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CRAIG INTERPOLATION THEOREM

FOR CLASSICAL PROPOSITIONAL LOGIC

WITH SOME PROBABILITY OPERATORS

Neboj�sa Ikodinovi�c

Communicated by �Zarko Mijajlovi�c

Abstract. Ra�skovi�c [3] introduced a conservative extension of classical proposition-
al logic with some probability operators and proved corresponding completeness and
decidability theorem. We prove the Robinson's consistency and Craig interpolation
for this logic.

1. Introduction

Let I be a set of propositional letters and For(I) the set of propositional
formulas whose propositional variables are from I . A standard model of classical
propositional logic is every map � : I ! 2 where 2 is the two-element Boolean
algebra. If we replace the Boolean algebra 2 by arbitrary Boolean algebra B =
(B;+; �;�; 0; 1), we shall call the B -interpretation of classical propositional logic. In
this case, the logical connectives _;^;: are interpreted by corresponding operations
of Boolean algebra B , and the propositional letters by the elements of the Boolean
algebra B , i.e. every map f : I ! B is an interpretation of the set I in Boolean
algebra B . Then, it is natural to extend the map f : I ! B to map f : For(I)! B
inductively as follows:

f(:') = �f(')

f(' _  ) = f(') + f( )

f(' ^  ) = f(') � f( ):

For T � For(I) let BT (I) = (BT (I);+; �;�; 0; 1) be the Lindenbaum{Tarski
algebra of the theory T . It easy to see that, if I1 � I2, T1 � For(I1) and T2 �
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28 IKODINOVI�C

For(I2) such that T2 is a conservative extension of T1, then B T1 is embedded in BT2

and B T1 can be understood as a subalgebra of BT2 and [']T1 and [']T2 are identi�ed
for all ' 2 For(I1). The map f : For(I) ! BT , f(') = [']T for ' 2 For(I) is BT -
interpretation of the set For(I).

2. LP logic

We study a conservative extension of classical propositional logic.
The symbols of LP logic are the so{called connectives: ^ (and), : (negation),

the list of probability operators P�s for each s 2 [0; 1] \ Q, and �nally an in�nite
sequence of propositional letters I .

The set FopCLP(I) of all classical propositional formulas is de�ned inductively
as the smallest set containing the propositional letters and closed under the usual
formation rules: if ' and  are classical propositional formulas, then :' and '^ 
are classical propositional formulas. The set ForPLP(I) of all probability formulas is
the smallest set such that:

{ if ' 2 ForCLP(I) and s 2 [0; 1] \Q, then P�s' is probability formula;
{ if � and 	 are probability formulas, then :� and � ^	 are also probability

formulas.
Let ForLP(I) = ForCLP(I) [ ForPLP(I). We introduce the abbreviations _, ),

,, in the usual way. It is convenient the following abbreviations in LP:
� P<s' for :P�s',
� P�s' for P�1�s:',
� P>s' for :P�s',
� P=s' for P�s' ^ :P>s'.
The axioms for LP logic are every instance of classical propositional tautology

and the following ones:

(1) P�0', for all ' 2 ForCLP(I);

(2) P�r') P<s', for all ' 2 ForCLP(I) and s; r 2 [0; 1] \Q such that s > r;

(3) P<s') P�s' for all ' 2 ForCLP(I) and s 2 [0; 1] \Q;
(4) (P�r' ^ P�s ^ P�1(:' _ : )) ) P�minf1;r+sg(' _  ) for all ',  2

ForCLP(I), r; s 2 [0; 1] \Q;

(5) (P�r' ^ P<s ) ) P<r+s(' _  ) for all ';  2 ForCLP(I), s; r 2 [0; 1] \ Q
such that r + s < 1.

The rules of inference are:
(R1) From � and �) 	, infer 	, �;	 2 ForCLP(I) or �;	 2 ForPLP(I).

(R2) From ', infer P�1', ' 2 ForCLP(I).

(R3) From � ) P�s�1=k', for every k � 1=s, infer � ) P�s', � 2 ForPLP(I),

' 2 ForCLP(I)
A proof of a formula � in a theory T of logic LP is every countable sequence

�1; �2; . . . ; � of formulas such that each formula �i; i < !, is either an axiom, or
a formula from T , or it is derived by inference rules from preceding members of
the sequence. If there exists a proof of � in T , then � is called a theorem of T ,
and in this case we use the notation T `LP �. A theory T is consistent if there is
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a formula ' 2 ForCLP(I) such that T0LP' and a formula � 2 ForPLP(I) such that
T0LP�. A theory T is a maximal consistent i� T is a consistent theory and:

{ for all ' 2 ForCLP(I), if T`LP', then ' 2 T and P�1' 2 T ;

{ for all � 2 ForPLP(I), � 2 T or :� 2 T .
Having in mind the deducibles relation just de�ned, by induction on the length

of the corresponding derivation, we can prove that the Deduction Theorem holds.

