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Abstract. Let �(G) be the number of independent{vertex sets of a graph
G . Merri�eld and Simmons conjectured that for any connected graph G and
any pair of its non-adjacent vertices u and v, �uv(G) := �(G � u)�(G �
v) � �(G) �(G � u � v) is positive if the distance between u and v is odd,
and negative otherwise. In earlier works by the authors the conjecture was
shown to be true for trees, cycles and several other types of graphs, but a few
counterexamples were discovered among dense graphs. We now prove that the
conjecture is true for all bipartite and some non-bipartite connected unicyclic
graphs, but not for all connected unicyclic graphs. Moreover, we �nd a graph
G for which �uv(G) = 0 .

1. Introduction

Two vertices of a graph G are said to be independent if they are not adjacent.
The k-th independence number of G is denoted by �k(G) . By de�nition, for k � 2 ,
�k(G) is equal to the number of ways in which k pairwise independent vertices can
be selected in the graph G . In addition to this, �0(G) = 1 and �1(G) = number
of vertices of G . Thus �(G) =

P
k�0

�k(G) is the number of all independent{vertex
sets of G .

On page 144 of the book [5], Merri�eld and Simmons claimed without proof a
property of �(G) , which for non-adjacent vertices u and v of a connected graph G
may be formulated as follows. Abbreviate �(G � u)�(G� v)� �(G)�(G � u� v)
by �uv(G) . Then

�uv(G)

(
< 0 if d(u; v) is even

> 0 if d(u; v) is odd
(1)

where d(u; v) denotes the distance of u and v in G .
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Gutman [1] proved that the conjecture is true for all trees. Li [4] proved that
the conjecture is true for all cycles and for many other kinds of graphs. Although
Li [4] found two families of counterexamples for this conjecture, the respective
graphs were very dense, i.e., had relatively many edges. On the other hand, the
considerations in the book [5] were limited to sparse graphs, i.e., graphs having
relatively few edges. Therefore, it may be understood that the property (1) was
believed to hold only for sparse graphs. If so, then the counterexamples reported in
[4] cannot be considered as fully satisfactory. What one would need to convincingly
disprove the validity of the Merri�eld{Simmons conjecture are counterexamples
based on sparse graphs. In order to accomplish this task, we examined (connected)
unicyclic graphs, which, apart from trees, have the least number of edges. We show
that although the majority of connected unicyclic graphs satis�es the relation (1),
counterexamples for the Merri�eld{Simmons conjecture exist already within this
class.

2. Preliminary considerations

We �rst state without proof some properties and lemmas, which are either
given in [1{4] or are immediate consequences of results found in [1{4].

Property 1. If v is a vertex of G , then

�(G) = �(G� v) + �(G � [v])

where G � v is the subgraph obtained by deleting v from G , and G � [v] is the
subgraph obtained by deleting from G both v and the vertices adjacent to v .

Property 2. Let G1 [ G2 denote a graph composed of disjoint components
G1 and G2 . Then

�(G1 [G2) = �(G1)�(G2)

An immediate consequence of Property 2 is that if the graph G is disconnected
and the vertices u and v belong to its di�erent components, then �uv(G) = 0 . If, in
turn, G = G1[G2 and both u and v belong to G1 , then �uv(G) = �2(G2)�uv(G1) .
Therefore, without loss of generality the examination of the quantity �uv(G) may
be restricted to connected graphs.

In what follows, if it is not explicitly stated otherwise, it is assumed that the
graph considered is connected.

Property 3. Let Pn be the path on n vertices. From Property 1 follows that

�(Pn) = �(Pn�1) + �(Pn�2)

with �(P0) = 1 and �(P1) = 2 . Hence the �-values of the path{graphs are just the
Fibonacci numbers.

Label the vertices of Pn by v1; v2; : : : ; vn so that vi and vi+1 are adjacent,
i = 1; : : : ; n � 1 . Let R1; R2; : : : ; Rn be distinct rooted graphs with mutually
disjoint vertex sets. Then the compound graph Pn(R1; : : : ; Rn) is obtained by
identifying the root ri of Ri with the vertex vi of Pn for i = 1; 2; : : : ; n .
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Lemma 1. If n � 2 , then

�v1;vn(Pn(R1; : : : ; Rn)) = (�1)n
nY

i=1

�(Ri � ri)�(Ri � [ri])

In order to proceed we need to �x our notation and terminology. Let Un be a
(connected) unicyclic graph, such that its (unique) cycle possess n vertices. Denote
this cycle by Cn and label its vertices consecutively by a1; a2; : : : ; an . We call the
subtree of Un attached to the vertex ai the ai-tree; the vertex ai belongs to the
ai-tree.

