ON DEGREE SEQUENCES OF GRAPHS WITH GIVEN CYCLOMATIC NUMBER

Manfred Schocker

Communicated by Slobodan Simić

ABSTRACT. Starting with the Criterion by Gutman and Ruch for graphical partitions, Gutman analyzed degree sequences of connected graphs with cyclomatic number c, for $c \leq 5$. In this paper, his results are revisited and, based on the Erdös-Gallai Criterion, extended to arbitrary values of c. Necessary and sufficient conditions are obtained for any partition to be the degree sequence of a connected graph with cyclomatic number c.

1. Introduction

The first characterization of *graphical partitions*, that is, partitions that occur as degree sequences of simple graphs, was given by Erdös and Gallai [**EG60**]:

THEOREM 1.1. Let m, n be positive integers. A partition $p = (p_1, \ldots, p_n)$ of 2m is graphical if and only if

(EG)
$$\sum_{\nu=1}^{k} p_{\nu} \le k(k-1) + \sum_{\nu=k+1}^{n} \min\{p_{\nu}, k\}$$

for all $k \in \{1, \ldots, n\}$.

Other characterizations of graphical partitions are due to Hakimi [Hak62] and Gutman and Ruch [GR79].

It may be easily seen that any graphical partition $p=(p_1,\ldots,p_n)$ of 2m is the degree sequence of a connected graph G if and only if $m\geq n-1$ (see [GR79]). In this case the cyclomatic number c of G is given by c=m-n+1. In other words, the set of degree sequences of connected graphs with m edges and cyclomatic number c is simply the set of degree sequences of graphs with m edges and n=m-c+1 vertices. These, of course, may be characterized by adding the condition n=m-c+1 to the (EG)-inequalities in 1.1. But this is not the kind of characterization we are aiming at.

¹⁹⁹¹ Mathematics Subject Classification. Primary 05C75.

For $0 \le c \le 5$, Gutman derived necessary conditions for a partition p to be the degree sequence of a connected graph with cyclomatic number c which are of a different type. He considered universal upper bounds for (a small number of) partial sums of p [Gut89]¹. In this vein, for arbitrary values of c, we prove that degree sequences p of connected graphs with cyclomatic number c may indeed be characterized using those concepts in a general form (2.4). These upper bounds do neither depend on p nor on c (with the single obvious exception that $p_1 \le m - c$ must hold). In particular, for $c \le 5$, we obtain simplified and (for $c \ge 3$) corrected versions of Gutman's results (2.5). The crucial step in our approach is to derive a certain modification of 1.1 by means of a combinatorial line of reasoning (2.2).

2. Graphs with given cyclomatic number

Let \mathbb{N} (\mathbb{N}_0 , resp.) be the set of all positive (nonnegative, resp.) integers and

$$\underline{n} := \{ k \in \mathbb{N} | k \leq n \}$$

for all $n \in \mathbb{N}_0$. Let $s \in \mathbb{N}$. An n-tuple $p = (p_1, \ldots, p_n) \in \mathbb{N}^n$ is called a partition of s, if $p_1 + \cdots + p_n = s$ and $p_1 \ge \cdots \ge p_n$. The set of all partitions of s is denoted by P_s . Any partition $p \in P_s$ may be visualized by its Ferrers diagram, an array of s dots in n rows, with p_i dots in the i-th row for all $i \in \underline{n}$. For example, the Ferrers diagram of p = (4, 3, 1, 1) is given by

Counting the number p'_j of dots in the j-th column of the Ferrers diagram for $j \in \underline{p_1}$, we obtain again a partition $p' = (p'_1, \dots, p'_{p_1}) \in P_s$ which is called the *conjugate partition* of p. The number of dots in the main diagonal of the Ferrers diagram is called the *diagonal length* d(p) of p. More formally, we have $p'_j = |\{i \in \underline{n} \mid p_i \geq j\}|$ for all $j \in \underline{p_1}$ and $d(p) = \max\{k \in \underline{n} \mid p_k \geq k\}$. Hence, in the above example, we have (4,3,1,1)' = (4,2,2,1) and d((4,3,1,1)) = 2. Note that d(p) = d(p') for all $p \in P_s$.

Let k_c be the least nonnegative integer such that $(k_c + 1)k_c/2 \ge c$. These numbers will play an important role in the sequel. For small values of c, we obtain $k_0 = 0$, $k_1 = 1$, $k_2 = k_3 = 2$ and $k_4 = k_5 = 3$. Gutman observed that any connected graph with cyclomatic number c has at least

$$m_c := c + k_c + 1.$$

edges [Gut89, Lemma 4 and its proof].

