n-INFINITE FORCING VIA INFINITE FORCING

Milan Z. Grulović

Communicated by Žarko Mijajlović

Abstract

We show that the n-infinite forcing companion of a given theory T can be obtained using just infinite forcing relation.

Throughout the article L is a first order finitary language. The basic logical symbols will be (as in [2], [3]) \neg (negation), \wedge (conjunction) and \exists (existential quantifier); the others are defined via the basic ones in a standard way. It is obvious that the particular choice of the logical symbols is irrelevant.

For the notation and some (relatively new) notions we refer the reader to [3]. For his convenience we recall a few things.

As usual, if \mathbf{A} is a model of the language L (with domain A), then $L(A)$ is the expansion of the language L obtained by adding a set of new constants $\left\{c_{a} \mid a \in A\right\}$. It is understood that the interpretation of the constant c_{a} in the expansion of the model \mathbf{A} to the language $L(A)$ is a. However, we will write a instead of c_{a} when the context provides that it will not cause any confusion. If a model \mathbf{B} is an n elementary extension of a model \mathbf{A} (i.e. if \mathbf{A} is an n-elementary submodel of \mathbf{B}) we will write $\mathbf{A} \prec_{n} \mathbf{B}$; for $n=0$ it is written $\mathbf{A} \leq \mathbf{B}$ (or sometimes $\mathbf{A}<\mathbf{B}$ when we want to emphasize that \mathbf{A} is a proper submodel of \mathbf{B}) rather than $\mathbf{A} \prec_{0} \mathbf{B}$.

The only difference in definitions of infinite and n-infinite forcing relations is in connection with negation symbol. In general, for any $n \in \omega$ a model \mathbf{A}, from the given class \mathcal{K} of models of a first order finitary language L, n-infinitely forces a sentence $\neg \varphi$ of the language $L(A)$ if and only if no n-elementary extension of \mathbf{A} in \mathcal{K} forces φ; hence, for $n=0$ we have Robinson's infinite forcing.

The theories (of a given language L), usually presented by a set of axioms, will be consistent deductively closed sets of sentences; so, for instance, for a theory $T, T \cap \Pi_{n+1}$ will not be just the set $\left\{\varphi \mid \varphi\right.$ is a Π_{n+1}-sentence and $\left.T \vdash \varphi\right\}$, but

[^0]Key words and phrases. n-infinite forcing, n-infinite forcing companion.
the set of all its consequences. By the way, by Π_{n}-formula we mean any formula equivalent to a formula in a prenex normal form whose prenex consists of n blocks of quantifiers, the first one is the block of universal quantifiers (Σ_{n}-formulas are defined analogously). In this case, in order to simplify notation, we will use the symbol Φ_{n} for the union of the sets of all Π_{n} - and Σ_{n}-formulas, that is for the set of all formulas equivalent to formulas in a prenex normal form with at most n blocks of quantifiers, and $\operatorname{SENT}\left(\Phi_{n}\right)$ for the set of Φ_{n}-sentences. Clearly, $S E N T(L)$ will be the set of all sentences of the language L. The class of all models of a given theory T will be denoted by $\mu(T)$ and the class of all n-infinitely generic models from the class $\mu\left(T \cap \Pi_{n+1}\right)$ by \mathcal{L}_{T}^{n}; for $n=0$ we simply write \mathcal{L}_{T}. The theory $\left\{\varphi \in \operatorname{SENT}(L) \mid \mathbf{A}=\varphi, \mathbf{A} \in \mathcal{L}_{T}^{n}\right\}$, denoted by $T^{F_{n}}$, is called the n-infinite forcing companion of T.

2
In [2] it was shown that (for any positive natural number n) from a purely technical point of view we do not need n-finite forcing relation in obtaining n-finite forcing companion as well as that each theory T of the language L has an extension defined in the appropriate expansion of the language L whose finite and n-finite forcing companions coincide. We apply basically the same proof pattern to obtain analogous results for infinite forcing.