Denote by Tai the forest obtained by deleting ai from the ai-tree, and by Ti;n
the subgraph obtained by deleting from Un the union of the a1-tree, a2-tree, : : : ,
ai�1-tree. Then we have

Un � a1 = Ta1 [ T2;n

Denote by T[ai] the forest obtained by deleting from the ai-tree both the vertex
ai and the vertices adjacent to it. Then we have

Un � [a1] = T[a1] [ T3;n�1 [ Ta2 [ Tan

Note that T3;n�1 is the subgraph obtained by deleting from Un�1 the union of the
a1{ and a2-trees. In harmony with the above speci�ed notation, the graph Un�1

is unicyclic, containing a cycle on n � 1 vertices. The vertices of this cycle are
a1; : : : ; an�1 , and the subtrees attached to them are the same as in the case of Un .

If u is a vertex of the ai-tree and d(u; ai) � 2 , then we denote by ai the vertex
adjacent to ai in the unique path of the ai-tree, connecting u and ai . The connected
component of Tai containing the vertex u is denoted by Tu .

Lemma 2. Let U be a unicyclic graph, u a vertex of the ai-tree, and d(u; ai) �
2 , then

�(Tai � u)�(T[ai])� �(Tai)�(T[ai] � u)

�
> 0 if d(u; ai) is even
< 0 if d(u; ai) is odd

Proof. By Properties 1 and 2,

�(Tai � u)�(T[ai])� �(Tai)�(T[ai] � u)

= �(Tu � u)�(Tai � Tu)�(Tu � ai)�(T[ai] � (Tu � ai))

� �(Tu)�(Tai � Tu)�(Tu � ai � u)�(T[ai] � (Tu � ai))

= �(Tai � Tu))�(T[ai] � (Tu � ai))[�(Tu � u)�(Tu � ai)� �(Tu)�(Tu � ai � u)]

Because Tu is a tree, by Lemma 1 we have

�(Tu � u)�(Tu � ai)� �(Tu)�(Tu � ai � u)

�
< 0 if d(u; ai) is even
> 0 if d(u; ai) is odd

Since �(Tai � Tu)�(T[ai] � (Tu � ai)) > 0 , we have

�(Tai � u)�(T[ai])� �(Tai)�(T[ai] � u)

�
> 0 if d(u; ai) = d(u; ai) + 1 is even
< 0 if d(u; ai) = d(u; ai) + 1 is odd

The proof is complete. �
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Lemma 3. Assume that T is a tree, and u and v are distinct vertices of T . Let
P be the unique path connecting u and v . Then,

�uv(T ) = (�1)d(u;v) �(T � P )�(T � [P ])

where T � [P ] stands for the subgraph obtained by deleting from T the vertices of
P and their �rst neighbors.

3. The main results

We start with two counterexamples.

Counterexample 1. Let Ga be the graph depicted in Figure 1. This graph is
connected and the distance between its vertices u and v is 4. By direct calculation
we check that �(Ga�u) = 92 , �(Ga�v) = 114 , �(Ga) = 152 , �(Ga�u�v) = 69 ,
and thus �uv(Ga) = �(Ga � u)�(Ga � v) � �(Ga)�(Ga � u � v) = 0 . It seems
that the possibility that for a connected graph �uv(G) may be equal to zero was
not anticipated by Merri�eld and Simmons [5].
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Figure 1

Counterexample 2. Let Gb be the graph shown in Figure 1. Here d(u; v) =
3 , an odd number. It is not diÆcult to see that �(Gb � u) = 35 , �(Gb � v) = 38 ,
�(Gb) = 58 , �(Gb � u � v) = 23 , and thus �uv(Gb) = �4 < 0 , contradicting to
relation (1). This example shows that the Merri�eld{Simmons conjecture is not
generally valid already in the case of sparse graphs.

Our �rst theorem gives a family of counterexamples for the conjecture, includ-
ing Counterexample 2 as a special case.

