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n-INFINITE FORCING

VIA INFINITE FORCING

Milan Z. Grulovi�c

Communicated by �Zarko Mijajlovi�c

Abstract. We show that the n-in�nite forcing companion of a given theory
T can be obtained using just in�nite forcing relation.

1

Throughout the article L is a �rst order �nitary language. The basic logical
symbols will be (as in [2], [3]) : (negation), ^ (conjunction) and 9 (existential
quanti�er); the others are de�ned via the basic ones in a standard way. It is
obvious that the particular choice of the logical symbols is irrelevant.

For the notation and some (relatively new) notions we refer the reader to [3].
For his convenience we recall a few things.

As usual, if A is a model of the language L (with domain A), then L(A) is the
expansion of the language L obtained by adding a set of new constants fca j a 2 Ag.
It is understood that the interpretation of the constant ca in the expansion of the
model A to the language L(A) is a. However, we will write a instead of ca when
the context provides that it will not cause any confusion. If a model B is an n-
elementary extension of a model A (i.e. if A is an n-elementary submodel of B)
we will write A �n B; for n = 0 it is written A � B (or sometimes A < B when
we want to emphasize that A is a proper submodel of B) rather than A �0 B.

The only di�erence in de�nitions of in�nite and n-in�nite forcing relations is
in connection with negation symbol. In general, for any n 2 ! a model A, from
the given class K of models of a �rst order �nitary language L, n-in�nitely forces
a sentence :' of the language L(A) if and only if no n-elementary extension of A
in K forces '; hence, for n = 0 we have Robinson's in�nite forcing.

The theories (of a given language L), usually presented by a set of axioms,
will be consistent deductively closed sets of sentences; so, for instance, for a theory
T , T \ �n+1 will not be just the set f' j ' is a �n+1-sentence and T ` 'g, but
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the set of all its consequences. By the way, by �n-formula we mean any formula
equivalent to a formula in a prenex normal form whose prenex consists of n blocks
of quanti�ers, the �rst one is the block of universal quanti�ers (�n-formulas are
de�ned analogously). In this case, in order to simplify notation, we will use the
symbol �n for the union of the sets of all �n- and �n-formulas, that is for the set of
all formulas equivalent to formulas in a prenex normal form with at most n blocks
of quanti�ers, and SENT (�n) for the set of �n-sentences. Clearly, SENT (L) will
be the set of all sentences of the language L. The class of all models of a given
theory T will be denoted by �(T ) and the class of all n-in�nitely generic models
from the class �(T \ �n+1) by LnT ; for n = 0 we simply write LT . The theory
f' 2 SENT (L) j A j= ', A 2 LnT g, denoted by TFn , is called the n-in�nite forcing
companion of T .

2

In [2] it was shown that (for any positive natural number n) from a purely
technical point of view we do not need n-�nite forcing relation in obtaining n-�nite
forcing companion as well as that each theory T of the language L has an extension
de�ned in the appropriate expansion of the language L whose �nite and n-�nite
forcing companions coincide. We apply basically the same proof pattern to obtain
analogous results for in�nite forcing.

Let T be a theory of the language L and jj=n an n-in�nite forcing relation
corresponding to T (thus, it is a relation between the models of the class �(T\�n+1)
and the sentences de�ned in them). To each �n-formula �(vi1 ; : : : ; vim), m �
1, where fv(�) = fvi1 ; : : : ; vimg and the m-tuple v = (vi1 ; : : : ; vim) is uniquely
determined, for instance by a sequence of free occurrences of variables in �, we join
a new m-ary relation symbol R�;v. Accordingly, R�;v(t1; : : : ; tm) will be always a
result of substituting in R�;v(vi1 ; : : : ; vim) the terms t1; : : : ; tm for occurrences of
vi1 ; : : : ; vim , respectively. As for �n-sentences we associate each of them with the
new unary relation symbol; naturaly, R is to correspond to the sentence  . In

the language L, obtained by extension of the language L by the set of these new
relation symbols, we de�ne T to be the set of consequences of

(T \ �n+1) [ f8v(�(v), R�;v(v)) j �(v) 2 �n r SENT (�n)g [

f( , 8v1R (v1)) ^ (8v1R (v1) _ 8v1:R (v1)) j  2 SENT (�n)g:

Clearly, any model A of T \ �n+1 can be expanded to a model A of T by

putting (for �(v) 2 �n r SENT (�n)) (a1; : : : ; am) 2 RA�;v i� A j= �[a1; : : : ; am]

and (for  2 SENT (�n)) R
A

 = A if A j=  , otherwise RA = ;.
Let us note that as for propositions bellow nothing would be changed if we

included the whole theory T in the de�nition of T instead of just its �n+1-segment.
Let jj= be Robinson's in�nite forcing relation corresponding to T . The follow-

ing holds
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Lemma 2.1. If A is a model of T \ �n+1, A its expansion to a model of T

and �(a1; : : : ; am) the sentence of the language L(A), then A jj=n �(a1; : : : ; am)

i� A jj=�(a1; : : : ; am).

Proof. We will denote the models of the language L by A;B; : : : and the
models of the language L by A;B; : : : .