Let T be a theory of the language L and $\|=_{n}$ an n-infinite forcing relation corresponding to T (thus, it is a relation between the models of the class $\mu\left(T \cap \Pi_{n+1}\right)$ and the sentences defined in them). To each Φ_{n}-formula $\phi\left(v_{i_{1}}, \ldots, v_{i_{m}}\right), m \geq$ 1, where $f v(\phi)=\left\{v_{i_{1}}, \ldots, v_{i_{m}}\right\}$ and the m-tuple $\bar{v}=\left(v_{i_{1}}, \ldots, v_{i_{m}}\right)$ is uniquely determined, for instance by a sequence of free occurrences of variables in ϕ, we join a new m-ary relation symbol $R_{\phi, \bar{v}}$. Accordingly, $R_{\phi, \bar{v}}\left(t_{1}, \ldots, t_{m}\right)$ will be always a result of substituting in $R_{\phi, \bar{v}}\left(v_{i_{1}}, \ldots, v_{i_{m}}\right)$ the terms t_{1}, \ldots, t_{m} for occurrences of $v_{i_{1}}, \ldots, v_{i_{m}}$, respectively. As for Φ_{n}-sentences we associate each of them with the new unary relation symbol; naturaly, R_{ψ} is to correspond to the sentence ψ. In the language \bar{L}, obtained by extension of the language L by the set of these new relation symbols, we define \bar{T} to be the set of consequences of

$$
\begin{aligned}
&\left(T \cap \Pi_{n+1}\right) \cup\left\{\forall \bar{v}\left(\phi(\bar{v}) \Leftrightarrow R_{\phi, \bar{v}}(\bar{v})\right) \mid \phi(\bar{v}) \in \Phi_{n} \backslash S E N T\left(\Phi_{n}\right)\right\} \cup \\
&\left\{\left(\psi \Leftrightarrow \forall v_{1} R_{\psi}\left(v_{1}\right)\right) \wedge\left(\forall v_{1} R_{\psi}\left(v_{1}\right) \vee \forall v_{1} \neg R_{\psi}\left(v_{1}\right)\right) \mid \psi \in \operatorname{SENT}\left(\Phi_{n}\right)\right\}
\end{aligned}
$$

Clearly, any model \mathbf{A} of $T \cap \Pi_{n+1}$ can be expanded to a model $\overline{\mathbf{A}}$ of \bar{T} by putting $\left(\right.$ for $\left.\phi(\bar{v}) \in \Phi_{n} \backslash S E N T\left(\Phi_{n}\right)\right)\left(a_{1}, \ldots, a_{m}\right) \in R_{\phi, \bar{v}}^{\overline{\mathbf{A}}}$ iff $\mathbf{A}=\phi\left[a_{1}, \ldots, a_{m}\right]$ and (for $\left.\psi \in S E N T\left(\Phi_{n}\right)\right) R_{\psi}^{\overline{\mathbf{A}}}=A$ if $\mathbf{A}=\psi$, otherwise $R_{\psi}^{\overline{\mathbf{A}}}=\emptyset$.

Let us note that as for propositions bellow nothing would be changed if we included the whole theory T in the definition of \bar{T} instead of just its Π_{n+1}-segment.

Let $\|=$ be Robinson's infinite forcing relation corresponding to \bar{T}. The following holds

Lemma 2.1. If \mathbf{A} is a model of $T \cap \Pi_{n+1}, \overline{\mathbf{A}}$ its expansion to a model of \bar{T} and $\phi\left(a_{1}, \ldots, a_{m}\right)$ the sentence of the language $L(A)$, then $\mathbf{A} \|={ }_{n} \phi\left(a_{1}, \ldots, a_{m}\right)$ iff $\overline{\mathbf{A}} \|=\phi\left(a_{1}, \ldots, a_{m}\right)$.

Proof. We will denote the models of the language L by $\mathbf{A}, \mathbf{B}, \ldots$ and the models of the language \bar{L} by $\overline{\mathbf{A}}, \overline{\mathbf{B}}, \ldots$.