Let Un be a unicyclic graph with a cycle Cn , such that ei pendant vertices are
attached to the vertex ai of Cn , i = 1; 2; : : : ; n . In other words, the subtree of
Un attached to ai is an (ei + 1)-vertex star.

Let u be a vertex of Un , belonging to the a1-tree, u 6= a1, and let v = a3 .
Therefore d(u; v) = 3 .
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Theorem 1. If n is odd, n � 5 , if e3 = e4 = � � � = en = 0 ; e1; e2 > 0 and if

1 +

n�4X
i=1

�(Pi)�(Pi�1) < 2e2(2)

then the above described graph Un is a counterexample for the Merri�eld{Simmons
conjecture.

The structure of the graphs for which Theorem 1 applies is shown in Figure 2.
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Proof. Consider �rst the general case, when ei � 0 ; i = 1; 2; : : : ; n . Denote
by P the shortest path of Un connecting a2 and v . Then by Properties 1 and 2
and Lemma 3,

�uv(Un) = �(Un � u)�(Un � v)� �(Un)�(Un � u� v)

= [�(Un � a1 � u) + �(Un � [a1]� u)][�(Un � a1 � v) + �(Un � [a1]� v)]

� [�(Un � a1) + �(Un � [a1])][�(Un � a1 � u� v) + �(Un � [a1]� u� v)]

= �uv(Un � a1) + �uv(Un � [a1]) + [�(Un � a1 � u)�(Un � [a1]� v)

+ �(Un � a1 � v)�(Un � [a1]� u)� �(Un � a1)�(Un � [a1]� u� v)

� �(Un � [a1])�(Un � a1 � u� v)]

= 0 + 0 + 2e1+en�1[�(T2;n�1 � a2)�(T2;n � v)� �(T2;n)�(T2;n�1 � a2 � v)]

= 2e1+en�1 [2en [�(T2;n�1 � v)�(T2;n�1 � a2)� �(T2;n�1)�(T2;n�1 � a2 � v)]

+ 2en�1 [�(T2;n�2 � v)�(T2;n�1 � a2)� �(T2;n�2)�(T2;n�1 � a2 � v)]]

= 2e1+en�1 [2en�(T2;n�1 � P )�(T2;n�1 � [P ])

+ 2en�1 [�(T2;n�2 � v)�(T2;n�1 � a2)� �(T2;n�2)�(T2;n�1 � a2 � v)]]

= 2e1+en�1 [2en�(T2;n�1 � P )�(T2;n�1 � [P ])

+ 22 en�1 �(T2;n�2 � P )�(T2;n�2 � [P ])

+ 2en�1+2en�2 �(T2;n�3 � P )�(T2;n�3 � [P ])

+ � � �+ 2en�1+en�2+���+e6+2e5 �(T2;4 � P )�(T2;4 � [P ])
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+ 2en�1+en�2+���+e4 [�(T2;3 � v)�(T2;4 � a2)� �(T2;3)�(T2;4 � a2 � v)]]

= 2e1+en�1 [2en�(T4;n�1)�(T5;n�1) 2
e2+e3+e4

+ 22en�1 �(T4;n�2)�(T5;n�2) 2
e2+e3+e4

+ 2en�1+2en�2 �(T4;n�3)�(T5;n�3) 2
e2+e3+e4

+ � � � + 2en�1+en�2+���+e6+2e5+e4+e3+e2 (2e4 + 1)

+ 2en�1+en�2+���+e5+2e4+e3+e2 � 2en�1+en�2+���+e3+2e2 ]

Now, in our case en = en�1 = � � � = e3 = 0 , and therefore

�uv(Un) = 2e2+e1�1[�(Pn�4)�(Pn�5) + �(Pn�5)�(Pn�6) + � � �+ �(P2)�(P1)

+ �(P1)�(P0) + 1� 2e2 ]

It is now evident that �uv(Un) will be negative{valued whenever the condition (2)
is obeyed; this can be achieved by choosing e2 suÆciently large. On the other hand,
d(u; v) = 3 is odd, which contradicts to (1). �

The next two theorems show that, nevertheless, many unicyclic graphs obey
the Merri�eld{Simmons conjecture.

Theorem 2. Let Un be the previously described (connected) unicyclic graph.
Let the parameter n be even, i.e., Un is bipartite. Let u and v be distinct vertices
of Un . Then relations (1) are satis�ed.

