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Abstract. We discuss the conditions under which the \ Lo�s theorem" holds
for ultraproducts of forcing systems.

1. Preliminaries

The notion of reduced product of forcing systems was introduced in [6]. The
aim of this paper is to contribute a bit to the examination of the properties of
such products (more precisely of ultraproducts). Since the results are mostly either
of \negative" or illustrative character, we will have (counter)examples instead of
lemmas and theorems.

Throughout the article L is a �rst order �nitary language. The basic logical
symbols are : (negation), ^ (conjunction) and 9 (existential quanti�er) (the others
are de�ned by these basic ones). By a theory of the language L we mean a con-
sistent, deductively closed set of sentences. The notation is more or less standard
and the notions are more or less well known. However, for the reader's convenience
we will repeat some of the basic facts.

AT (L) and SENT (L) are the set of atomic and of all sentences of the language
L respectively. The notion of forcing relation and forcing system has been taken
from [8].

Definition 1.1. Let (C;�; 0) be a partial order with the least element 0 and let
L be a language with at least one constant. The (unary) relation on C�SENT (L)
is a forcing relation i� the following conditions are ful�lled:

(1) Compatibility condition(s)
for all p; q 2 C and for each � 2 AT (L) holds: if p  � and p � q, then q  �;
The next two compatibility conditions are included if L is a language with

equality:
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(1a) for any p 2 C and any closed term t of the language L there exists a
condition q (an element from C) satisfying p � q  t = t;

(1b) for any closed terms t1, t2, and for any atomic formula �(v) (of the language
L) with at most one free variable and for any condition p there exists a condition
q � p such that either p  t1 = t2 or p  �(t1) is not true or q  �(t2).

(2) p  � ^  i� p  � and p   ;
(3) p  :� i� no condition greater than p forces � (8q � p :(q  �));
(4) p  9v �(v) i� there exists a closed term t (of L) such that p  �(t).

Definition 1.2. A forcing system is a triple (C;; L), where C is a partial
ordering (�) with the least element, L a language with at least one constant and
 is a forcing relation on C � SENT (L).

Definition 1.3. [6] The standard reduced product of the family of forcing
systems fFi (= (Ci;i; L)) j i 2 Ig for a given �lter U over I is the forcing system
F = (

Q
U Ci;U ; L), where the relation U (�

Q
U Ci � SENT (L)) is de�ned for

pU 2
Q
U Ci and � 2 AT (L) by: pU U � i� fi 2 I j p(i) i �g 2 U (and like any

forcing relation in other cases). We will write F =
Q
U Fi.

The language extended reduced product of the given family of forcing systems
fFi j i 2 Ig, in notation F 0 = (

Q
U Ci;;

0
U ; L

0), is de�ned in a similar way. The
di�erence is that in this product instead of the language L we have the language L0

having in common with the language L the sets of function and relation symbols
but with the set of constants

Q
U T , where T is the set of closed terms of the

language L; consequently, for a condition pU and an atomic sentence � (2 AT (L0))
we de�ne: pU 

0
U � i� fi 2 I j p(i) i �ig 2 U , where �i is a formula of the

language L obtained by replacing each constant dU of L0 by d(i) (d 2
Q
i T ).

This time we will be particularly interested in standard (nonprincipal) ultra-
products of forcing systems (as it was shown that an ultraproduct of forcing systems
for a principal ultra�lter does not o�er anything new). In order to simplify nota-
tion we will denote the set fi 2 I j p(i) �i q(i)g by XpU ;qU (hence pU � qU i�
XpU ;qU 2 U). Analogously, for a sentence � of the language L, XpU ;� will be the
set fi 2 I j p(i) i �g. In [6] it was proved that

If the set of closed terms T of the language L is of in�nite cardinality � and
if the ultra�lter U is �+- complete (that is if it is closed under intersection of any
family of its elements of cardinality � �), then the \ Lo�s theorem" holds: pU U �

i� XpU ;� 2 U .
In particular, the forcing companion of the forcing system F , in notation

TC (
def
= f� 2 SENT (L) j 0U U ::�g) is the \ultraproduct" of the forcing com-

panions TCi, i 2 I: TC = f� 2 SENT (L) j fi 2 I j � 2 TCig 2 Ug { we write
TC =

Q
U T

Ci.
In general, for a family of theories of the same language L, fTi j i 2 Ig, and

a �lter U over I we put
Q
U Ti = f� 2 SENT (L) j fi 2 I j � 2 Tig 2 Ug and

call it the reduced product (of the theories Ti). It is obvious that
Q
U Ti is itself a

theory (in the sense given above). If U is an ultra�lter and if all theories Ti, i 2 I ,
are complete, then

Q
U Ti is a complete theory too; certainly, this does not hold

in general for any �lter. On the other hand, the reduced product of incomplete
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theories can be a complete theory. It is clear as well that if for each i 2 I Mi is a
model of a theory Ti and if U is an ultra�lter, then

Q
U Mi j=

Q
U Ti.

