PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 69(83) (2001), 13-17

n-INFINITE FORCING VIA INFINITE FORCING

Milan Z. Grulović

Communicated by Žarko Mijajlović

ABSTRACT. We show that the *n*-infinite forcing companion of a given theory T can be obtained using just infinite forcing relation.

1

Throughout the article L is a first order finitary language. The basic logical symbols will be (as in [2], [3]) \neg (negation), \land (conjunction) and \exists (existential quantifier); the others are defined via the basic ones in a standard way. It is obvious that the particular choice of the logical symbols is irrelevant.

For the notation and some (relatively new) notions we refer the reader to [3]. For his convenience we recall a few things.

As usual, if **A** is a model of the language L (with domain A), then L(A) is the expansion of the language L obtained by adding a set of new constants $\{c_a \mid a \in A\}$. It is understood that the interpretation of the constant c_a in the expansion of the model **A** to the language L(A) is a. However, we will write a instead of c_a when the context provides that it will not cause any confusion. If a model **B** is an n-elementary extension of a model **A** (i.e. if **A** is an n-elementary submodel of **B**) we will write $\mathbf{A} \prec_n \mathbf{B}$; for n = 0 it is written $\mathbf{A} \leq \mathbf{B}$ (or sometimes $\mathbf{A} < \mathbf{B}$ when we want to emphasize that **A** is a proper submodel of **B**) rather than $\mathbf{A} \prec_0 \mathbf{B}$.

The only difference in definitions of infinite and *n*-infinite forcing relations is in connection with negation symbol. In general, for any $n \in \omega$ a model **A**, from the given class \mathcal{K} of models of a first order finitary language L, *n*-infinitely forces a sentence $\neg \varphi$ of the language L(A) if and only if no *n*-elementary extension of **A** in \mathcal{K} forces φ ; hence, for n = 0 we have Robinson's infinite forcing.

The theories (of a given language L), usually presented by a set of axioms, will be consistent deductively closed sets of sentences; so, for instance, for a theory $T, T \cap \prod_{n+1}$ will not be just the set $\{\varphi \mid \varphi \text{ is a } \prod_{n+1}\text{-sentence and } T \vdash \varphi\}$, but

¹⁹⁹¹ Mathematics Subject Classification. Primary 03C25; Secondary 03C52, 03C62.

Key words and phrases. n-infinite forcing, n-infinite forcing companion.

¹³

GRULOVIĆ

the set of all its consequences. By the way, by Π_n -formula we mean any formula equivalent to a formula in a prenex normal form whose prenex consists of n blocks of quantifiers, the first one is the block of universal quantifiers (Σ_n -formulas are defined analogously). In this case, in order to simplify notation, we will use the symbol Φ_n for the union of the sets of all Π_n - and Σ_n -formulas, that is for the set of all formulas equivalent to formulas in a prenex normal form with at most n blocks of quantifiers, and $SENT(\Phi_n)$ for the set of Φ_n -sentences. Clearly, SENT(L) will be the set of all sentences of the language L. The class of all models of a given theory T will be denoted by $\mu(T)$ and the class of all n-infinitely generic models from the class $\mu(T \cap \Pi_{n+1})$ by \mathcal{L}_T^n ; for n = 0 we simply write \mathcal{L}_T . The theory $\{\varphi \in SENT(L) \mid \mathbf{A} \models \varphi, \mathbf{A} \in \mathcal{L}_T^n\}$, denoted by T^{F_n} , is called the n-infinite forcing companion of T.

 $\mathbf{2}$

In [2] it was shown that (for any positive natural number n) from a purely technical point of view we do not need n-finite forcing relation in obtaining n-finite forcing companion as well as that each theory T of the language L has an extension defined in the appropriate expansion of the language L whose finite and n-finite forcing companions coincide. We apply basically the same proof pattern to obtain analogous results for infinite forcing.

Let T be a theory of the language L and \models_n an n-infinite forcing relation corresponding to T (thus, it is a relation between the models of the class $\mu(T \cap \Pi_{n+1})$ and the sentences defined in them). To each Φ_n -formula $\phi(v_{i_1}, \ldots, v_{i_m}), m \geq 1$, where $fv(\phi) = \{v_{i_1}, \ldots, v_{i_m}\}$ and the m-tuple $\overline{v} = (v_{i_1}, \ldots, v_{i_m})$ is uniquely determined, for instance by a sequence of free occurrences of variables in ϕ , we join a new m-ary relation symbol $R_{\phi,\overline{v}}$. Accordingly, $R_{\phi,\overline{v}}(t_1, \ldots, t_m)$ will be always a result of substituting in $R_{\phi,\overline{v}}(v_{i_1}, \ldots, v_{i_m})$ the terms t_1, \ldots, t_m for occurrences of v_{i_1}, \ldots, v_{i_m} , respectively. As for Φ_n -sentences we associate each of them with the new unary relation symbol; naturaly, R_{ψ} is to correspond to the sentence ψ . In the language \overline{L} , obtained by extension of the language L by the set of these new relation symbols, we define \overline{T} to be the set of consequences of