Theorem 1. For every consistent theory T � ForLP(I), there exists a maxi-

mal consistent theory extending T .

For a proof of Theorem see [3].
A Boolean model for LP logic is every triple (B ; f; �), where B is a Boolean

algebra, f is a B -interpretation of the set of classical propositional formulas, and �
is a (�nitely-additive probability) measure on B . For any formula � 2 ForLP(I), we
de�ne the relation (B ; f; �) j= �, by induction on the complexity of the formulas �,
as follows:

{ if � 2 ForCLP(I), then (B ; f; �) j= � i� f(�) = 1,

{ if � = P�s'; ' 2 ForCLP(I), s 2 [0; 1]\Q, then (B ; f; �) j= � i� �(f(')) � s,

{ if � = 	 ^ �;	;� 2 ForPLP(I), then (B ; f; �) j= � i� (B ; f; �) j= 	 and
(B ; f; �) j= �,

{ if � = :	;	 2 ForPLP(I), then (B ; f; �) j= � i� not (B ; f; �) j= 	.
We simply write j= � and say that � is valid i� for every Boolean model

(B ; f; �), (B ; f; �) j= �.

Theorem 2 (Soundness Theorem). Any set T of formulas of LP logic which

has a model is consistent.

Proof. As usual, to prove the soundness theorem it suÆces to show that each
axiom is valid and that the rules of inference preserve validity.

A classical propositional tautology is obviously valid.
Let � and 	 be either both classical or both probability formulas such that

� and � ) 	 are valid. If we suppose that 6j= 	, then there is a Boolean model
(B ; f; �) such that (B ; f; �) 6j= 	 and (B ; f; �) j= � ) 	, so (B ; f; �) 6j= �, which is
a contradiction by validity of �.

If ' 2 ForcLP(I) is valid then for any Boolean model (B ; f; �), f(') = 1,
(B ; f; �) j= P�1'.

Finally, the rule (3) preserves validity since the set of reals is Archimedean
�eld. �

Theorem 3 (Completeness Theorem). Every consistent theory T � ForLP(I)
has a Boolean model.

Proof. Let T be a consistent theory. By the Theorem 1. there is a maximal
consistent extension T of T . Let T c be the set of all classical consequences of T ,
B T c the Lindenbaum algebra of T c and let f : ForCLP(I) ! BT c be de�ned by
f(') = [']T c . Let � : BT c ! [0; 1] be de�ned by:

�([']T c) = supfr 2 [0; 1] \Q : P�r' 2 Tg; ' 2 ForCLP :
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We shall show that � is a measure on B T c .
First, let us prove that � is a well{de�ned. It is suÆces to prove that for all

';  2 ForCLP, if [']T c � [ ]T c , then �([']T c) � �([ ]T c). Really, if [']T c � [ ]T c ,

then T c ` (' )  ) and consequently T`LPP�1(' )  ). Thus, if P�s' 2 T , then
P�s 2 T . So, �([']T c) � �([ ]T c).

It is easy to see that �(1) = 1.
Finally, we show that �([']T c) + �([ ]T c) = �([']T c + [ ]T c), for all ';  2

ForCLP such that [']T c � [ ]T c = 0. Let �([']T c) = r, �([ ]T c) = s. Then r + s � 1.
Let us suppose that r > 0 and s > 0. By monotonicity, for all rational numbers r0 2
[0; r) and s0 2 [0; s) we have P�r0'; P�s0 2 T . Thus, we have P�r0+s0('_ ) 2 T .
So, r + s � supft 2 [0; 1] \ Q : P�t(' _  ) 2 Tg. If r + s = 1, then obviously the
statement holds. Let us suppose that r + s < 1. If r + s < t0 = supft 2 [0; 1] \Q :
P�t(' _  ) 2 Tg, then for all rational numbers t0 2 (r + s; t0), P�t0(' _  ) 2 T .
Let us choose rational numbers r00 > r and s00 > s such that :P�r00', P<r00',

:P�s00 , P<s00 2 T and r00 + s00 = t0 � 1. Thus, we have P�r00' 2 T and we have

P<r00+s00('_ ), :P�r00+s00('_ ), :P�t0('_ ) 2 T which is a contradiction. So,
�([']T c) + �([ ]T c) = �([']T c + [ ]T c). Similarly, for r = 0 and s = 0. So, � is a
measure on BT c .

It is easy to see that (B T c ; fT c ; �) is a Boolean model of the theory T . �

The Boolean model of T constructed in the way described above is called a
canonical model.

Theorem 4. Let T � ForLP be a maximal consistent theory. Then � : BT c !
[0; 1] de�ned by

�([']T c) = supfr 2 [0; 1] \Q : P�r' 2 Tg; ' 2 ForCLP

is a unique measure on BT c , such that (B T c ; fT c ; �) is a Boolean model of T .