2. A word on \ Lo�s theorem"

The very strong condition of �+-completeness set on the ultra�lter U in the
case when the set of closed terms is of in�nite cardinality � in order to provide the
\ Lo�s theorem" cannot in general be omitted (that is one of the reasons why we
introduced the language extended reduced products). For instance, if the index set
I and the set of closed terms T are of the same in�nite cardinality in some cases
there is no help; no matter what nonprincipal ultra�lter is chosen the  Lo�s theorem
will not hold. The following example illustrates this.

Example 2.1. Let � be an (arbitrary) in�nite cardinal and let L be a language
with equality, binary relation R and the set of constants fd� j � < �g. For each
� 2 � let M� be a model of the language L whose domain is just the set of
constants and which satis�es the sentences d� 6= d for 0 � � <  < � and
RM�(d0; d�) (that is RM� = f(d0; d�)g). Let f�Æ j 1 � Æ < �g be a well-ordering
of the diagram of M�, D(M�), and let C� be the partial order (fp j  < �g;�),
where p = f�� j 1 � � � g (p0 is supposed to be the empty set though we can do
without it). The forcing relation � is de�ned for p and � 2 AT (L) by: p � �
i� � 2 p . Finally, let F� = (C�; �; L) be the corresponding forcing system. If
U is a nonprincipal ultra�lter over � and F =

Q
U F�, then clearly for each � the

following holds: ; � 9v ::R(d0; v) (as well as ; � ::9v R(d0; v)) while ;U does
not force either of the given sentences.

This example shows also that it would not do if we replaced the forcing relation
by the weak forcing relation. By the way (and in connection with the example)
let us just note that it holds trivially for any forcing system: if a condition forces
the sentence of the form 9v::�(v), then it forces the sentence ::9v �(v) too.
Certainly, we do not have always the inverse of this assertion. The next simple
example illustrate this.

Example 2.2. Let L be a language with equality, a binary relation symbol R
and a constant d. If T is a theory of the language L which \says" that R is an
irreexive relation and that at least one element is in relation R with d and if A
is an in�nite set of new constants and  Robinson's �nite forcing relation, then
;  ::9v R(d; v), while ; does not force the sentence 9v::R(d; v).

In the previous example we use the fact that we have at disposal in�nitely many
new constants \independent (enough)" of T and that's (generally) one of the main
properties and advantages of Robinson's �nite forcing (compare with the example
2.1). Another \nice" thing about Robinson's �nite forcing (and its generalization
{ n-�nite forcing, [4], [5]) is that the forcing companion is independent of the
cardinality of the new set of constants. It is used in the next lemma which is
mostly the reformulation of lemma 2.2 in [6].

Lemma 2.3. Let � be an in�nite cardinal, L a language with equality and let
for each � < � T� be a theory of the language L. Further, let A be a set of
new constants (L \ A = ;) of cardinality greater than � and let for each � < �
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n� (n� 2 !) be Robinson's n�-�nite forcing (to be quite precise let us say that
Robinson's �nite forcing is \up to the forcing companion" what we call 0-forcing
{ see Theorem 2:10 in [4] and the comment following it). If U is an ultra�lter
over � and F = (C;U ; L(A)) the standard reduced product of the forcing systems
(C�;n� ; L(A)) (where C� is the corresponding set of conditions, that is the set of
�nite sets of �n� [ �n� sentences of the language L(A) consistent with T�), then
for any pU 2 C (=

Q
U C�) and any sentence � of the language L(A) we have:

pU U ::� i� XpU ;::� 2 U:

Proof. The proof is by induction on the complexity of the formula �. We will
consider just the key step (which does not pass in general). Let XpU ;::9v  (v) 2 U
and let us suppose that the proposition holds for all formulas of the complexity
less than the complexity of the formula 9v  (v). For given qU � pU and for each
� 2 XpU ;qU \XpU ;::9v  (v) let r� and t� be, respectively, a condition (from C�) and
a closed term of the language L(A) such that q(�) � r� n�  (t�). If a is a constant
from A which appears neither in the sentences of any r� nor in any of the terms
t� , then (for each � from the chosen subset of �) s� = r� [ ft� = ag is a condition
and s� n� :: (a) (according to 2.11 from [8]; see also [4] and 2.12 in [1]).

