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Abstract. We present a new �rst-order autoregressive time series model (so-
called NUAR(1) model) for continuous uniform (0; 1) variables, given by

Xn =

(
�Xn�1; w.p. �;

�Xn�1 + "n; w.p. 1� �;

where 0 < �; � < 1, (1��)=� 2 f1; 2; : : : g and f"ng is the innovation sequence
of independent and identically distributed random variables, such that eachXn
has continuous uniform (0; 1) distribution. The distribution of the innovation
sequence and autoregressive structure of NUAR(1) model are discussed. It is
shown that this model is partially time-reversible if the parameters are equal.
We give also the estimates of the parameters of the model.

1. Introduction

In recent years there has been an increasing interest in constructing models
for non-Gaussian continuous variate time series. For the continuous case, some
models are: the class of exponential and Gamma (Gaver and Lewis [3]; Lawrance
[4]; Lawrance and Lewis [7]; Lewis, McKenzie and Hugus [9]; Mali�si�c [10]; Sim
[15]), Beta (McKenzie [11]), Weibull (Sim [14]), logistic (Sim [16]) and uniform
models (Lawrance [6] and Chernick [2]).

Chernick in [2] has shown that the usual linear �rst-order autoregressive equa-
tion, Xn = �Xn�1 + "n, 0 < � < 1, would yield continuous uniform (0; 1) marginal
distribution if the independent and identically distributed (i.i.d.) innovation se-
quence f"ng has the marginal discrete uniform distribution�

0 1=k : : : (k � 1)=k
1=k 1=k : : : 1=k

�
;(1.1)

1991 Mathematics Subject Classi�cation. Primary 62M10.
Key words and phrases. Autoregressive process, continuous uniform (0,1) distribution, time

series, estimation, random coeÆcients, ordinary and reversed residuals.
Partially supported by GRANT of RFNS through Math. Ins. SANU.

145



146 RISTI�C AND POPOVI�C

where k 2 f2; 3; : : :g and � = 1=k. This uniform model (so-called UAR(1)) has
the autocorrelations of order r, �(r) = Corr(Xn; Xn�r), given by �r. If � = �1=k,
there are similar results for negatively autocorrelated models.

The joint distribution of Xn and Xn�1 is given by

�Xn;Xn�1(s; t) =
1� e�(�s+t)

�s+ t
�
k�1X
j=0

e�js=k :(1.2)

Since (1.2) is not symmetric in s and t, this uniform model is not time-reversible.
But, using the de�nition of "n given at (1.1) and the independence of Xn�1 and
"n, we obtain P (Xn > Xn�1) = 1=2. This means that UAR(1) is partially time-
reversible.

In this paper, we present a new stationary �rst-order autoregressive model
(NUAR(1)), with marginally continuous uniform (0; 1) distribution, given by

Xn =

(
�Xn�1; w.p. �

�Xn�1 + "n; w.p. 1� �;
(1.3)

where 0 < �; � < 1, (1 � �)=� 2 f1; 2; : : :g and f"ng is the innovation sequence
of i.i.d. random variables, with a distribution such that the Xn has continuous
uniform (0; 1) distribution.

2. Construction of the model and the autocorrelation structure

Let Z = f0;�1;�2; : : :g and fXn; n 2 Zg be the stationary sequence of
random variables de�ned by the equation (1.3), where 0 < �; � < 1 and f"ng is the
sequence of i.i.d. random variables, with a distribution such that the Xn has the
continuous uniform (0; 1) distribution. Also, we suppose that fXng and f"ng are
semi-independent, i.e., that Xm and "n are independent if m < n.