3. LP(n) logic

The logic LP(n) is a restriction of the logic LP. Let n > 0 be a natural number
and Sn = f0; 1=n; . . . ; (n� 1)=n; 1g.

The symbols of LP(n) logic are the usual symbols for classical proposition-
al connectives: ^(and), :(negation), an in�nite set I of propositional letters and

the probability operator P�s, for all s 2 Sn. Let ForCLP(n)(I) = ForCLP(I) and

let ForPLP(n)(I) be the set of all probability formulas � of LP such that for ev-

ery probability operator P�s, which occurs in �, s 2 Sn. Let ForLP(n)(I) =

ForCLP(n)(I) [ ForPLP(n)(I). Note that
S
n2N ForLP(n)(I) = ForLP(I).

For the axioms of LP(n) we take all the axioms for LP, which are adopted
to the language of LP(n). The rules of inference of LP(n) are the same as for LP
except (R3) which is replaced by a new rule of inference:

(R3n) From � ) P>s�1=n', infer � ) P�s', � 2 ForPLP(n)(I),

' 2 ForCLP(n)(I), s 2 Sn.
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The notations of derivations from hypotheses in LP(n) are de�ned as usual.
Since the in�nite rule of inference is omitted, this system is �nite, and so sequences
of formulas in proofs are �nite.

We introduce the notion of Boolean model for LP(n) in the same way as for
LP logic with exception that the range of a measure on a Boolean algebra is Sn.
The satisfaction is de�ned naturally. Soundness is easy to prove. The crucial step
of the proof of the Completeness Theorem is the de�nition of measure � in the
canonical model of consistent theory T � ForLP(n)(I) and we have:

�([']T c) = maxfr 2 Sn : P�r' 2 Tg

where T c is the set of all classical consequence of T and T is the maximal consistent
extension of T .

Note that a probability formula � = �(p1; . . . ; pn) is valid, in LP or LP(n),
if for all measure � : B (p1 ; . . . ; pn) ! [0; 1] or � : B (p1 ; . . . ; pn) ! Sn, we have
(B (p1 ; . . . ; pn); f; �) j= �, where B (p1 ; . . . ; pn) is a Lindenbaum algebra of formulas
built up using only p1; . . . ; pn, i.e. B (p1 ; . . . ; pn) is a free Boolean algebra generated
by p1; . . . ; pn. Similarly, a probability formula � = �(p1; . . . ; pn) is satis�able, in LP
or LP(n), if for same measure � : B (p1 ; . . . ; pn) ! [0; 1] or � : B (p1 ; . . . ; pn) ! Sn,
we have (B (p1 ; . . . ; pn); f; �) j= �.

Let � 2 ForPLP and let p1; . . . ; pn be a list of all propositional letters from �.
An atom a of � is a formula of the form �p1; . . . ;�pn, where �pi is either pi, or
:pi. It is easy to see that � is equivalent, in LP and also in LP(n) to a formula

DNF (�) =

m_
i=1

kî

j=1

Pi;jSNDFi;j(p1; . . . ; pn)

where Pi;j is either P�rij or P<rij and SNDFi;j(p1; . . . ; pn) is a classical formula in
the complete disjunctive normal form, i.e., as a disjunction of atoms. � is satis�able
i� at least one disjunct from DNF (�) is satis�able. Let the measure of the atom
ai be denoted by xi. We use an expression of the form a 2 SNDFi;j(p1; . . . ; pn)
to denote that the atom a appears in SNDFi;j(p1; . . . ; pn). So, a disjunct Di =Vki
j=1 PijSNDFi;j(p1; . . . ; pn) from DNF (�) is satis�able i� the following system

of linear equation and inequalities is satis�able:

2nX
i=1

xi = 1

xi � 0; for i = 1; . . . ; 2n

X
al2SNDFi;j(p1;...;pn)

xl

(
�rij if Pi;j = P�rij

<rij if Pi;j = P<rij
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Theorem 5. Let � 2 ForPLP. Then, the following holds: j=LP� i� j=LP(n)�

for all n 2 N such that � 2 ForPLP(n).

Proof. For every disjunct Di; i = 1; . . . ; k from DNF (:�) let S(i); i = 1; . . . ; k
be the corresponding system of linear equalities and inequalities with rational co-
eÆcients.

If j=LP�, then no S(i); i = 1; . . . ; k has solution in R, and hence no S(i); i =
1; . . . ; k has solution in Sn, for any n 2 N . So, j=LP(n)� for all n 2 N , such that

� 2 ForPLP(n).