Therefore, if s 2
Q
� C� is de�ned by s(�) =

�
s� � 2 XpU ;qU \XpU ;::9v �(v)

; otherwise
,

then sU � qU � pU and sU U :: (a), whence pU U ::9v  (v).

If we put (in accordance with the notation from [8]) TC
def
= f� 2 SENT (L(A)) j

;U U ::�g and TC�
def
= f� 2 SENT (L(A)) j ; n� ::�g (thus the forcing com-

panion T f� is the set TC�\SENT (L)), we have: TC =
Q
U T

C�, TC\SENT (L) =Q
U T

f� . �

Again, the condition jAj > � cannot in general be omitted. The next example
(which is similar to 2.1) shows it.

Example 2.4. Let � be an in�nite cardinal and let L be a language with
equality, binary relation R and a set of constants fd� j � < �g. For each � < �

let T� be the theory of the language L with the set of axioms: f8v (R(d0; v) ()
v = d�)g [ fd� 6= d j 0 � � <  (< �)g [ f8u8v(u 6= d0 ) :R(u; v)g. Finally,
let A = fa� j � < �g be the set of new constants and let U be a regular ultra�lter
over �. If F� = (C�; �; L(A)) is the Robinson's forcing system relative to the
theory T� and the set of constants A and if F =

Q
U F� (= (

Q
U C�;U ; L(A)),

then X;U ;::9vR(d0;v) 2 U but ;U does not force ::9v R(d0; v).

Proof. Let S!(�) be the set of all �nite subsets of � and let f be a bijective

mapping of � onto S!(�) such that for each � < � X�
def
= f� < � j � 2 f(�)g 2 U .

For each � < � let p� = f:R(d0; a) j  2 f(�)g and let p 2
Q
� C� be given

by: p(�) = p�. Let us suppose that there is some condition qU � pU which forces
9v R(d0; v). In that case there exists also some constant a from A such that
qU  R(d0; a). But then XpU ;qU \XqU ;R(d0;a) \X = ; 2 U , a contradiction (Æ 2
XpU ;qU \XqU ;R(d0;a) \X would give :R(d0; a) 2 p(Æ) � q(Æ) Æ R(d0; a)). �
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Let us remark that just the !+-incompleteness of an ultra�lter U does not
allow that A be a countable set if we want the \ Lo�s theorem" for weak forcing.
Namely, we have

Example 2.5. Let the language L and the theories T�, � < �, be as in
the previous example and let A be a countable set fan j n 2 !g and U an !+-
incomplete ultra�lter over �. Then again X;U ;::9v R(d0;v) 2 U while ;U does not
force ::9v R(d0; v).

Proof. Let hXn j n 2 !i be a sequence of elements of U such that Xk � Xm

for m � k and
T
n2!Xn = ;. Let us put

p� =

�
; � 62 X0

f:R(d0; a0); : : : ;:R(d0; an)g � 2 Xn nXn+1
:

Now ;U does not force ::9v R(d0; v) for there are no condition qU � pU and a
constant ak from A such that qU U R(d0; ak). Really, if such condition (qU )
and constant (ak) existed, we would obtain for � 2 XpU ;qU \ XqU ;R(d0;ak) \ Xk:
:R(d0; ak) 2 p(�) � q(�) � R(d0; ak). �

Let L be a language with equality, fT� j � < �g a family of theories of the
language L, A a set of new constants of cardinality large enough and let for each
� < � � be the Robinson's �nite forcing relative to the theory T� and the set
of constants A. We have just shown that for (

Q
U C�;U ; L(A)), the standard

ultraproduct of the forcing systems (C�;�; L(A)), � < �, for a given ultra�lter U ,
holds: TC \ SENT (L) =

Q
U T

f
� . However, the standard ultraproduct generally

does not \close the circle"; by this we mean: the following need not hold
Q
U T

f
� =

(
Q
U T�)f . Let us give examples for both possibilities.

