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Abstract. We introduce a logic with approximate reasoning as a modi�-
cation of the probability logic LPP introduced by Ra�skovi�c in [7]. The usual
probability logics have probabilistic quanti�ers, whereas we have probabili-
ty operators that behave like a kind of modal operators. The main improve-
ment here is a new axiom which ensures that probable premises will yield
a probable conclusion. Using techniques introduced in [6], a completeness
theorem is proved.

The problem of probabilistic inference, namely the problem how to describe
rules of inference which will, starting from probable premises, produce probable
conclusions, has been studied since the time of George Boole. We propose in
this paper, as a possible solution, a logic with probability operators built into the
syntax, which we call LPPA. Unlike some other approaches (cf. [9], [3] or [1]) where
probability appears in the semantics or meta-theory, here probability is a part of the
formal system itself. Namely, we introduce, as a part of the syntax, the operators
P�rA, with the intended meaning that the propositional formula A is true with
probability which is greater then or equal to r. The operators P�r behave like
modal operators except that nesting is not allowed. The relations of some similar
systems to modal logics, and in particular to the modal systemD, have been studied
in [5]. In this logic LPPA, due to the new axiom (A6), we will have the following
kind of probabilistic Modus Ponens: for every " > 0 there exists Æ > "=2 such that
for any two formulas � i �, P (�) � 1�Æ; P (�! �) � 1�Æ ` P (�) � 1�": Thus, we
may have a chain of probabilistic inferences with a controlled loss of certainty, and
so we might call this logic also \the logic of reliable reasoning". We de�ne models for
this logic, which are basically Kripke models with a probability measure, and prove
a completeness theorem. In contradiction to the usual probability logics, where
one has probabilistic quanti�cation over individuals, here probabilistic operators
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are interpreted as a kind of quanti�cation over possible worlds, which is closer to
the original idea of Boole.

Let A be a countable admissible set such that A � HC and ! 2 A (where HC
denotes the set of hereditarily �nite sets). We consider the reals of A to be the
Dedekind cuts of Q in A.

The propositional probabilistic logic LPPA is obtained by adding probability
operators of the form P�r, r 2 A\ [0; 1] to the language L of classical propositional
logic. Let LP = fA;B; . . . g be the set of all propositional formulas over the set
� = f p; q; . . . g of propositional letters, and let LPPA = f�; �; . . . g be the set of all
propositional probability formulas, i.e., LPPA is the least set X containing LP and
all P�rA, where A 2 LP and r 2 A \ [0; 1], and which is closed under negation (if
� 2 X rLP, then :� 2 X) and conjunction (if � � (X rLP)\A, then

V
� 2 X).

A weak LPPA{model is a measure space W = hW;S; �i, where W � P(�) is
a set of objects called worlds, S = f [A]W j A 2 LP g is an algebra of measurable
subsets [A]W = fw 2W j w j= A g of W called the spectrum of A and �:S ! [0; 1]
is a �nitely additive probability measure. An LPPA{model is a weak structureW =
hW;S; �i such that the following is true: For each " > 0 there is a Æ > "=2 such that
for each propositional formulas A;B, if �([A]W ) � 1� Æ and �([A! B]W ) � 1� Æ,
then �([B]W ) � 1� ". We point out that an LPPA{model is a weak LPPA{model
in which the probability analogue of Modus Ponens holds uniformly in the classical
propositional formulas A, B; that is, given ", the same Æ > "=2 works for all A and
B.

We de�ne the satisfaction relation in the following way:

(a) If A 2 LP, then W j= A i� (8w 2W )w j= A, i.e., [A]W =W .

(b) W j= P�rA i� �([A]W ) � r.

(c) If � 2 LPPArLP, then W j= :� i� it is not W j= �.

(d) If � � (LPPArLP) \ A, then W j=
V
� i� (8� 2 �)W j= �.

The axioms for LPPA are all the instances of the axioms of classical proposi-
tional logic and the following ones (we use the usual abbreviations for the classical
connectives and also denote :P�rA by P<rA, P�1�r:A by P�rA and :P�rA by
P>rA):

(A1) P�0A;
(A2) P�rA! P<sA, s > r;
(A3) P<rA! P�rA;
(A4) (P�rA ^ P�sB ^ P�1(:A _ :B))! P�minf1;r+sg(A _ B);
(A5) (P�rA ^ P<sB)! P<r+s(A _ B), r + s � 1;
(A6)

V

"2Q+

W

Æ2Q+

Æ>"=2

V

A;B2�

((P�1�ÆA ^ P�1�Æ(A! B))! P�1�"B),

where � 2 A and � � LP.

The last axiom expresses the natural probabilistic analogue of the classical
notion of validity, i.e., that the high probability of the premises guarantees the
high probability of the conclusions.

The inference rules for LPPA are:

(R1) Modus Ponens : From � and �! � infer �;
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(R2) Probability generalization: If A 2 LP, then from A infer P�1A;
(R3) Archimedean rule: From �! P�r�1=nA, for every positive integer n � 1=r,

infer �! P�rA.

The notions of proof, theorem, etc. are de�ned in the usual way. By induction
on the length of inference we prove the following kind of deduction theorem: If T is
a set of propositional probability formulas such that T [f'g `  , then T ` '!  ,
where either ' and  are both from LP or both from LPPArLP.