On the other side, if j=LP(n)�, then no S(i); i = 1; . . . ; k have solution in Sn,

for all n 2 N such that � 2 ForPLP(n), and hence no S(i); i = 1; . . . ; k has solution

in Q. Since, the coeÆcients of S(i); i = 1; . . . ; k are rationals, no S(i); i = 1; . . . ; k
has solution in R. So, j=LP�. �

4. Interpolation Theorem

In order to prove the next theorem, we use the following statement.

Theorem 6. Let B 1 and B 2 be two subalgebras of B and �1 and �2 measures

on B 1 and B 2 respectively. If �1(x) = �2(x) for all x 2 B1 \ B2, then there exists

a measure � on B which is a common extension of both �1 and �2.

The proof is similar to the proof of Theorem 3.6.1. in [2].

Theorem 7. Let T1 � ForLP(I1) and T2 � ForLP(I2) be consistent theories

such that T1 \ T2 � ForLP(I1 \ I2) is a maximal consistent theory. If T c1 and T c2
are conservative extensions of (T1 \ T2)

c
, and (T1 [ T2)

c
a conservative extension

of T c1 and T c2 , then T1 [ T2 is consistent theory.

Proof. Let (BT c
1
; fT c

1
; �1) and (B T c

2
; fT c

2
; �2) be Boolean models of T1 and T2

respectively. We shall show that there exists a measure � on B (T1[T2)
c such that

(B (T1[T2)c ; f(T1[T2)c ; �) is a Boolean model of T1 [ T2. Since (T1 [ T2)
c
is a conser-

vative extension of T c1 and T c2 , BT c
1
and B T c

2
are subalgebras of B (T1[T2)c . Similarly,

B (T1\T2)
c is subalgebra of B T c

1
and BT c

2
. So,

(B (T1\T2)c ; f(T1\T2)c ; �1jB(T1\T2)
c)

and
(B (T1\T2)c ; f(T1\T2)c ; �2jB(T1\T2)

c)

are Boolean models of T1 \ T2. Since, T1 \ T2 is a maximal consistent theory,
we have �1([']) = �2([']) for all ' 2 ForCLP(I1 \ I2). By Theorem 6. there is
a measure � on B (T1[T2)

c which is a common extension of �1 and �2, and hence
(B (T1[T2)c ; f(T1[T2)c ; �) is a Boolean model of T1 [ T2. �

Theorem 8. Let T1 � ForLP(n)(I1) and T2 � ForLP(n)(I2) be consistent the-

ories such that T1 \ T2 � ForLP(n)(I1 \ I2) is a maximal consistent theory. If T c1
and T c2 are conservative extensions of (T1 \ T2)

c
, and (T1 [ T2)

c
is a conservative

extension of T c1 and T c2 , then T1 [ T2 is consistent theory in LP(n).

The proof is similar to the proof of previous theorem.
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Theorem 9 (Craig Interpolation Theorem). If � is a probability formula,

let �(�) be the set of all propositional letters which occur in �. If � and 	
are probability formulas such that � is not a contradiction, 	 is not valid and

j=LP(� ) 	), then for arbitrary large natural number n 2 N , such that �;	 2

ForPLP(n), there is a probability formula � such that j=LP(n)�) �, j=LP(n)�) 	

and �(�) � �(�) \ �(	).

Proof. Let n0 2 N be the natural number such that �;	 2 ForPLP(n0). Since �

is not a contradiction there exists n1 2 N and a measure �1 : B (�(�)) ! Sn1 such
that (B (�(�)); f; �1 ) j= �. Similarly, since 	 is not a valid there exists n2 2 N and
a measure �2 : B (�(	)) ! Sn2 such that (B (�(	)); f; �2 ) j= :	. Let n 2 N be a
natural number such that Sn0 ; Sn1 ; Sn2 � Sn and a1; . . . ; a2k be list of all the basic
conjunction on propositional letters from �(�) \ �(	) in same �xed order. Let

A = f(�(a1); . . . ; �(a2k )) : � : B(�(�))! Sn; (B (�(�)); f; �) j= �g

and

B = f(�(a1); . . . ; �(a2k)) : � : B(�(	))! Sn; (B (�(	)); f; �) j= :	g:

Since j=LP(� ) 	) and hence j=LP(n)(� ) 	), by previous theorem we have

A\B = ;. Let �1 =
V2k

i=1 P�i[A]ai, where �i[A] is the set of i�th coordinates of the

2k�tuples in A and P�i[A]ai =
W
s2�i[A]

P=sai. Let �2 =
V2k

i=1 P�i[B]ai, where �i[B]

is the set of i�th coordinates of the 2k�tuples in B and P�i[B]ai =
W
s2�i[B]

P=sai.

Then j=LP(n)� ) �1 and j=LP(n):	 ) �2 and so j=LP(n):�2 ) 	. Since,

A \ B = ; we have j=LP(n) �1 ) :�2. �
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