We prove the assertion of the lemma by induction on the complexity of the formula ϕ (and for all pairs of models of the theory $T \cap \Pi_{n+1}$ and their expansions to the models of the theory $\bar{T})$. The case of atomic formulas is trivial and as for induction steps only the case $\phi\left(a_{1}, \ldots, a_{m}\right) \equiv \neg \psi\left(a_{1}, \ldots, a_{m}\right)$ is of some interest. Let us suppose that $\mathbf{A} n$-infinitely forces $\neg \psi\left(a_{1}, \ldots, a_{m}\right)$ (with respect to the class $\mu\left(T \cap \Pi_{n+1}\right)$) while $\overline{\mathbf{A}}$ does not infinitely force the same formula (with respect to the class $\left.\mu\left(\bar{T} \cap \Pi_{1}\right)\right)$. Since the class of models of the theory \bar{T} is mutually consistent with the class $\mu\left(\bar{T} \cap \Pi_{1}\right)$, there exists a model $\overline{\mathbf{B}}$ of \bar{T} which is an extension of the model $\overline{\mathbf{A}}$ and which infinitely forces $\psi\left(a_{1}, \ldots, a_{m}\right)$. By inductive hypothesis the reduct \mathbf{B} of $\overline{\mathbf{B}}$ to the language $L n$-infinitely forces $\psi\left(a_{1}, \ldots, a_{m}\right)$ and we obtain a contradiction for \mathbf{B} is an n-elementary extension of the model \mathbf{A}. Really, if $\varphi(\bar{v}) \equiv \varphi\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$ is a Φ_{n}-formula (with some free variables), then we have for all k-tuples $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right)$ of the elements from A : $\mathbf{A} \models \varphi\left[a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right]$ iff $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in R_{\varphi, \bar{v}}^{\overline{\mathbf{A}}}$ iff $\left(a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right) \in R_{\varphi, \bar{v}}^{\overline{\mathbf{B}}}$ iff $\mathbf{B} \models \varphi\left[a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right]$; if θ is a $\Phi_{n^{-}}$ sentence of the language L, then from $\mathbf{A} \models \theta$ follows subsequently $\overline{\mathbf{A}} \models \forall v_{1} R_{\theta}\left(v_{1}\right)$, $\overline{\mathbf{B}}=\forall v_{1} R_{\theta}\left(v_{1}\right)\left(\right.$ for $\forall v_{1} R_{\theta}\left(v_{1}\right) \vee \forall v_{1} \neg R_{\theta}\left(v_{1}\right)$ is a sentence of the theory $\left.\bar{T}\right), \mathbf{B} \mid=\theta$.

The proof of the implication $\bar{A}\left\|=\neg \psi\left(a_{1}, \ldots, a_{m}\right) \Rightarrow A\right\|{ }_{n} \neg \psi\left(a_{1}, \ldots, a_{m}\right)$ is similar.

Lemma 2.2. If \mathbf{A} is a model of $T \cap \Pi_{n+1}, \overline{\mathbf{A}}$ its expansion to a model of \bar{T}, then $\mathbf{A} \in \mathcal{L}_{T}^{n}$ iff $\overline{\mathbf{A}} \in \mathcal{L}_{\bar{T}}$.