$$(T \cap \Pi_{n+1}) \cup \{ \forall \overline{v}(\phi(\overline{v}) \Leftrightarrow R_{\phi,\overline{v}}(\overline{v})) \mid \phi(\overline{v}) \in \Phi_n \smallsetminus SENT(\Phi_n) \} \cup \\ \{ (\psi \Leftrightarrow \forall v_1 R_{\psi}(v_1)) \land (\forall v_1 R_{\psi}(v_1) \lor \forall v_1 \neg R_{\psi}(v_1)) \mid \psi \in SENT(\Phi_n) \}.$$

Clearly, any model **A** of $T \cap \prod_{n+1}$ can be expanded to a model $\overline{\mathbf{A}}$ of \overline{T} by putting (for $\phi(\overline{v}) \in \Phi_n \setminus SENT(\Phi_n)$) $(a_1, \ldots, a_m) \in R^{\overline{\mathbf{A}}}_{\phi,\overline{v}}$ iff $\mathbf{A} \models \phi[a_1, \ldots, a_m]$ and (for $\psi \in SENT(\Phi_n)$) $R^{\overline{\mathbf{A}}}_{\psi} = A$ if $\mathbf{A} \models \psi$, otherwise $R^{\overline{\mathbf{A}}}_{\psi} = \emptyset$.

Let us note that as for propositions below nothing would be changed if we included the whole theory T in the definition of \overline{T} instead of just its Π_{n+1} -segment.

Let \models be Robinson's infinite forcing relation corresponding to \overline{T} . The following holds

LEMMA 2.1. If **A** is a model of $T \cap \prod_{n+1}$, $\overline{\mathbf{A}}$ its expansion to a model of \overline{T} and $\phi(a_1,\ldots,a_m)$ the sentence of the language L(A), then $\mathbf{A} \models_n \phi(a_1,\ldots,a_m)$ iff $\overline{\mathbf{A}} \models \phi(a_1,\ldots,a_m)$.

PROOF. We will denote the models of the language L by $\mathbf{A}, \mathbf{B}, \ldots$ and the models of the language \overline{L} by $\overline{\mathbf{A}}, \overline{\mathbf{B}}, \ldots$

We prove the assertion of the lemma by induction on the complexity of the formula ϕ (and for all pairs of models of the theory $T \cap \Pi_{n+1}$ and their expansions to the models of the theory \overline{T}). The case of atomic formulas is trivial and as for induction steps only the case $\phi(a_1, \ldots, a_m) \equiv \neg \psi(a_1, \ldots, a_m)$ is of some interest. Let us suppose that **A** *n*-infinitely forces $\neg \psi(a_1, \ldots, a_m)$ (with respect to the class $\mu(T \cap \Pi_{n+1})$) while $\overline{\mathbf{A}}$ does not infinitely force the same formula (with respect to the class $\mu(T \cap \Pi_{n+1})$). Since the class of models of the theory \overline{T} is mutually consistent with the class $\mu(\overline{T} \cap \Pi_1)$, there exists a model $\overline{\mathbf{B}}$ of \overline{T} which is an extension of the model $\overline{\mathbf{A}}$ and which infinitely forces $\psi(a_1, \ldots, a_m)$. By inductive hypothesis the reduct \mathbf{B} of $\overline{\mathbf{B}}$ to the language L *n*-infinitely forces $\psi(a_1, \ldots, a_m)$ and we obtain a contradiction for \mathbf{B} is an *n*-elementary extension of the model \mathbf{A} . Really, if $\varphi(\overline{v}) \equiv \varphi(v_{i_1}, \ldots, v_{i_k})$ is a Φ_n -formula (with some free variables), then we have for all k-tuples $(a'_1, \ldots, a'_k) \in R^{\overline{\mathbf{B}}}_{\varphi,\overline{v}}$ iff $\mathbf{B} \models \varphi[a'_1, \ldots, a'_k]$; if θ is a Φ_n -sentence of the language L, then from $\mathbf{A} \models \theta$ follows subsequently $\overline{\mathbf{A}} \models \forall v_1 R_\theta(v_1)$, $\overline{\mathbf{B}} \models \forall v_1 R_\theta(v_1)$ (for $\forall v_1 R_\theta(v_1) \lor \forall v_1 \neg R_\theta(v_1)$ is a sentence of the theory \overline{T}), $\mathbf{B} \models \theta$.

