) can be
written using only multiplication, and hence such matrix systems can be transferred
to the more general framework of arbitrary semigroups. Indeed, the result of [2],
regarding the matrix system (6) was generalized in [3] to arbitrary semigroups. If
one of the polynomials Pi(t) has more than two terms, the matrix system (4) can be
transferred to associative rings, and the following example suggests that Theorems
1 and 2 may also hold within this more general setting.

Example 1. Let K be an associative ring and for a given a 2 K consider the
system in x 2 K:

ax = xa; 2a2x3 � ax2 � x = 0; 4a5x2 � 3a4x� a3 = 0;

a5xn+3 + 2a4xn+2 � a3xn+1 � 2a2xn = 0;
(11)

where n is a nonnegative integer, and a2x0 is, by de�nition, a2. The system (11) is
equivalent to the system:

ax = xa; ax2 = x; a3x = a2;(12)

if n = 0, and to the system

ax = xa; ax2 = x; a4x = a3;(13)

if n > 0.
Indeed, the implication (12)) (11) for any n, and the implication (13)) (11)

for n > 0 are both trivial.
Conversely, from the �rst three equations of (11) we get:

ax = 2a3x3 � a2x2 = (2a3x2 � a2x)(2a2x3 � ax2)

= (4a5x2 � 4a4x+ a3)x3 = �a4x4 + 2a3x2(2a2x3 � ax2)

= 4a5x5 � 3a4x4 = a3x3

Putting a3x3 = ax into the second equation of (11), multiplied by a, we get a2x2 =
ax, and substituting this last equality into the second equation of (11) we obtain
ax2 = x. Finally, putting ax2 = x into the third equation of (11) we get a4x = a3.
In other words, (13) follows from the �rst three equations of (11).

Putting a4x = a3 into the fourth equation of (11) we get

a3xn+1 � a2xn = 0(14)

Hence, if n = 0 the implication (11) ) (12) is proved. If n > 0, the equation (14)
gives nothing new|it is simply a consequence of the equality a2x2 = ax, proved
earlier.
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In this example we have s = 3, P1(t) = 2t2 � t � 1, P2(t) = 4t2 � 3t � 1,
m = m2 = 3 and

P3(t) = t3 + 2t2 � t� 2; m3 = 2 if n = 0

P3(t) = t4 + 2t3 � t2 � 2t; m3 = 1 if n = 1

P3(t) = t5 + 2t4 � t3 � 2t2; m3 = 0 if n � 2

The conditions of Theorem 1 are satis�ed and for the set E, de�ned by (9), we have:
E = f2; 3g if n = 0 and E = f3g if n > 0. Hence, the equivalence (11) , (12) if
n = 0 and (11), (13) if n > 0 are in accordance with Theorem 2.

6.

If each one of the polynomials fi(A;X) is of a �xed type, then we have seen that
the only possible commuting generalized inverse de�ned by (2) is the Drazin inverse.
However, without this restriction upon the polynomials fi(A;X) the system (2) may
de�ne commuting generalized inverses di�erent from the Drazin inverse.

Example 2. For k 2 N the system

AX = XA; Ak+1X = Ak; X = AkXk+1 �AkXk�1 +A(15)

was considered in [4] where it was shown that it de�nes a generalized inverse of A,
given by X = AD+A(I�AAD), provided that IndA � k. This generalized inverse
coincides with the Drazin inverse only if IndA = k = 1.

We shall now solve a system which generalizes (15), and in order to do this, we
�rst prove two lemmas.

Lemma 4. Let K be an associative ring and for a 2 K consider the following

system in x 2 K:

ax = xa; ak+1x = ak; x = S(a; x);(16)

where k 2 N and S(a; x) is a �nite sum of terms of the form �amxn, where �'s

are integers, m's are positive and n's are nonnegative integers, and �amx0 is, by

de�nition, �am.

The system (16) cannot have more than one solution.

Proof. Suppose that u and v are solutions of (16). Then we have:

aku = (ak+1v)u = v(ak+1u) = vak = akv:

Suppose that akur = akvr for some r 2 N. Then

akur+1 = (ak+1v)ur+1 = vak+1ur+1 = vakur = vakvr = akvr+1:

Hence, apur = apvr for all p � k and all r 2 N0 .
If k = 1, then �amun = �amvn for all m 2 N, n 2 N0 and so S(a; u) = S(a; v),

i.e., u = v.
If k > 1, then the right-hand side of the equality ak�1u = ak�1S(a; u) consists

of terms of the form �apun, where p � k and so �apun = �apvn, implying that
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ak�1S(a; u) = ak�1S(a; v), i.e., ak�1u = ak�1v. Continuing this procedure we
arrive at au = av, implying that S(a; u) = S(a; v), i.e., u = v.