To start with, we derive the following necessary conditions for any partition to be graphical by a simple edge-counting argument.

 $^{^{1}}$ It was stated that these conditions are also sufficient. This is incorrect for c=3,4,5, and so is the strategy of proof described in the last section of [Gut89], as will be explained at the end of this paper.

36 schocker

Proposition 2.1. Let $n, m \in \mathbb{N}$ and $p \in P_{2m}$ be graphical. Then we have the universal upper bounds

(UUB)
$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{i} p_{\nu} \le 2m + k(i-1)$$

for all $k, i \in \underline{n}$ such that $k \leq i$.

PROOF. Let G be a graph with vertex set $X=\{x_1,\ldots,x_n\}$ such that, for all $i\in\underline{n}$, the degree of x_i in G is p_i . Let $X_1,\,X_2,\,X_3$ be pairwise disjoint vertex sets in G such that $X=X_1\cup X_2\cup X_3$. For $a,b\in\{1,2,3\},\,a\leq b$, denote by e_{ab} the number of edges $\{x_{\nu},x_{\mu}\}$ in G such that $x_{\nu}\in X_a$ and $x_{\mu}\in X_b$. As $m=e_{11}+e_{12}+e_{13}+e_{22}+e_{23}+e_{33}$, it follows that

$$\begin{split} \sum_{\nu \in X_1} p_\nu + \sum_{\mu \in X_1 \cup X_2} p_\mu &= 2e_{11} + e_{12} + e_{13} + 2(e_{11} + e_{12} + e_{22}) + e_{13} + e_{23} \\ &\leq 2m + 2e_{11} + e_{12} \\ &\leq 2m + |X_1|(|X_1| - 1) + |X_1||X_2| \\ &= 2m + |X_1|(|X_1 \cup X_2| - 1) \,. \end{split}$$

For the special choice $X_1 = \underline{k}$, $X_2 = \underline{i} \setminus \underline{k}$ and $X_3 = \underline{n} \setminus \underline{i}$, this yields the Proposition.

Surprisingly, the (UUB) conditions in 2.1 are also sufficient for a partition p to be graphical. More precisely:

THEOREM 2.2. Let $d, m, n \in \mathbb{N}$ and $p = (p_1, \ldots, p_n) \in P_{2m}$ with diagonal length d. Then p is graphical if and only if

$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{i} p_{\nu} \le 2m + k(i-1)$$

for all $k \in \underline{d}$, $i \in \{d, \ldots, n\}$.

PROOF. The necessity part is covered by the above Proposition. In order to prove the sufficiency part, let $k \in \underline{d}$ and define $i := p'_k$. Then $i \ge d$ and therefore

$$\sum_{\nu=1}^{k} p_{\nu} \le 2m + k(i-1) - \sum_{\nu=1}^{i} p_{\nu}$$

$$= k(i-1) + \sum_{\nu=i+1}^{n} p_{\nu}$$

$$= k(k-1) + \sum_{\nu=k+1}^{i} k + \sum_{\nu=i+1}^{n} \min\{p_{\nu}, k\}$$

$$= k(k-1) + \sum_{\nu=k+1}^{n} \min\{p_{\nu}, k\}.$$

Hence the inequality (EG) in 1.1 holds for $k \leq d$. But the particular inequality (EG) for k = d implies all the remaining inequalities in 1.1. For, if k > d and j := k - d, we have

$$\sum_{\nu=1}^{k} p_{\nu} = \sum_{\nu=1}^{d} p_{\nu} + \sum_{\nu=d+1}^{d+j} p_{\nu}$$

$$\leq d(d-1) + \sum_{\nu=d+1}^{n} p_{\nu} + \sum_{\nu=d+1}^{d+j} p_{\nu}$$

$$\leq d(d-1) + 2dj + \sum_{\nu=d+j+1}^{n} p_{\nu}$$

$$= k(k-1) - j(j-1) + \sum_{\nu=k+1}^{n} \min\{p_{\nu}, k\}.$$

Hence p is graphical, by 1.1.

As the proof shows, it suffices to consider the inequalities (EG) for $k \leq d(p)$ in 1.1. This observation is due to Gutman and Ruch [GR79, Theorem 2]. In order to cancel out the dependence on the diagonal length we need an additional auxiliary result.