Proof. Both implications follow from the previous lemma. However, the case of the implication (\Rightarrow) is a little bit less obvious. So let \mathbf{A} be n-infinitely generic model (for the theory T). We show by induction on the complexity of the formulas (of the language \bar{L}) that for any formula $\phi\left(v_{i_{1}}, \ldots, v_{i_{m}}\right)(\phi(\bar{v})$ for short), $m \geq 0$, and all m-tuples $\left(a_{1}, \ldots, a_{m}\right)$ of the elements from A the following holds: $\overline{\overline{\mathbf{A}}}=$ $\phi\left[a_{1}, \ldots, a_{m}\right]$ iff $\overline{\mathbf{A}} \|=\phi\left(a_{1}, \ldots, a_{m}\right)$. Again, only the step $\phi(\bar{v}) \equiv \neg \psi(\bar{v})$ requires a word of explanation. It is obvious that $\overline{\mathbf{A}} \|=\phi(\bar{a})$ implies $\overline{\mathbf{A}}=\phi[\bar{a}]$. Thus let $\overline{\mathbf{A}} \models \neg \psi[\bar{a}]$ and let us suppose that $\overline{\mathbf{A}}$ does not infinitely force $\neg \psi(\bar{a})$. Of course, $\psi(\bar{v})$ is not a formula of the language L. Let $\chi(\bar{v})$ be a formula of the language L obtained from the formula $\neg \psi$ by substituting for the relation symbols $R_{\varphi, \bar{u}}$ and R_{θ} the corresponding formulas $\varphi(\bar{u})$ and sentences θ; let us note (and in part repeat the facts) that (for a sentence θ of the language L) the sentences $\forall v R_{\theta}(v) \Leftrightarrow \exists v R_{\theta}(v)$ and $\forall v\left(R_{\theta}(v) \Leftrightarrow \theta\right)$ are the theorems of the theory \bar{T}. Clearly, $\bar{T} \vdash \neg \psi(\bar{v}) \Leftrightarrow \chi(\bar{v})$, thus $\overline{\mathbf{A}} \models \chi[\bar{a}]$, that is $\mathbf{A} \models \chi[\bar{a}]$. Since \mathbf{A} is an n-infinitely generic model it follows that $\mathbf{A} \| \models_{n} \chi(\bar{a})$, whence (by the previous lemma) $\overline{\mathbf{A}} \|=\chi(\bar{a})$. Let $\overline{\mathbf{A}}_{1}$ be an infinitely generic model (of the theory \bar{T}) which is an extension of the model $\overline{\mathbf{A}}$ and which infinitely forces $\psi(\bar{a})$ (of course, $\overline{\mathbf{A}}_{1}$ infinitely forces $\chi[\bar{a}]$ as well). In the
sequel we construct a chain of models $\overline{\mathbf{A}}=\overline{\mathbf{A}}_{0} \leq \overline{\mathbf{A}}_{1} \leq \cdots \leq \overline{\mathbf{A}}_{2 k} \leq \overline{\mathbf{A}}_{2 k+1} \leq \cdots$, where $\overline{\mathbf{A}}_{2 k}, k=0,1,2, \ldots$, are models of the theory \bar{T} while $\overline{\mathbf{A}}_{2 k+1}, k=0,1,2, \ldots$, are infinitely generic models (of the same theory). It is known that the (sub)chain $\overline{\mathbf{A}}_{1} \leq \overline{\mathbf{A}}_{3} \leq \cdots \leq \overline{\mathbf{A}}_{2 k+1} \leq \cdots$ is an elementary chain as well as that its union $\overline{\mathbf{B}}$ is an infinitely generic model too. Whence $\overline{\mathbf{B}}=\psi[\bar{a}] \wedge \chi[\bar{a}]$. On the other hand, $\overline{\mathbf{B}}=\bigcup_{k=0}^{\infty} \overline{\mathbf{A}}_{2 k}$ is also a model of the theory \bar{T}. This is a consequence of the fact (proved in the previous lemma) that the chain $\mathbf{A}_{0} \leq \mathbf{A}_{2} \leqq \cdots \leq \mathbf{A}_{2 k} \leq \cdots$ is an n-elementary chain; thus \mathbf{B} (the restriction of the model $\overline{\mathbf{B}}$ to the language L) is an n-elementary extension of each model $\mathbf{A}_{2 k}$ and satisfies the theory $T \cap \Pi_{n+1}$. But this gives $\overline{\mathbf{B}}=\neg \psi(\bar{a}) \Leftrightarrow \chi(\bar{a})$, in contradiction to the satisfiability of $\psi(\bar{a})$ and $\chi(\bar{a})$ in $\overline{\mathbf{B}}$. We conclude that $\overline{\mathbf{A}}$ infinitely forces $\neg \psi(\bar{a})$.