The proof of the implication $\overline{A} \models \neg \psi(a_1, \dots, a_m) \Rightarrow A \models_n \neg \psi(a_1, \dots, a_m)$ is similar.

LEMMA 2.2. If **A** is a model of $T \cap \Pi_{n+1}$, $\overline{\mathbf{A}}$ its expansion to a model of \overline{T} , then $\mathbf{A} \in \mathcal{L}_T^n$ iff $\overline{\mathbf{A}} \in \mathcal{L}_{\overline{T}}$.

PROOF. Both implications follow from the previous lemma. However, the case of the implication (\Rightarrow) is a little bit less obvious. So let **A** be *n*-infinitely generic model (for the theory T). We show by induction on the complexity of the formulas (of the language \overline{L}) that for any formula $\phi(v_{i_1}, \ldots, v_{i_m})$ ($\phi(\overline{v})$ for short), $m \ge 0$, and all *m*-tuples (a_1, \ldots, a_m) of the elements from A the following holds: $\overline{\mathbf{A}} \models$ $\phi[a_1,\ldots,a_m]$ iff $\overline{\mathbf{A}} \models \phi(a_1,\ldots,a_m)$. Again, only the step $\phi(\overline{v}) \equiv \neg \psi(\overline{v})$ requires a word of explanation. It is obvious that $\overline{\mathbf{A}} \models \phi(\overline{a})$ implies $\overline{\mathbf{A}} \models \phi[\overline{a}]$. Thus let $\overline{\mathbf{A}} \models \neg \psi[\overline{a}]$ and let us suppose that $\overline{\mathbf{A}}$ does not infinitely force $\neg \psi(\overline{a})$. Of course, $\psi(\overline{v})$ is not a formula of the language L. Let $\chi(\overline{v})$ be a formula of the language L obtained from the formula $\neg \psi$ by substituting for the relation symbols $R_{\varphi,\overline{u}}$ and R_{θ} the corresponding formulas $\varphi(\overline{u})$ and sentences θ ; let us note (and in part repeat the facts) that (for a sentence θ of the language L) the sentences $\forall v R_{\theta}(v) \Leftrightarrow \exists v R_{\theta}(v)$ and $\forall v(R_{\theta}(v) \Leftrightarrow \theta)$ are the theorems of the theory \overline{T} . Clearly, $\overline{T} \vdash \neg \psi(\overline{v}) \Leftrightarrow \chi(\overline{v})$, thus $\overline{\mathbf{A}} \models \chi[\overline{a}]$, that is $\mathbf{A} \models \chi[\overline{a}]$. Since \mathbf{A} is an *n*-infinitely generic model it follows that $\mathbf{A} \models_n \chi(\overline{a})$, whence (by the previous lemma) $\overline{\mathbf{A}} \models \chi(\overline{a})$. Let $\overline{\mathbf{A}}_1$ be an infinitely generic model (of the theory \overline{T}) which is an extension of the model $\overline{\mathbf{A}}$ and which infinitely forces $\psi(\overline{a})$ (of course, $\overline{\mathbf{A}}_1$ infinitely forces $\chi[\overline{a}]$ as well). In the sequel we construct a chain of models $\overline{\mathbf{A}} = \overline{\mathbf{A}}_0 \leq \overline{\mathbf{A}}_1 \leq \cdots \leq \overline{\mathbf{A}}_{2k} \leq \overline{\mathbf{A}}_{2k+1} \leq \cdots$, where $\overline{\mathbf{A}}_{2k}$, $k = 0, 1, 2, \ldots$, are models of the theory \overline{T} while $\overline{\mathbf{A}}_{2k+1}$, $k = 0, 1, 2, \ldots$, are infinitely generic models (of the same theory). It is known that the (sub)chain $\overline{\mathbf{A}}_1 \leq \overline{\mathbf{A}}_3 \leq \cdots \leq \overline{\mathbf{A}}_{2k+1} \leq \cdots$ is an elementary chain as well as that its union $\overline{\mathbf{B}}$ is an infinitely generic model too. Whence $\overline{\mathbf{B}} \models \psi[\overline{a}] \wedge \chi[\overline{a}]$. On the other hand, $\overline{\mathbf{B}} = \bigcup_{k=0}^{\infty} \overline{\mathbf{A}}_{2k}$ is also a model of the theory \overline{T} . This is a consequence of the fact (proved in the previous lemma) that the chain $\mathbf{A}_0 \leq \mathbf{A}_2 \leq \cdots \leq \mathbf{A}_{2k} \leq \cdots$ is an *n*-elementary chain; thus \mathbf{B} (the restriction of the model $\overline{\mathbf{B}}$ to the language L) is an *n*-elementary extension of each model \mathbf{A}_{2k} and satisfies the theory $T \cap \prod_{n+1}$. But this gives $\overline{\mathbf{B}} \models \neg \psi(\overline{a}) \Leftrightarrow \chi(\overline{a})$, in contradiction to the satisfiability of $\psi(\overline{a})$ and $\chi(\overline{a})$ in $\overline{\mathbf{B}}$. We conclude that $\overline{\mathbf{A}}$ infinitely forces $\neg \psi(\overline{a})$.