PROPOSITION 2.3. Let $m \in \mathbb{N}$, $c \in \mathbb{N}_0$ and $p = (p_1, \ldots, p_n) \in P_{2m}$ such that n = m - c + 1 and $d(p) > k_c$. Then p is graphical.

PROOF. We use the characterization of graphical partitions given in 2.2. Let $d := d(p), k \in \underline{d}$ and $i \in \{d, \ldots, n\}$. As $2c \le k_c(k_c + 1) \le (d - 1)d$, we have

$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{i} p_{\nu} = 2m - \sum_{\nu=k+1}^{n} p_{\nu} + 2m - \sum_{\nu=i+1}^{n} p_{\nu}$$

$$\leq 2m - (d-k)d - (n-d) + 2m - (n-i)$$

$$= 2m - (d-k+1)d + i + 2c - 2$$

$$\leq 2m - (d-k+1)d + i + (d-1)d - 2$$

$$= 2m + (k-2)d + i - 2$$

$$\leq 2m + k(i-1).$$

We are now in a position to state and prove our main result.

Theorem 2.4. Let $m \in \mathbb{N}$, $c \in \mathbb{N}_0$ and $p = (p_1, \ldots, p_n) \in P_{2m}$. Then p is the degree sequence of a connected graph with cyclomatic number c if and only if

38 schocker

n = m - c + 1, $p_1 \le m - c$ and the following conditions hold:

(a)
$$\sum_{\nu=1}^{k} p_{\nu} \le m + k(k-1)/2 \text{ for all } 2 \le k \le k_{c} + 1,$$
$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{i} p_{\nu} \le 2m + k(i-1) \text{for all } 2 \le k \le k_{c} - 1, \ k+3 \le i \le b_{k,c},$$

where

$$b_{k,c} := \begin{cases} c, & k = 2\\ [k/2 + c/(k-1)] + 1, & k > 2 \end{cases}.$$

PROOF. Concerning the necessity part, we observe that $p_1 \leq n-1 = m-c$ and (a) is (UUB) for k=i, while (b) is immediate from 2.1. For the proof of the sufficiency part we can assume that $d:=d(p)\leq k_c$, by 2.3. Let $k\in \underline{d}$ and $i\in\{k,\ldots,n\}$. We have

(i)
$$\sum_{\nu=1}^{i} p_{\nu} = 2m - \sum_{\nu=i+1}^{n} p_{\nu} \le 2m - (n-i) = m+c+i-1.$$

Hence, for k = 1, the condition $p_1 \le m - c$ implies (UUB) for all i. Let k > 1 and i > k/2 + c/(k-1) + 1. Then, by (a) and (i), we have

$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{i} p_{\nu} \le m + k(k-1)/2 + m + c + i - 1$$

$$= 2m + k(i-1) + k(k-1)/2 + c - (k-1)(i-1)$$

$$< 2m + k(i-1)$$

and (UUB) holds for k and i again. As $k \leq k_c$, condition (a) for k and k+1 implies that

$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{k+1} p_{\nu} \le m + k(k-1)/2 + m + k(k+1)/2 = 2m + k^{2},$$

hence (UUB) for i = k + 1. If $i > k_c + 1$, it follows from (i) and $c \le k_c(k_c + 1)/2$ that

(ii)
$$\sum_{\nu=1}^{i} p_{\nu} \le m + i(i-1)/2.$$

Therefore, we have (even if $k = k_c$)

$$\sum_{\nu=1}^{k} p_{\nu} + \sum_{\nu=1}^{k+2} p_{\nu} \le m + k(k-1)/2 + m + (k+1)(k+2)/2 = 2m + k^2 + k + 1.$$

This means (UUB) for i = k + 2 except for the case that equality holds. But, in this case, we have $p_{k+1} + p_{k+2} = 2k + 1$, that is, $p_{k+1} \ge k + 1$ and

$$\sum_{\nu=1}^{k+1} p_{\nu} \ge m + k(k-1)/2 + k + 1 = 2m + k(k+1)/2 + 1,$$

a contradiction. Finally, for k>2, note that $\{k+3,\ldots,b_{k,c}\}\neq\emptyset$ implies that $k+3\leq k/2+c/(k-1)+1$ and hence $k(k+1)\leq (k+4)(k-1)\leq 2c$, that is, $k\leq k_c-1$. We checked (UUB) for all necessary values of k and i and are done by 2.2 unless $k=2, i\in\{c+1,c+2\}$. But, for k=2 and i=c+2, we have