Example 2.6. Let L be a language with equality and a binary relation symbol
R. For n 2 N (= ! n f0g) let Cn be a chain of n elements (in particular, each Cn

is a model of the language L). If Tn = Th(Cn) (
def
= f� 2 SENT (L) j Cn j= �g)

and if U is a nonprincipal ultra�lter over N , then (
Q
U Tn)f 6=

Q
U T

f
n .

Proof. Each Tn being a complete, forcing complete theory (Tn = T fn { see
4.10 in [1]) we have

Q
U T

f
n =

Q
U Tn, while

Q
U Tn is a complete theory { we

deal with the theory of in�nite linear ordering with the minimal and maximal
element satisfying 8v(9u(v < u) ) 9w(v < w ^ 8z(v < z ) w � z)) and
8v(9u(v > u) ) 9w(v > w ^ 8z(v > z ) w � z)) { which is not forcing complete
(no model of this theory is existentially complete). �

Example 2.7. Let P = fpn j n 2 !g be the set of all primes (p0 = 2, p1 = 3
and so on) and for each n 2 ! let An be the cyclic group of order 1 +

Qn
k=0 pk.

If for each n 2 !, Tn = Th(An) and if U is a nonprincipal ultra�lter over !, thenQ
U T

f
n = (

Q
U Tn)f .

Proof. Again Tn = T fn for each n and so
Q
U T

f
n =

Q
U Tn. On the other handQ

U Tn is the complete theory of torsion-free divisible Abelian groups; in the group
An for all a 2 An the equations a = pix, i = 0; : : : ; n, (we use additive notation)
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have the unique solutions and if hbniU 6= h0iU , then for any pk pkhbniU 6= h0iU .
Hence

Q
U Tn is a model complete theory and (

Q
U Tn)f =

Q
U T

f
n (=

Q
U Tn). �

3. A word on generic models

In the sequel we show that in the case of ultraproducts of �nite forcing systems
we cannot in general expect the ultraproducts of generic models (when they exist)
to satisfy the conditions of the de�nition of generic models (see 3.1 and 3.2 in [1])
with respect to the ultraproduct of corresponding theories and ultraproduct forcing
relations.

Let T�, � < �, be a family of theories of a language L and let for each � < �

M� be a T�-generic model. Surely, if the language L is uncountable it can happen
that we do not have any generic model; thus we simply presume their existence.
Let U be a nonprincipal ultra�lter over � and let M =

Q
U M�. Now we have

Lemma 3.1. Let A be an in�nite set and let hA;Gi be an assignment of con-
stants to M (we recall: G is a mapping of A into M such that the set fG(a) j a 2 Ag
is a set of generators for M; hence, any element from M is denoted by at least one
closed term of L(A)). Let G(a) = ha�iU (a� 2 M�) and let ha�i be the �xed
\representative" of G(a). We have:

(1) If we de�ne G� : A �! M� by G�(a) = a�, then X
def
= f� < � j hA;G�i

is an assignment of constants to M�g 2 U ;
(2) (3:1 in [1]) M is consistent with T =

Q
U T�.

Proof. (1) If we suppose X 2 U and if we chose from each M�, � < �, an

element b� so that if � 2 X, then b� is not in the closure of the set fa� j a 2 Ag,
then the element hb�iU would not be denoted by any term of L(A).

Let us note that in this item we did not use at all the fact that the models
M�, � < �, are generic; in other words this result holds for an ultraproduct of any
family of models of the language L.

(2) We are to show that T [DhA;Gi(M) is consistent (DhA;Gi(M) is the set of

basic sentences of L(A) true in M). Let p = f�1; : : : ; �kg, �i � �i(a
i
1; : : : ; a

i
ni

), be

any �nite subset of DhA;Gi(M). Since we have M j= �Mi [G(ai1); : : : ; G(aini)] (for

each i), the sets Xi
def
= f� < � j M� j= �M�

i [G�(ai1); : : : ; G�(aini)]g are elements of
U . Thus f� < � j T�[p is consistent g 2 U and consequently T[p is consistent. �

Unfortunately (or fortunately, it depends on how one looks at all this), but
quite expected, we do not always have the second part of the de�nition of generic
models, that is it does not have to hold (for sentences � of L(A)):

M j= � i� there exists a �nite subset p of DhA;Gi(M) such that p U �;
of course, it is understood that p(�) = p whenever T� [ p is consistent (and this
will always happen when p � DhA;G�i(M�)).