Lemma 5. Let P0(t), P1(t); : : : ; Pn(t) be complex polynomials in t such that

Pi(0) = 0 for i = 0; 1; : : : ; n, and let Nk = 0 for some k 2 N. Then the system

NU = UN; U = P0(N) + P1(N)U + � � �+ Pn(N)Un(17)

implies that U is a polynomial in N .

Proof. Since Pi(0) = 0, i = 0; 1; : : : ; n, all the terms of the polynomials Pi
are of degree � 1. From the second equation of (17) we get

U = P0(N) + (P1(N) + � � �+ Pn(N)Un�1)(P0(N) + P1(N)U + � � �+ Pn(N)Un)

and after rearranging

Q0(N) +Q1(N)U + � � �+Q2n�1(N)U2n�1;

but now all the terms of the polynomials Qi, i = 1; : : : ; 2n� 1, are of degree � 2.
Since Nk = 0 for some k 2 N, continuing this procedure we see that u must be a
polynomial in N .

Theorem 3. Let k; r; s 2 N and let P1; : : : ; Pr; Q0; Q1; : : : ; Qs be complex

polynomials such that Pi(0) = 0 for i = 1; : : : ; r; P1(1) = 1, Pi(1) = 0 for

i = 2; : : : ; r; Q(0) = 0, Qi(1) = 0 for i = 0; 1; : : : ; s. For A 2 M the system

of equations in X:

AX = XA; Ak+1X = A; X =

rX
i=1

Pi(AX)X i +

sX
i=0

Qi(AX)Ai(18)

de�nes a generalized inverse of A. Moreover, if the system (18) is consistent, there

exists a complex polynomial P such that the unique solution of (18) is given by

x+AD + P (A)�AP (A)AD(19)

Proof. The system (18) clearly satis�es the condition (i) of De�nition 1. Fur-
thermore, all the terms on the right-hand side of the third equation of (18) are
of the form �AmXn where �'s are complex numbers, m's are positive and n's are
nonnegative integers, and by the reasoning of Lemma 4, (18) cannot have mor than
one solution, Finally, for the singular matrix A = 0 the system (18) has (unique)
solution X = 0. Hence, (18) de�nes a commuting generalized inverse.

If IndA > k, the system (18) is inconsistent. If 1 � IndA � k, then there exist
nonsingular matrices S, R and the matrix N such that A = S(N �R)S�1, where
NU = UN . From the third equation of (18) we obtain

U =

rX
i=1

Pi(NU)U i +

sX
i=0

Qi(NU)N i;

which can be written in the form

U = S0(N) + S1(N)U + � � �+ Sn(N)Un;
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where Si are polynomials such that Si(0) = 0 for i = 0; 1; : : : ; n. Hence, by Lemma
5, there exists a polynomial P such that U = P (N), and we get

X = S(P (N)�R�1)S�1:(20)

Since P (A) = S(P (N) � P (R))S�1 and AD = S(0 � R�1)S�1, then it is easily
veri�ed that (20) can be written in the form (19).

In Example 2 we had r = s = 1, P1(t) = tk, Q0(t) = 0, Q1(t) = 1� tk�1 and
P (t) = t. The following example will show that the polynomial P which appears
in (19) is determined not only by the system (18) but also by the index of A.

Example 3. If k 2 N, r = 1, s = 2, P1(t) = t2, Q0(t) = Q1(t) = 0, Q2(t) =
1� t, the system (18) becomes

AX = XA; Ak+1X = Ak ; X = A2X3 +A2 �A3X:(21)

Let i = IndA. If i > k, the system (21) is inconsistent. If i � k � 14, the
unique solution of (21) is given by (19), whee P (t) = 0 for i = 1; 2; P (t) = t2

for i + 3; 4; 5; P (t) = t2 � t5 for i = 6; 7; 8; P (t) = t2 � t5 + 2t8 for i = 9; 10; 11;
P (t) = t2 � t5 + 2t8 � 5t11 for i = 12; 13; 14. Of course one could say that P (t) =
t2� t5+2t8�5t11 for all i = 1; : : : ; 14, since N2�N5+2N8�5N11 will reduce for
example to N2 �N5 if i � 8, but still the polynomial P depends upon i = IndA.
Indeed, if i = 15, then P (t) = t2 � t5 + 2t8 � 5t11 + 9t14.

In this �nal example we indicate how the conclusions of the last section can be
carried over to associative rings.

Example 4. LetK be an associative ring, let a 2 K and consider the following
two systems in x:

ax = xa; a7x = a6; x = ax2;(22)

ax = xa; a7x = a6; x = a2x3 + a2 � a3x(23)

neither of which, according to Lemma 4, can have more than one solution. The
systems (22) and (23) are not equivalent, but they are equiconsistent. Indeed, if
x = d is the solution of (22), then the solution of (23) is given by: x = d + a2 �
a5�a3d+a6d. Conversely, if x = c is the solution of (23), then the solution of (22)
is given by x = a2c3.
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