Let the Laplace{Stieltjes transforms of the Xn and "n are denoted by �X(s)
and �"(s), respectively. Then by the independence of Xn�1 and "n,

�"(s) =
�X(s)� ��X(�s)

(1� �)�X (�s)
:

Since �X(s) = (1� e�s) =s, we obtain

�"(s) =
� (e��s � e�s)

(1� �) (1� e��s)
=

�e��s
�
1� e�(1��)s

�
(1� �) (1� e��s)

:

Let k � (1� �)=� 2 f1; 2; : : : g. Then

�"(s) =
�

1� �

�
e��s + e�(�+�)s + � � �+ e�(�+(k�1)�)s

�
:

This implies that "n has the discrete distribution0
@ � �+ � �+ 2� : : : �+ (k � 2)� �+ (k � 1)�

�

1� �

�

1� �

�

1� �
: : :

�

1� �

�

1� �

1
A :(2.1)

Thus, we have



A NEW UNIFORM AR(1) TIME SERIES MODEL 147

Theorem 2.1. Let f"ng be an i.i.d. sequence of random variables with distri-
bution (2:1). If 0 < �; � < 1 and k � (1 � �)=� 2 f1; 2; : : :g, then relation (1:3)
de�nes a stationary time series of (marginally) uniformly (0; 1) distributed random
variables.

Corollary 2.1. Under the conditions of the Theorem 2:1, NUAR(1) model
has:

(i) the real valued absolutely summable autocovariance function


(k) � Cov(Xn; Xn�k) = �jkj=12; k 2 Z;

(ii) the real valued spectral density

f(�) � 1

�

1X
k=�1

e�ik�
(k) =
1

24�

1� �2

1� 2� cos�+ �2
; 8� 2 [��; �];

(iii) the real valued absolutely summable and positive autocorrelation function

�(k) � Corr(Xn; Xn�k) = �jkj; k 2 Z;

where � = �2 + (1� �)�.

If k = 1, then

�(1) = �2 + (1� �)�:(2.2)

By using the de�nition of "n given at (2.1) and the independence of Xn�1 and "n,
the probabilities P (Xn > Xn�1) are easily calculated:

P (Xn > Xn�1) =
(1� �)(1 + �� �)

2(1� �)
:(2.3)

Probability that Xn is greater than Xn�1 for the NUAR(1) model is a function
of � and �. The value of 1=2 holds for the case � = �. In this case, � takes the
values 1=m, where m 2 f2; 3; : : :g and we obtain UAR(1) model.

Note that we can estimate parameters � and � using the equations (2.2) and
(2.3). Namely,

�̂ = 2P̂ � 1 + �̂=2P̂ ;

�̂2 + (1� �̂)�̂ = �̂;

where �̂ and P̂ are the estimates of �(1) and P (Xn > Xn�1), respectively, given by

�̂ =

1

N � 1

NP
i=2

�
Xi � �XN

� �
Xi�1 � �XN

�
1

N

NP
i=1

�
Xi � �XN

�2 ;

P̂ =
1

N � 1

NX
i=2

I(Xi > Xi�1);
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where

I(Xi > Xi�1) =

(
1; Xi > Xi�1;

0; otherwise.

and (X1; X2; : : : ; XN ) are available observations. Let �1 and �2 be �̂ �
p
D=2 and

�̂ +
p
D=2; respectively, where D = �̂2 � 4�̂ + 4�̂.

Note also that it is possible to be D < 0, and in that case we cannot estimate
parameter � (see for instance, Table 2 (sample size N = 100) or Table 3 (sample

sizes N = 100, N = 50000 and N = 100000)) using this method. But, if �̂ � �̂, its

will be �̂ = �2. If �̂ > �̂ and D � 0, then � will be estimated by that (1 � �i)=�̂
which is nearer to some positive integer.

The method which can be always used for estimating � is the following one.
Since Xn has, marginally, the continuous uniform (0; 1) distribution, we obtain

that �Xn�1 < � < �+j�+�Xn�1, for all j 2 f0; 1; : : : ; lg, where l = (1����)=�,
and for all n 2 f2; 3; : : : ; Ng. This implies that � can be estimated by

�� = min
2�n�N

Xn

Xn�1
:

Some simulations for both methods will follow now.