Proof. have to distinguish between the following three cases.
Case 1. u and v belong to the same tree.
Case 2. u and v belong to di�erent trees and at least one of them is not in Cn .
Case 3. u and v belong to Cn .

Case 1. Without loss of generality we may assume that u and v belong to the
a1-tree. From Lemma 1 we know that

�uv(Un) = (�1)d(u;v)+1
nY

i=1

�(Ri � ri)�(Ri � [ri])

�
< 0 if d(u; v) is even
> 0 if d(u; v) is odd

Therefore, Theorem 2 is true in the Case 1.

Case 2 needs to be divided into two subcases:
Subcase 2.1. u belongs to the a1-tree, u 6= a1 and v = ai ;
Subcase 2.2. u belongs to the a1-tree, u 6= a1 and v is in the ai-tree, v 6= ai .

Both subcases need to be further divided into:
Subcase 2.1.1. u belongs to the a1-tree, d(u; a1) � 2 and v = ai (3 � i � n=2+1) ;
Subcase 2.1.2. u belongs to the a1-tree, v is in the unique cycle, and v = a2 ,
d(u; a1) � 2 ;
Subcase 2.1.3. u belongs to the a1-tree and v = a2 , d(u; a1) = 1 , d(u; v) = 2 ;
Subcase 2.1.4. u belongs to the a1-tree, v is in the unique cycle and d(u; a1) = 1 ,
v = ai , 3 � i � n=2 + 1 ;
Subcase 2.2.1. u belongs to the a1-tree, d(u; a1) � 2 and v belongs to the ai-tree,
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3 � i � n=2 + 1 , v 6= ai ;
Subcase 2.2.2. u belongs to the a1-tree, d(u; a1) � 2 and v belongs to the a2-tree,
d(v; a2) � 2 ;
Subcase 2.2.3. u belongs to the a1-tree, d(u; a1) = 1 and v belongs to the a2-tree,
d(v; a2) � 2 ;
Subcase 2.2.4. u belongs to the a1-tree, d(u; a1) = 1 and v belongs to the a2-tree,
d(v; a2) = 1 .

Proof of Subcase 2.1.1. Under the conditions speci�ed in Subcase 2.1.1 we have

�uv(Un) = �(Un � u)�(Un � v)� �(Un)�(Un � u� v)

= [�(Un � a1 � u) + �(Un � [a1]� u)][�(Un � a1 � v) + �(Un � [a1]� v)]

� [�(Un � a1) + �(Un � [a1])][�(Un � a1 � u� v) + �(Un � [a1]� u� v)]

= �uv(Un � a1) + �uv(Un � [a1]) + [�(Un � a1 � u)�(Un � [a1]� v)

+ �(Un � a1 � v)�(Un � [a1]� u)� �(Un � a1)�(Un � [a1]� u� v)

� �(Un � [a1])�(Un � a1 � u� v)]

= [�(Ta1 � u)�(T2;n)�(Ta1)�(T2;n � v)

� �(Ta1)�(T2;n)�(Ta1 � u)�(T2;n � v)]

+ [�(T[a1] � u)�(T3;n�1)�(Ta2)�(Tan)�(T[a1])�(T3;n�1)�(Ta2)�(Tan)

� �(T[a1])�(T3;n�1)�(Ta2)�(Tan)�(T[a1] � u)�(T3;n�1 � v)�(Ta2)�(Tan)]

+ [�(Ta1 � u)�(T2;n)�(T[a1])�(T3;n�1 � v)�(Ta2)�(Tan)

+ �(T[a1] � u)�(T3;n�1)�(Ta2)�(Tan)�(Ta1)�(T2;n � v)

� �(Ta1)�(T2;n)�(T[a1] � u)�(T3;n�1 � v)�(Ta2)�(Tan)

� �(T[a1])�(T3;n�1)�(Ta2)�(Tan)�(Ta1 � u)�(T2;n � v)]

= 0 + 0 + �(Ta2)�(Tan)�(T2;n)�(T3;n�1 � v)

� [�(Ta1 � u)�(Ta1)� �(Ta1)�(T[a1] � u)]

+ �(Ta2)�(Tan)�(T3;n�1)�(T2;n � v)

� [�(T[a1] � u)�(Ta1)� �(T[a1])�(Ta1 � u)]

= �(Ta2)�(Tan)[�(T2;n)�(T3;n�1 � v)� �(T3;n�1)�(T2;n � v)]