Corollary 2.3. (1) The class of infinitely generic models of the theory \bar{T} is the class of expansions of the n-infinitely generic models of the theory T to the models of the theory \bar{T};
(2) If \bar{T}^{F} is the infinite forcing companion of the theory \bar{T}, then

$$
T^{F_{n}}=\bar{T}^{F} \cap S E N T(L)
$$

Proof. (1) We have just showed that the union of the chain of models of the theory \bar{T} is again a model of \bar{T}. Thus \bar{T} is Π_{2}-axiomatizable, whence $\mathcal{L}_{\bar{T}}$ is a subclass of the class $\mu(\bar{T})$ (it is known that, in general, $\bar{T} \cap \Pi_{2} \subseteq \bar{T}^{F}$).

Let T be a theory of the language L and let us define recursively (and simultaneously) the sequences of languages L_{k} and theories $T_{k}, k \in \omega$, in the following way:

$$
\begin{array}{cl}
L_{0}=L, & T_{0}=T \\
L_{k+1}=\overline{L_{k}}, & T_{k+1}=\overline{T_{k}}
\end{array}
$$

It is assumed that the language L_{k+1} and the theory T_{k+1} are formed by extensions of L_{k} and T_{k}, respectively, in a way analogous to obtaining \bar{L} and \bar{T} (in the first lemma) from L and T.

The following theorem holds for the theory $T_{\omega} \stackrel{\text { def }}{=} \bigcup_{k \in \omega} T_{k}$ defined in the language $L_{\omega} \stackrel{\text { def }}{=} \bigcup_{k \in \omega} L_{k}$

THEOREM 2.4. (1) If \mathbf{A} and \mathbf{B} are models of the theory T_{ω}, then from $\mathbf{A} \leq \mathbf{B}$ follows $\mathbf{A} \prec_{n} \mathbf{B} ; \quad$ (2) $\mathcal{L}_{T_{\omega}}=\mathcal{L}_{T_{\omega}}^{n} ; \quad$ (3) $T_{\omega}^{F}=T_{\omega}^{F_{n}}$;

Proof. (1) Let \mathbf{A} be a submodel of \mathbf{B}. If $\phi(\bar{a})$ is a Φ_{n}-sentence (of the language $\left.L_{\omega}(A)\right)$ which is true in \mathbf{A} and k the least natural number such that $\phi(\bar{v})$ is a formula of the language L_{k}, then for the relation symbol $R_{\phi, \bar{v}}$ of the language L_{k+1} we have $\mathbf{A} \models R_{\phi, \bar{v}}[\bar{a}]$. Thus $\mathbf{B} \vDash R_{\phi, \bar{v}}[\bar{a}]$, but we have also $\mathbf{B} \vDash\left(R_{\phi, \bar{v}} \Leftrightarrow \phi\right)[\bar{a}]$, whence $\mathbf{B}=\phi[\bar{a}]$.
(2) Clearly, because of (1) the infinite and n-infinite forcing relations coincide in the case of the class $\mu\left(T_{\omega}\right)$.

References

[1] C. C. Chang, H. J. Keisler, Model Theory, North-Holland, Amsterdam, London, 1973.
[2] M. Z. Grulović, On n-finite forcing, Review of Research, Faculty of Science, University of Novi Sad, Mathematics Series, 13 (1983), 405-421.
[3] M. Z. Grulović, A Word on n-infinite forcing, Facta Universitatis, series: Mathematics and Informatics, University of Niš (to appear)
[4] J. Hirschfeld, W. H. Wheeler, Forcing, Arithmetic, Division Rings, Lecture Notes in Mathematics 454, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
[5] A. Robinson, Infinite Forcing in Model Theory, in: Proceedings of the Second Scandinavian Logic Symposium, Oslo 1970, North-Holland, Amsterdam, 1971, pp. 317-340.

Institut za matematiku
(Received 0511 1999)
Trg D. Obradovića 4
21000 Novi Sad
Yugoslavia
grulovic@unsim.ns.ac.yu

[^0]: 1991 Mathematics Subject Classification. Primary 03C25; Secondary 03C52, 03C62.