Sample size �̂ P̂ �̂ �̂ ��

100 0.2201 0.3939 0.0102 0.4633 0.4400
500 0.2889 0.3687 0.0358 0.5213 0.4400
1000 0.2524 0.3844 0.0275 0.4882 0.4400
5000 0.1957 0.4003 �0:0047 0.4453 0.4400
10000 0.1983 0.3989 �0:0048 0.4483 0.4400
50000 0.1985 0.4030 0.0057 0.4420 0.4400
100000 0.1983 0.4047 0.0094 0.4393 0.4400

Table 1. The exact values of the parameters are � = 0:01, � =
0:44, �(1) = 0:1992, and P (Xn > Xn�1) = 0:4044

3. The joint distribution of Xn and Xn�1

Let us now discuss the joint distribution of Xn and Xn�1. Let �Xn;Xn�1(s; t)
denote the joint Laplace-Stieltjes transform of the variables Xn and Xn�1. Then
we have

�Xn;Xn�1(s; t) = E (expf�sXn � tXn�1g)
= ��Xn�1(�s+ t) + (1� �)�Xn�1(�s+ t)�"n(s)

= �
1� e�(�s+t)

�s+ t
+ �

1� e�(�s+t)

�s+ t

1����=�X
j=0

e�(�+j�)s:
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Sample size �̂ P̂ �̂ �̂ ��

100 0.3125 0.5354 0.3579 || 0.1000
500 0.4013 0.5351 0.4405 0.1240 0.1000
1000 0.3796 0.5375 0.4229 0.1742 0.1000
5000 0.4183 0.5373 0.4587 0.1188 0.1000
10000 0.4251 0.5384 0.4661 0.1175 0.1000
50000 0.4066 0.5299 0.4401 0.0979 0.1000
100000 0.4081 0.5319 0.4437 0.1049 0.1000

Table 2. The exact values of the parameters are � = 0:45, � =
0:1, �(1) = 0:415, and P (Xn > Xn�1) = 0:5318

Sample size �̂ P̂ �̂ �̂ ��

100 0.4263 0.7273 0.6056 || 0.3500
500 0.6250 0.6894 0.7280 0.1923 0.3500
1000 0.5967 0.6787 0.7029 0.2199 0.3500
5000 0.5630 0.6581 0.6680 0.2531 0.3500
10000 0.5622 0.6517 0.6641 0.4235 0.3500
50000 0.5421 0.6524 0.6491 || 0.3500
100000 0.5448 0.6534 0.6517 || 0.3500

Table 3. The exact values of the parameters are � = 0:65, � =
0:35, �(1) = 0:545, and P (Xn > Xn�1) = 0:65

We note that �Xn;Xn�1(s; t) is not symmetric in s and t. This simply means
that the NUAR(1) process is not time-reversible, as it is the Gaussian AR(1) pro-
cess.

The corresponding joint p.d.f. of Xn and Xn�1 is

f�(xn; xn�1) = f(xn�1)

�
�Æ(xn � �xn�1) + �

(1����)=�X
j=0

Æ(xn � �xn�1 � �� j�)

�
;

where Æ(x) is the discrete Dirac delta function and

f(x) =

(
1; x 2 (0; 1)

0; otherwise:

Now, the p.d.f. of observations (X1; : : : ; Xn) is

f�(x1; : : : ; xn) = f(x1)

nY
i=2

�
�Æ(xi � �xi�1) + �

(1����)=�X
j=0

Æ(xi � �xi�1 � �� j�)

�
:
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The conditional mean and variance of Xn given Xn�1 = x are respectively

E(XnjXn�1 = x) =
�
�2 + (1� �)�

�
x+ (1� �)(1 + �� �)=2;

V ar(XnjXn�1 = x) = �(1� �)(� � �)2x2 � �(1� �)(� � �)(1 + �� �)x

+
(1� �)(1 + �+ 7�2 + 3�3 � 6�� + 3��2 � 6�2� � 4�2 + 3�3)

12
:

The NUAR(1) model has some properties that follows directly from the joint
distribution of Xn and Xn�1. If we consider the di�erences Dn = Xn�1�Xn, since
the Laplace-Stieltjes transforms of the variables Dn are

�Dn(s) = �Xn;Xn�1(�s; s)