We use a Henkin{type procedure as in [7] to prove a completeness theorem
with respect to weak models, i.e., we prove that a set T of formulas of LPPA, such
that T is �1 on A, is consistent if and only if T has a weak LPPA{model. The
soundness part holds because all the axioms represent known properties of �nitely
additive probability measures. Let T be a consistent set of formulas such that T is
�1 on A. We construct a weak LPPA{model of T .

Sketch of the construction.
Let st(T ) be a set of all propositional consequences of T and let �0; �1; . . .

be an enumeration of all probability propositional formulas from LPPArLP. Let
T0 = T [ st(T ) [ fP�1A j A 2 st(T ) g � T1 � T2 . . . be a sequence of consistent
sets of LPPA{formulas such that:

(1) If Ti [ f�i g is consistent, then Ti+1 = Ti [ f�i g;
(2) If Ti [ f�i g is not consistent and �i is �! P�rA, then

Ti+1 = Ti[f�! :P�r�1=nA g, for some n � 1=r, so that Ti+1 is consistent;
(3) Otherwise, Ti+1 = Ti.

Let T1 =
S
i Ti, W = fw j w j= st(T ) g and �([A]W ) = supf r j P�rA 2 T1 g.

By reasoning in the usual way, we can show that S = f [A]W j A 2 LP g is an
algebra of measurable subsets of W . It follows from the axioms of probability that
� is a �nitely additive probability measure. By induction on the complexity of
formulas, we prove that for each formula �, hW;S; �i j= � if and only if � 2 T1.

Finally, we use the weak LPPA{model to construct an LPPA{model by extend-
ing the axiom (A6) to all propositional formulas (see [6] or [8]).

Theorem 1. Let T be a set of formulas of LPPA such that T is �1 on A and

consistent with the axioms of LPPA. Then there is a LPPA{model in which every

formula in T is valid.

Proof. Let W = hW;S; �i be a weak LPPA{model of T .
We introduce a languageM with three kinds of variables: X;Y; Z; . . . variables

for sets of worlds, x; y; z; . . . variables for worlds and r; s; t; . . . variables for reals
from [0; 1]. Predicates of M are E(x;X), �(X; r), Q(r) (with meaning x 2 X ,
�(X) = r and r 2 Q \ [0; 1] respectively) and � for reals. Functional symbols are
+ and � for reals. Constant symbols are C� for each formula �.

Let S be the following �rst-order theory of MA:

(a) Axiom of extensionality.

(8x)(E(x;X)$ E(x; Y ))$ X = Y .
(b) Axioms of �nite additive probability measure.

(1) (8X)(91r)�(X; r).
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(2) (8X)(8Y )((�(X; r) ^ �(Y; s) ^ :(9x)(E(x;X) ^ E(x; Y )))!
! (9Z)((8x)(E(x; Z) $ E(x;X) _ E(x; Y )) ^ �(Z; r + s))).

(c) Axioms of satisfaction.

(1) (8x)(E(x;C:�)$ :E(x;C�)).
(2) (8x)(E(x;C^�)$

V
�2�E(x;C�)).

(d) Axiom of approximate reasoning.

(8" > 0)(9Æ > "=2)(8X;Y )(9Z)((8x)(E(x; Z) $ :E(x;X) ^ E(x; Y ))
((Q(") ^Q(Æ) ^ �(X) � 1� Æ ^ �(Z) � 1� Æ)! �(Y ) � 1� ").

(e) Axioms for an Archimedean �eld (for real numbers).
(f) Axioms of realizability.

(8x)E(x;C�), where � is an axiom in LPPA or a formula in T .

Let a standard structure for MA be the structure

B = hW;B; F;EB ; �B; QB;�;+; �; AB'; ri;

where B � P(W ), F = F 0 \ [0; 1], F 0 � R a �eld, EB � W � B, �B:B ! F ,
CB� 2 B.

A weak LPPA{model hW;S; �i can be transformed to a standard structure by
taking CBA = fw 2W j w j= A g and B = fCBA j A 2 LP g.

The theory S is �1 de�nable over A and S0 � S, S0 2 A has a standard model
because the axiom (A6) holds in the weak LPPA{model. It follows by means of
the Barwise Compactness Theorem (see [2]) that S has a standard model B. This
standard model can be transformed to an LPPA{model of T by taking [A]W =
fx 2 W j E(x;CA) g and S = f [A]W j A 2 LP g. This completes the proof. �

It has been shown in [6], though for a di�erent probability logic, that a con-
sistent theory T exists which is not �1 de�nable and for which the completeness
theorem does not hold. Therefore, we may expect �1 de�nability to be a necessary
condition for completeness. Finally, we draw attention to the following form of
probabilistic inference.

Theorem 2. If A1; . . . ; An ` B, then for each " > 0 there is Æ > "=2m and

m 2 ! such that

(1) P�1�ÆA1; . . . ; P�1�ÆAn ` P�1�"B:

Proof. Let m be the number of all occurrence of the Modus Ponens rule in the
inference A1; . . . ; An ` B. By using the axiom (A6), we obtain (1).
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