We prove the assertion of the lemma by induction on the complexity of the
formula � (and for all pairs of models of the theory T \�n+1 and their expansions
to the models of the theory T ). The case of atomic formulas is trivial and as for
induction steps only the case �(a1; : : : ; am) � : (a1; : : : ; am) is of some interest.
Let us suppose that A n-in�nitely forces : (a1; : : : ; am) (with respect to the class
�(T \ �n+1)) while A does not in�nitely force the same formula (with respect
to the class �(T \ �1)). Since the class of models of the theory T is mutually
consistent with the class �(T \ �1), there exists a model B of T which is an
extension of the model A and which in�nitely forces  (a1; : : : ; am). By inductive
hypothesis the reduct B of B to the language L n-in�nitely forces  (a1; : : : ; am)
and we obtain a contradiction for B is an n-elementary extension of the model A.
Really, if '(v) � '(vi1 ; : : : ; vik ) is a �n-formula (with some free variables), then
we have for all k-tuples (a01; : : : ; a

0

k) of the elements from A: A j= '[a01; : : : ; a
0

k]

i� (a01; : : : ; a
0

k) 2 RA';v i� (a01; : : : ; a
0

k) 2 RB';v i� B j= '[a01; : : : ; a
0

k]; if � is a �n-

sentence of the language L, then from A j= � follows subsequently A j= 8v1R�(v1),
B j= 8v1R�(v1) (for 8v1R�(v1)_8v1:R�(v1) is a sentence of the theory T ), B j= �.

The proof of the implication A jj=: (a1; : : : ; am) ) A jj=n : (a1; : : : ; am)
is similar. �

Lemma 2.2. If A is a model of T \ �n+1, A its expansion to a model of T ,

then A 2 LnT i� A 2 LT .

Proof. Both implications follow from the previous lemma. However, the case
of the implication ()) is a little bit less obvious. So let A be n-in�nitely generic
model (for the theory T ). We show by induction on the complexity of the formulas
(of the language L) that for any formula �(vi1 ; : : : ; vim) (�(v) for short), m � 0,
and all m-tuples (a1; : : : ; am) of the elements from A the following holds: A j=
�[a1; : : : ; am] i� A jj=�(a1; : : : ; am). Again, only the step �(v) � : (v) requires
a word of explanation. It is obvious that A jj=�(a) implies A j= �[a]. Thus let
A j= : [a] and let us suppose that A does not in�nitely force : (a). Of course,
 (v) is not a formula of the language L. Let �(v) be a formula of the language L
obtained from the formula : by substituting for the relation symbols R';u and R�
the corresponding formulas '(u) and sentences �; let us note (and in part repeat the
facts) that (for a sentence � of the language L) the sentences 8vR�(v) , 9vR�(v)
and 8v(R�(v) , �) are the theorems of the theory T . Clearly, T ` : (v) , �(v),
thus A j= �[a], that is A j= �[a]. Since A is an n-in�nitely generic model it
follows that A jj=n �(a), whence (by the previous lemma) A jj=�(a). Let A1 be

an in�nitely generic model (of the theory T ) which is an extension of the model A
and which in�nitely forces  (a) (of course, A1 in�nitely forces �[a] as well). In the
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sequel we construct a chain of models A = A0 � A1 � � � � � A2k � A2k+1 � � � � ,
where A2k, k = 0; 1; 2; : : : , are models of the theory T while A2k+1, k = 0; 1; 2; : : : ,
are in�nitely generic models (of the same theory). It is known that the (sub)chain
A1 � A3 � � � � � A2k+1 � � � � is an elementary chain as well as that its union B

is an in�nitely generic model too. Whence B j=  [a] ^ �[a]. On the other hand,
B =

S
1

k=0A2k is also a model of the theory T . This is a consequence of the fact
(proved in the previous lemma) that the chain A0 � A2 � � � � � A2k � � � � is an
n-elementary chain; thus B (the restriction of the model B to the language L) is
an n-elementary extension of each model A2k and satis�es the theory T \ �n+1.
But this gives B j= : (a), �(a), in contradiction to the satis�ability of  (a) and
�(a) in B. We conclude that A in�nitely forces : (a). �

Corollary 2.3. (1) The class of in�nitely generic models of the theory T is

the class of expansions of the n-in�nitely generic models of the theory T to the

models of the theory T ;

(2) If T
F

is the in�nite forcing companion of the theory T , then

TFn = T
F
\ SENT (L):

Proof. (1) We have just showed that the union of the chain of models of
the theory T is again a model of T . Thus T is �2-axiomatizable, whence LT is a

subclass of the class �(T ) (it is known that, in general, T \�2 � T
F
). �

Let T be a theory of the language L and let us de�ne recursively (and simul-
taneously) the sequences of languages Lk and theories Tk, k 2 !, in the following
way:

L0 = L; T0 = T;

Lk+1 = Lk; Tk+1 = Tk;

It is assumed that the language Lk+1 and the theory Tk+1 are formed by extensions
of Lk and Tk, respectively, in a way analogous to obtaining L and T (in the �rst
lemma) from L and T .

The following theorem holds for the theory T!
def
=
S
k2! Tk de�ned in the

language L!
def
=
S
k2! Lk

Theorem 2.4. (1) If A and B are models of the theory T!, then from A � B

follows A �n B; (2) LT! = LnT! ; (3) TF! = TFn! ;

Proof. (1) LetA be a submodel ofB. If �(a) is a �n-sentence (of the language
L!(A)) which is true inA and k the least natural number such that �(v) is a formula
of the language Lk, then for the relation symbol R�;v of the language Lk+1 we have
A j= R�;v[a]. Thus B j= R�;v[a], but we have also B j= (R�;v , �)[a], whence
B j= �[a].

(2) Clearly, because of (1) the in�nite and n-in�nite forcing relations coincide
in the case of the class �(T!). �
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