=
�

1� �

1� e�(1��)s

s
+

�

1� �

1� e�(1��)s

s

(1����)=�X
j=0

e(�+j�)s;

we obtain that each Dn has the p.d.f. given by

h(x) =
�

1� �
f1��(x) +

�

1� �

(1����)=�X
j=0

f1��(x+ �+ j�);

where

fa(x) =

(
1; 0 < x < a

0; otherwise:

The second property is that each sum Sn = Xn+Xn�1 has the p.d.f. given by

g(x) =
�

1 + �
f1+�(x) +

�

1 + �

(1����)=�X
j=0

f1+�(x � �� j�):

This result follows from the joint distribution, i.e., from �Xn;Xn�1(s; t) for
t = s.

4. Random coeÆcient representation and the residuals theorem

Random coeÆcient representation gives linear form to the nonlinear model
(1.3).

Theorem 4.1. Let k = (1� �)=�. The stochastic di�erence equation

Xn = UnXn�1 + Vn(4.1)

will represent autoregressive time series NUAR(1) i� the conditions (i) � (iv) are
satis�ed:

(i) fXn; n 2 Zg is the stationary sequence of random variables with contin-
uous uniform (0; 1) marginal distribution;

(ii) fUn; n 2 Zg and fVn; n 2 Zg are the sequences of independent random
variables with the following marginal distributions:

Un :

�
� �
� 1� �

�
;
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Vn :

�
0 � �+ � : : : �+ (k � 2)� �+ (k � 1)�
� � � : : : � �

�
;

for all n;
(iii) f(Un; Vn); n 2 Zg is the sequence of the i.i.d. random vectors with the

following distribution:

UnnVn 0 � �+ � : : : �+ (k � 2)� �+ (k � 1)�
� � 0 0 : : : 0 0

� 0 � � : : : � �

for all n;
(iv) Xm and (Un; Vn) are independent i� m < n;

where � and � satis�es the conditions of Theorem 2:1.

There are many advantages of the random coeÆcient representation of NUAR(1),
but we shall discuss only the invertibility of the process.

Theorem 4.2. Under the conditions of Theorem 4:1, di�erence equation (4:1),
has unique �n-measurable, stationary, strictly stationary and ergodic solution of
the form

Xn =
1X
i=1

�i�1Y
j=0

Un�j

�
Vn�i + Vn;

where �n is the �-�eld generated by the set of random vectors f(Um; Vm); m � ng.

Proof. The proof is almost identical to the proof of Theorem in [13]. �

The ordinary and reversed residuals for RCA(1) model Xn = UnXn�1 + Vn,
n 2 Z, are de�ned by Lawrance and Lewis [8] as

Rn = (Xn � �)� �(Xn�1 � �); RRn = (Xn � �)� �(Xn+1 � �);(4.2)

where � = E(Xn) and � = E(Un). For NUAR(1) model, we have � = 1=2 and
� = �2 + (1� �)�.

We can show now that these residuals are uncorrelated for NUAR(1) model.

Theorem 4.3. The residuals (Rn; Rn�k) and (RRn; RRn�k), given by (4:2),
are pairs of uncorrelated random variables for k = �1;�2; : : : .

Proof. First, consider the ordinary residuals. Since E(Rn) = E(Rn�k) = 0,
it is suÆcient to prove that E(RnRn�k) = 0. After some calculations we obtain

E(RnRn�k) = Cov(Xn; Xn�k)� �Cov(Xn; Xn�k�1)� �Cov(Xn�1; Xn�k) +

+ �2Cov(Xn�1; Xn�k�1)

= 1=12
�
�jkj � � � �jk�1j � � � �jk+1j + �2 � �jkj

�
= 0; k = �1;�2; : : : :

In a similar way it may be seen that Corr(RRn; RRn�k) = 0 for k = �1;�2; : : : . �
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The cross-correlation function of ordinary and reversed residuals has been ob-
tained for RCA(1) by Lawrance and Lewis [8] as

Corr(Rn; RRn�k) =

8><
>:
(1� �2)�jkj; k � 0

��; k = 1

0; k � 2:
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