$$p_1 + p_2 + \sum_{\nu=1}^{c+2} p_{\nu} \le m+1+m+c+(c+2)-1 = 2m+2(c+1),$$

by (a) and (i). The same argument works for i=c+1 in the case of $p_1+p_2 \leq m$. If $p_1+p_2=m+1$, then $p_1+p_2+p_3 \leq m+3$ implies that $p_3 \leq 2$ and

$$p_1 + p_2 + \sum_{\nu=1}^{c+1} p_{\nu} \le 2(m+1) + 2(c-1) = 2m + 2c.$$

Note that, for $m \in \mathbb{N}$, $c \in \mathbb{N}_0$ and $p = (p_1, \ldots, p_n) \in P_{2m}$ such that n = m-c+1, the condition $p_1 \leq m-c$ implies that indeed $m \geq m_c$, Gutman's lower bound for the number of edges in connected graphs with cyclomatic number c. This may be seen as follows: We have $2m \leq np_1 \leq (m-c+1)(m-c)$ and therefore $(m-c-1)(m-c) \geq 2c$. It follows that $m-c-1 \geq k_c = m_c - c - 1$.

For $c \leq 5$, the preceding theorem leads to the following criteria that may be worth mentioning explicitly.

COROLLARY 2.5. Let $m \in \mathbb{N}$ and $p = (p_1, \dots, p_n) \in P_{2m}$.

- 1 p is degree sequence of a tree if and only if n = m + 1.
- 2 p is degree sequence of a connected unicyclic graph if and only if n = m, $p_1 \le m 1$ and $p_1 + p_2 \le m + 1$.
- 3 p is degree sequence of a connected bicyclic graph if and only if n=m-1, $p_1 \leq m-2$, $p_1+p_2 \leq m+1$ and $p_1+p_2+p_3 \leq m+3$.
- 4 p is degree sequence of a connected tricyclic graph if and only if n=m-2, $p_1 \le m-3$, $p_1+p_2 \le m+1$ and $p_1+p_2+p_3 \le m+3$.
- 5 p is degree sequence of a connected tetracyclic graph if and only if n=m-3, $p_1 \leq m-4$, $p_1+p_2 \leq m+1$, $p_1+p_2+p_3 \leq m+3$ and $p_1+p_2+p_3+p_4 \leq m+6$
- 6 p is degree sequence of a connected pentacyclic graph if and only if n=m-4, $p_1 \leq m-5$, $p_1+p_2 \leq m+1$, $p_1+p_2+p_3 \leq m+3$, $p_1+p_2+p_3+p_4 \leq m+6$ and $2p_1+2p_2+p_3+p_4+p_5 \leq 2m+8$.

PROOF. For c=0, the conditions of 2.4 are given by n=m+1 and $p_1 \leq m$. But n=m+1 already implies that $p_1=2m-\sum_{\nu=2}^{m+1}p_{\nu}\leq 2m-m=m$. For c>0, the listed conditions are those of 2.4.

40 schocker

Except for the m_c -condition, in 2.5 (1),(2) and (3), we obtain exactly Theorems 1, 2 and 3 of [Gut89], while the sufficiency part of the last three Theorems in [Gut89] is wrong as is the strategy of proof described in the last section of [Gut89]: For, if p is not S-greater than any $q \in P_{2m}(c; \max)$, we cannot deduce in general that there exists a partition $q \in P_{2m}(c; \max)$ which is S-greater than p (the condition of Lemma 5 in [Gut89]). The partition $p := (4, 4, 4, 2, 1, 1) \in P_{16}(3)$ indeed is a counter-example for Theorem 4 in [Gut89]. Similar counter-examples can be found for Theorems 5 and 6.

References

- [EG60] P. Erdös and T. Gallai. Graphs with given degree of vertices, Mat. Lapok 11 (1960), 264-274 (in Hungarian)
- [GR79] I. Gutman and E. Ruch. The branching extent of graphs, J. Comb. Inf. Syst. Sci. 4 (1979),285-295.
- [Gut89] I. Gutman. Vertex degree sequences of graphs with small number of circuits, Publ. Inst. Math. (N.S.) (Beograd) 46(60) (1989), 7-12.
- [Hak62] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph I, Siam J. Appl. Math. 10 (1962), 496-506.

Mathematisches Seminar der Universität Ludewig-Meyn-Str. 4 24098 Kiel Germany

schocker@math.uni-kiel.de

(Received 24 02 2000)