We prove the last claim indirectly. Namely, supposing that jAj > � and that
the assertion above holds, we would have as well:

M (=
Q
U M�) completes

Q
U T

f
� ,
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(in contradiction to, for example, 2.6). Indeed, let K be any model of
Q
U T

f
� [

DhA;Gi(M) and let M j= �(a). If p (� p(a; b)) is a �nite subset of DhA;Gi(M)

such that p U �, then Y
def
= f� < � j p � ::�g 2 U . Hence Z

def
= f� < � j

T f� ` 8u; v(
V
p(u; v) ) �(u))g 2 U (for Y � Z { see 2.20 in [1]) and so

Q
U T

f
� `

8u; v(
V
p(u; v) ) �(u). It follows that K j= �(a) (because of K j=

V
p(a; b)).

In Example 2.7 we have that \the circle is closed" as well as that the ultraprod-
uct of generic models is a generic model. Certainly, the later fact is not (necessarily)
a consequence of the former.

Example 3.2. Let T = Th(N), where N is the (standard) model of natural
numbers in the language with equality and with the binary functions + and �
and constants 0; 1. It is known that T is forcing complete and that N is, up
to isomorphism, the only T -generic model [1]. It follows: if U is a nonprincipal
ultra�lter over !, then (

Q
U T )f = T f = T (=

Q
U T ), but

Q
U N is not a generic

model. On the other hand, if F is an !+-complete ultra�lter over some set I , thenQ
F N, being isomorphic to N, is a generic model.

For the last proposition we will need

Lemma 3.3. Let T be a theory of the language L with a constant c and let
C = fc� j � < �g (� an arbitrary cardinal) be a set of constants not included in L.
If L1 = L[C, E = fc� = c j c� 2 Cg and T1 = T [E (here we do not stick to our
de�nition of a theory { what we mean exactly is, of course, that T1 is the deductive
closure of the \right side"; this remark will be tacitly assumed in the sequel too)
and if A is an arbitrary in�nite set of constants disjoint with L1, then the following
hold:

(1) If p is a condition of L(A) relative to the theory T and if � is a sentence
of the language L(A), then

p T ::� i� p T1 ::�;

where T and T1 are forcing relations with respect to the theories T and T1 and
the languages L(A) and L1(A) respectively;

(2) T f1 is the deductive closure of T f [E; consequently, T f = T
f
1 \SENT (L);

(3) If M is a T -generic model, then M1 = (M; cM1

� )�<�, where cM1

� = cM for
each � < �, is a T1-generic model. On the other hand, if K is a T1-generic model,
then its reduction to the language L is a T -generic model.

Proof. Everything is rather obvious. However, the next facts are even more
obvious. If p is a �nite set of basic sentences of the language L(A), then T [
p is consistent i� T1 [ p is consistent. If p(c�1 ; : : : ; c�k) is a condition of T1,
then p(c; : : : ; c) is a condition of both T and T1 (since for any formula  T1 `
 (c�1 ; : : : ; c�m) ,  (c; : : : ; c)); let us just say that we point out only the constants
from C (the others are of no interest for the proof).

(1) The proof is by induction on the complexity of the formula �.
Let � be atomic and let p T ::�. Let us suppose that it does not hold that

p T1 ::�. Then, for some condition q(c�1 ; : : : ; c�k) of T1, p � q T1 :�. Because
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of Lemma 2.3 in [4] and the previous remark, p � q(c; : : : ; c) T1 :�. But for some
condition r of T q(c; : : : ; c) � r T �, whence also r T1 �, a contradiction.

If p T1 ::� (� is still atomic), but p � q T :� (for some condition q of T ),
then for some condition r(c�1 ; : : : ; c�k ) of T1 holds: q � r(c�1 ; : : : ; c�k) T1 �. It
follows that q � r(c; : : : ; c) [ f�g, contradictory to q T :�.

The case � �  ^ � is trivial (let us just recall: p  ::( ^ �) i� p  :: and
p  ::�).