COROLLARY 2.3. (1) The class of infinitely generic models of the theory \overline{T} is the class of expansions of the n-infinitely generic models of the theory T to the models of the theory \overline{T} ;

(2) If \overline{T}^F is the infinite forcing companion of the theory \overline{T} , then

$$T^{F_n} = \overline{T}^F \cap SENT(L)$$

PROOF. (1) We have just showed that the union of the chain of models of the theory \overline{T} is again a model of \overline{T} . Thus \overline{T} is Π_2 -axiomatizable, whence $\mathcal{L}_{\overline{T}}$ is a subclass of the class $\mu(\overline{T})$ (it is known that, in general, $\overline{T} \cap \Pi_2 \subseteq \overline{T}^F$). \Box

Let T be a theory of the language L and let us define recursively (and simultaneously) the sequences of languages L_k and theories T_k , $k \in \omega$, in the following way:

$$L_0 = L, \ T_0 = T,$$
$$L_{k+1} = \overline{L_k}, \ T_{k+1} = \overline{T_k};$$

It is assumed that the language L_{k+1} and the theory T_{k+1} are formed by extensions of L_k and T_k , respectively, in a way analogous to obtaining \overline{L} and \overline{T} (in the first lemma) from L and T.

The following theorem holds for the theory $T_{\omega} \stackrel{\text{def}}{=} \bigcup_{k \in \omega} T_k$ defined in the language $L_{\omega} \stackrel{\text{def}}{=} \bigcup_{k \in \omega} L_k$

THEOREM 2.4. (1) If **A** and **B** are models of the theory T_{ω} , then from $\mathbf{A} \leq \mathbf{B}$ follows $\mathbf{A} \prec_n \mathbf{B}$; (2) $\mathcal{L}_{T_{\omega}} = \mathcal{L}_{T_{\omega}}^n$; (3) $T_{\omega}^F = T_{\omega}^{F_n}$;

PROOF. (1) Let **A** be a submodel of **B**. If $\phi(\overline{a})$ is a Φ_n -sentence (of the language $L_{\omega}(A)$) which is true in **A** and k the least natural number such that $\phi(\overline{v})$ is a formula of the language L_k , then for the relation symbol $R_{\phi,\overline{v}}$ of the language L_{k+1} we have $\mathbf{A} \models R_{\phi,\overline{v}}[\overline{a}]$. Thus $\mathbf{B} \models R_{\phi,\overline{v}}[\overline{a}]$, but we have also $\mathbf{B} \models (R_{\phi,\overline{v}} \Leftrightarrow \phi)[\overline{a}]$, whence $\mathbf{B} \models \phi[\overline{a}]$.

(2) Clearly, because of (1) the infinite and *n*-infinite forcing relations coincide in the case of the class $\mu(T_{\omega})$.

References

- [1] C. C. Chang, H. J. Keisler, Model Theory, North-Holland, Amsterdam, London, 1973.
- M. Z. Grulović, On n-finite forcing, Review of Research, Faculty of Science, University of Novi Sad, Mathematics Series, 13 (1983), 405-421.
- [3] M. Z. Grulović, A Word on n-infinite forcing, Facta Universitatis, series: Mathematics and Informatics, University of Niš (to appear)
- [4] J. Hirschfeld, W. H. Wheeler, Forcing, Arithmetic, Division Rings, Lecture Notes in Mathematics 454, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [5] A. Robinson, Infinite Forcing in Model Theory, in: Proceedings of the Second Scandinavian Logic Symposium, Oslo 1970, North-Holland, Amsterdam, 1971, pp. 317-340.

Institut za matematiku Trg D. Obradovića 4 21000 Novi Sad Yugoslavia (Received 05 11 1999)

grulovic@unsim.ns.ac.yu