� [�(Ta1 � u)�(T[a1])� �(Ta1)�(T[a1] � u)]

= �(Ta2)[�(T2;n)�(T3;n � an � v)� �(T3;n � an)�(T2;n � v)]

� [�(Ta1 � u)�(T[a1])� �(Ta1)�(T[a1] � u)]

= �(Ta2)X1X2

where

X1 = �(T2;n)�(T3;n � an � v)� �(T3;n � an)�(T2;n � v)

X2 = �(Ta1 � u)�(T[a1])� �(Ta1)�(T[a1] � u)
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Since u is in the a1-tree and d(u; a1) � 2 , by Lemma 2,

X2

�
> 0 if d(u; a1) is even
< 0 if d(u; a1) is odd

When i = 2k , 3 � i � n=2 + 1 and v = ai , we have

X1 = �(T2;n)�(T3;n � an � v)� �(T3;n � an)�(T2;n � v)

= �(T3;n � an � v) [�(T3;n)�(Ta2) + �(T4;n)�(T[a2])�(Ta3)]

� �(T3;n � an) [�(T3;n � v)�(Ta2) + �(T4;n � v)�(T[a2])�(Ta3)]

= [�(T3;n � an � v)�(T3;n)� �(T3;n � an)�(T3;n � v)]�(Ta2)

+ �(Ta3)�(T[a2]) [�(T3;n � an � v)�(T4;n)� �(T3;n � an)�(T4;n � v)]

= q1 �(Ta2) + �(Ta3)�(T[a2]) [�(T3;n � an � v)�(T4;n)

� �(T3;n � an)�(T4;n � v)]

= q1 �(Ta2) + �(Ta3)�(T[a2]) [[�(T4;n � an � v)�(Ta3 )

+ �(T5;n � an � v)�(T[a3])�(Ta4)]�(T4;n)

� �(T4;n � v) [�(T4;n � an)�(Ta3) + �(T5;n � an)�(T[a3])�(Ta4)]]

= q1 �(Ta2) + (�(Ta3))
2 �(T[a2]) [�(T4;n � an � v)�(T4;n)

� �(T4;n � v)�(T4;n � an)]

+ �(T[a2])]�(Ta3)�(T[a3])�(Ta4) [�(T4;n)�(T5;n � an � v)

� �(T4;n � v)�(T5;n � an)]

= q1 �(Ta2) + q2 (�(Ta3))
2 �(T[a2]) + q3 (�(Ta4))

2 �(T[a2])

� [�(Ta3)�(T[a3]) + �(T[a2])]�(Ta3)�(T[a3])�(Ta4)�(T[a4])�(Ta5)

� [�(T5;n � an � v)�(T6;n)� �(T5;n � an)�(T6;n � v)]

= q1 �(Ta2) + q2 (�(Ta3))
2 �(T[a2]) + � � �+ q2k�3 (�(Ta2k�2))

2 �(T[a2])]

� �(Ta3)�(T[a3]) � � ��(T[a2k�3]) + �(T[a2])�(Ta3)�(T[a3]) � � �

� �(Ta2k�2)�(T[a2k�2])�(Ta2k�1)[�(T2k�1;n � an � v)�(T2k;n)

� �(T2k�1;n � an)�(T2k;n � v)]

= q1 �(Ta2) + � � �+ q2k�2 (�(Ta2k�1))
2 �(T[a2])�(Ta3)�(T[a3]) � � ��(T[a2k�2])

+ �(T[a2])�(Ta3)�(T[a3]) � � ��(T[a2k�1])�(Ta2k )

� [�(T2k+1;n � an)�(T2k;n)� �(T2k+1;n � an)�(T2k;n � v)]

where for j = 1; 2; : : : ; 2k � 2 ,

qj = �(Tj+2;n � an � v)�(Tj+2;n)� �(Tj+2;n � an)�(Tj+2;n � v)

= �[�(Tj+2;n � an)�(Tj+2;n � v)� �(Tj+2;n � an � v)�(Tj+2;n)]

Note that the last term in the above expression for X1 is equal to

�(T[a2])�(Ta3)�(T[a3]) � � ��(T[a2k�1])�(Ta2k ) [�(T2k+1;n � an)�(T2k;n)

� �(T2k+1;n � an)�(T2k;n � v)] > 0
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Since Tj+2;n is a tree, by Lemma 1 we know that

qj

�
> 0 if d(v; an) is even
< 0 if d(v; an) is odd

Because d(v; an) = d(a2k ; an) is even, it must be qj > 0 for j = 1; 2; : : : ; 2k� 2 . So
we have X1 > 0 when i = 2k , 3 � i � n=2 + 1 and v = ai .