Let � � : and let p T : . If for some condition q(c�1 ; : : : ; c�k) (of
T1), extending p, q(c�1 ; : : : ; c�k) T1  , then (again by Lemma 2.3 from [4])
q(c; : : : ; c) T1 :: and by inductive hypothesis (p �) q(c; : : : ; c) T :: , a
contradiction. The other direction is very trivial.

Finally, let � � 9v  (v) and let p T ::9v  (v). Let us presume that for some
condition q(c�1 ; : : : ; c�k ) of T1 we have: p � q(c�1 ; : : : ; c�k) T1 :9v  (v). But
for some condition r of T and for some closed term of the language L(A) it holds
that p � q(c; : : : ; c) � r T  (t). By the inductive assumption r T1 :: (t).
But if r1 = (r n q(c; : : : ; c)) [ q(c�1 ; : : : ; c�k), then T1 `

V
r ,

V
r1 and hence

r1 T1 :: (t), a contradiction.
Let now p T1 ::9v  (v). If a condition q of T extends p and forces, with

respect to T , the sentence :9v  (v), then, for some condition r(c�1 ; : : : ; c�k) and
some closed term t(c�1 ; : : : ; c�k ), q � r(c�1 ; : : : ; c�k) T1  (t(c�1 ; : : : ; c�k )). Hence
q � r(c; : : : ; c) T1 :: (t(c�1 ; : : : ; c�k )), but also r(c; : : : ; c) T1 :: (t(c; : : : ; c))

for T f1 [r] `  (t(c�1 ; : : : ; c�k )) ,  (t(c; : : : ; c)) (surely, all sentences c� = c, � < �,

belong to T f1 ). The inductive hypothesis gives (q �) r(c; : : : ; c) T :: (t(c; : : : ; c)),
a contradiction again.

(2) and (3) follow directly from (1). For instance, let M be a T -generic
model and let hA;Gi be an assignment of constants to M. Certainly, hA;Gi is
an assignment of constants to M1 = (M; cM1

� )�<� (cM1

� = cM for each � < �)
as well. It is clear also that M1 is consistent with T1. Still we are to prove
that for any sentence � of the language L1(A) the following holds: M1 j= �

i� 9p � DhA;Gi(M1) p T1 �. As it is known we should check only the case
M1 j= :� =) 9p � DhA;Gi(M1) p T1 :�. Let M1 j= :�(c�1 ; : : : ; c�k). Then
M j= :�(c; : : : ; c), so for some condition p � DhA;Gi(M) p T :�(c; : : : c). By (1)
p T1 :�(c; : : : ; c), whence also p T1 :�(c�1 ; : : : ; c�k).

In a similar way we prove that the reduction of T1-generic model to the language
L is a T -generic model. �

In the end using an example of S. Shelah we give a family of theories such that
each member of the family has (�nitely) generic model, while the ultraproduct of
the family is without generic models.

Theorem 3.4. Let L be a language with equality, binary operations addition
and multiplication and individual constant n for each natural number n and let
T = Th(N), where N is the standard model of natural numbers (in the language L).
Let C = fc� j � < @1g be the set of constants disjoint with L and let for each � < @1
T� = T [E�[D�, where E� = fc� = 0 j � � �g, D� = fc� 6= c j 0 � � <  < �g.
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If U is a uniform ultra�lter over @1, then (
Q
U T�)f =

Q
U T

f
� and there is noQ

U T�-generic model.

Proof. We are working in the language L1 = L[C. Let � = f�(v1; : : : ; vk) 2
FORM(L) j N j= �[n1; : : : ; nk] for all distinct natural numbers n1; : : : ; nkg. Due
to Theorem 2.1 from [9] and the previous lemma we have (for each � < @1):

T f� = T [ f�(c�1 ; : : : ; c�k) j all indices �1; : : : ; �k are distinct and less than
� and �(v1; : : : ; vk) 2 �g [ E�.

Since U is a uniform ultra�lter we obtain
Q
U T� = T [ fc� 6= c j 0 � � <  < @1g

and
Q
U T

f
� = T [ f�(c�1 ; : : : ; c�k) j all indices �1; : : : ; �k are distinct and less than

@1 and �(v1; : : : ; vk) 2 �g = (
Q
U T�)f (thus we have the \closed circle").

Shelah showed in paper mentioned above that
Q
U T� is without generic models,

while due to previous lemma and the well known fact that theories of countable
languages have (at least one) generic model [1], each T� has generic model. �
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