The conclusions obtained so far can be summarized in the following table.

d(u; a1) X1 X2 dUn(u; v) = d(u; a1) + 2k � 1 �uv(Un) = �(Ta2)X1X2

odd > 0 < 0 even < 0
even > 0 > 0 odd > 0

Hence, when i = 2k , 3 � i � n=2 + 1 and v = ai; d(u; a1) � 2 , Theorem 2 is
true.

If i = 2k + 1 , 3 � i � n=2 + 1 and v = ai , then we have

X1 = �(T2;n)�(T3;n � an � v)� �(T3;n � an)�(T2;n � v)

= q1 �(Ta2) + q2 (�(Ta3))
2 �(T[a2]) + q3 (�(Ta4))

2 �(T[a2])]�(Ta3)�(T[a3]) + � � �

+ q2k�2 (�(Ta2k�2))
2 �(T[a2])]�(Ta3)�(T[a3]) � � ��(T[a2k�2])

+ �(T[a2])�(Ta3)�(T[a3]) � � ��(Ta2k�1)�(Ta2k )

� [�(T2k+1;n � an � v)�(T2k;n)� �(T2k;n � an)�(T2k;n � v)]

= q1 �(Ta2) + q2 (�(Ta3))
2 �(T[a2])

+ q3 (�(Ta4))
2 �(T[a2])]�(Ta3)�(T[a3])

+ � � � + q2k�2 (�(Ta2k�2))
2 �(T[a2])]�(Ta3)�(T[a3]) � � ��(T[a2k�2])

+ q2k�1 (�(Ta2k ))
2 �(T[a2])]�(Ta3)�(T[a3]) � � ��(Ta2k�1 )�(T[a2k�1]) +

+ �(T[a2])�(Ta3)�(T[a3]) � � ��(Ta2k )�(T[a2k])�(Ta2k+1)�(T2k+2;n)

� [�(T2k+1;n � an � v)� �(T2k+1;n � an)]

where for j = 1; 2; : : : ; 2k � 1 ,

qj = �(Tj+2;n � an � v)�(Tj+2;n)� �(Tj+2;n � an)�(Tj+2;n � v)

= �[�(Tj+2;n � an)�(Tj+2;n � v)� �(Tj+2;n � an � v)�(Tj+2;n)]

Note that the last term in the above expression for X1 is:

�(T[a2])�(Ta3)�(T[a3]) � � ��(Ta2k )�(T[a2k])�(Ta2k+1)�(T2k+2;n)

� [�(T2k+1;n � an � v)� �(T2k+1;n � an)] < 0

Since Tj+2;n is a tree, by Lemma 1,

qj

�
> 0 if d(v; an) is even
< 0 if d(v; an) is odd

Because d(v; an) = d(a2k+1; an) is odd, it must be qj < 0 for j = 1; 2; : : : ; 2k � 1 .
So we have X1 < 0 when i = 2k + 1 , 3 � i � n=2 + 1 and v = ai . Now we have
the following table:
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d(u; a1) X1 X2 dUn(u; v) = d(u; a1) + 2k �uv(Un) = �(Ta2)X1X2

odd < 0 < 0 odd > 0
even < 0 > 0 even < 0

Hence, when v = ai , i = 2k + 1 , 3 � i � n=2 + 1 , d(u; a1) � 2 , Theorem 2 is
also true.

This completes the analysis of Subcase 2.1.1. �

Based on a suggestion by the referee, we omit the equally lengthy and to a
great extent analogous considerations needed to verify the validity of Theorem 2 in
the remaining subcases. For the same reason we also skip the proof of Theorem 2
for Case 3. These omitted parts of the proof are available from the authors (X. L.)
upon request.

By a reasoning similar to that used in the proof of Theorem 2, we obtain the
following result.

Let Un be as before and let n be odd. Let u and v be distinct, nonadjacent
vertices of Un .

Theorem 3. If e1 = e2 = � � � = en = e , a positive integer, then for the above
described graph Un the relations (1) are satis�ed.
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