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ABSTRACT. We give a complete classification of all non-planar spacelike
and timelike curves in Minkowski 3—-space E‘;’ , which are of 3-type.

1. Introduction

The notion of submanifolds of finite type was introduced by Chen in [2]. A
submanifold M in the Euclidean space E™ is said to be of finite type if each com-
ponent of its position vector field x can be written as a finite sum of eigenfunctions
of the Laplacian A of M. This means that

k
(11) X:X0+Z Xt, AXt :)\txt,

t=1

where 0 = A\g < A\; < -+ < A are mutually different eigenvalues of A. When M
is compact, the component xq in (1.1) is a constant vector. However, when M is
non-compact, the component xq is not necessary a constant vector. In particular,
a submanifold M is said to be of k-type if all eigenvalues A1, Ao, - . ., A\ are different
from zero. If one of the \;’s is equal to zero (i = 1,2,...,k), M is said to be of null
k-type.

Finite type curves in Euclidean space E™ were studied intensively in [2], [3]
and [4]. The classification of all 2-type curves in E™ is given in [6].

2. Preliminaries

Let a be a curve in E parameterized by a pseudo-arclength parameter s.
Then the Laplace operator A of « is given by A = + dd—;. Its eigenfunctions are
s, cos(as), sin(as), cosh(as) and sinh(as). Following the definition of Chen, every
finite type curve a in EJ' can be written as

1991 Mathematics Subject Classification. Primary 53C50; Secondary 53C40..



118 SUCUROVIC

k1
a(s) = ao + bos + Z (a¢ cos(pes) + by sin(pes))
t=1
ko
+ 3 (et cosh(qrs) + ds sinh(gss)),
t=1
where ag, by, a;, b;,cj,d; € R™ are constants, ¢ = 1,...,k;, 7 =1,...,ky and 0 <

pr < - < pry, 0 <@ < -+ < qg, are positive integers (frequency numbers of
the curve). For a finite type curve «, frequency ratio is the ratio of its frequency
numbers.

In particular, a curve « in EJ is said to be of k-type if there are k£ mutually
different eigenvalues Ay, ..., A\ of A and they are all different from zero. If one of
the \;’s (i =1,...,k) is equal to zero, « is said to be of null k-type.

Recall that an arbitrary vector v in E}* can have one of three causal characters:
it can be spacelike if g(v,v) > 0 or v = 0, timelike if g(v,v) < 0 and null if
g(v,v) =0 and v # 0. The norm of a vector v is given by ||v|| = /|g(v,v)].

The unit vectors, orthogonality and orthonormality are defined as in the Eu-
clidean spaces. An arbitrary curve a(s) in E} can localy be spacelike, timelike or
null, if respectively all of its velocity vectors ¢ (s) are spacelike, timelike or null.

Curves of finite type in Minkowski space—time have been investigated in [5] and
[7]. The following classification theorem is obtained in [7].

THEOREM 2.1. Every curve of finite type in Minkowski plane E? is of 1-type
and hence an open part of an orthogonal hyperbola or an open part of a straight
line.

THEOREM 2.2. A planar 2-type curve, lying in an isotropic plane of E} is a
null 2-type spacelike curve.

THEOREM 2.3. Up to rigid motions of E, a non-planar curve « in E3} is a null
2-type curve if and only if « is a part of one of the following curves :
(i) a(s) = (as,bcoss,bsins), a,b € Ro,|a| # |b];
(ii) a(s) = (acoshs,asinhs,bs), a,b€ Ry,|a| # |b|;
(iii) a(s) = (asinhs,acoshs,bs), a,b€ Ry, |a| # |b|;

THEOREM 2.4. Up to rigid motions of E¥, a non-planar curve o in E} is a
2-type curve with both eigenvalues different from zero if and only if « is a part of
one of the following curves:

(i) a(s) = (psins,ecoss + acos3s,esins + asin3s), p? — 12ae = 0,
(i) a(s) = (acoshs+ Absinhs — 4ce3**, —bcosh s — Aa sinh s + 4ce?* s 2de?*),
—6(a—0b)c=0, e {-1,1},
) a(s) = (ae® + bcosh 3s, ae® + bsinh 3s,ce*), ¢? + 6ab = 0,
iv) a(s) = (ecosh s + acosh 3s, esinh s + asinh 3s, pcosh s), p? + 12ae = 0,
(v) a(s) = (ecosh s + acosh 3s, esinh s + asinh 3s, psinh s), p® + 12ae = 0,
) a(s) = (ae® + bsinh 3s,ae® + bcosh 3s, ce™*), ¢ — 6ab = 0,

IS
)
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(vii) a(s) = (esinhs + asinh 3s, e cosh s + a cosh 3s, p cosh s), p? — 12ae = 0,
(viii) a(s) = (esinh s + asinh 3s, € cosh s + a cosh 3s, psinh s), p> — 12ae = 0,
where a,b,c,d, €, p € Ry.

All closed 3-type curves in Euclidean 3-space E? were classified by Blair in [1].
He obtained the following classification theorem.

THEOREM 2.5. A closed 3-type curve in E? is either a curve which lies on a
quadric of revolution or a curve whose frequency ratio is 1 : 3 : 7 and the curve
belongs to a 3-parameter family of such curves, or the frequency ratiois 1:3 :5
and the curve belongs to a 5-parameter family of such curves. Some curves with
frequency ratio1:3:5 or 1:3: 7 also lie on quadrics of revolution.

3. A classification of all non-planar 3-type curves in E}

All planar 3-type curves in E} have been classified in the part I of this paper
([8]). Now we shall classify all non-planar spacelike and timelike 3-type curves
in this space. For a non-planar 3-type curve a in E} all three eigenvalues of its
Laplacian can be different from zero, or two of them can be different from zero and
one of them equal to zero. In the second case, « is said to be of a null 3-type.

THEOREM 3.1. A non-planar spacelike or timelike curve a in E} is a null 3-
type curve if and only if its frequency ratio is 1 : 2 and the curve belongs to one
of three a 3-parameter families of such curves, or to one of three a 4-parameter
families of such curves.

Proof. Let a(s) be a non-planar null 3-type spacelike or timelike curve in E?,
parameterized by a pseudo-arclength parameter s. Then a can be written as:
(i) a(s) = a+ bs + ccos(ps) + dsin(ps) + e cosh(ts) + fsinh(ts),
(il) a(s) = a + bs + ccos(ps) + dsin(ps) + e cos(ts) + fsin(ts),
(iii) a(s) = a+ bs + ccosh(ps) + dsinh(ps) + e cosh(ts) + fsinh(ts),
where 0 < p < t and a,b,c,d,e,f € R®. Let b,c,d,e,f € R? be of the form
b = (b1,b2,b3), ¢c = (c1,c2,¢3), and so on. We may take up to a translation that
a = (0,0,0). In the sequel, we shall consider the cases (i), (ii) and (iii) separately.
In all of them, we may take p = 1.
CASE (i). Since the functions sinz, cosx, sinhz, cosh z are linearly indepen-
dent, from the condition g(&,d&) = £1, we get the following system of equations:

(1) g(b,0) + Z(g(e,¢) + g(d, )T+ E(g(f. f) — gle,e)) = %1,
(2) g9(d,d) — g(e,c) =0,
(3) gle,e) +g(f, f) =0,
(4) g(b,c) = g(b,d) = g(b,e) = g(b, f) =0,
(5) g(c,d) = g(c,e) = g(c, f) =0,
(6) g(d,e) = g(d, f) =0,
(7) gle, ) =0.
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If vectors ¢, d, e and f are different from zero and not null vectors, then equations
(2),(3),(5) and (6) imply that there are three mutually orthogonal spacelike vectors
in B¢, which is impossible. So, there is a vector, say e, with the property g(e,e) = 0.
Now, equations (3) and (7) imply f = Ae, for some A € R. Taking e = (ey,ey,0),
e1 # 0, equations (4), (5) and (6) imply b = (by,b1,b3), ¢ = (c1,c1,¢3), d =
(d1,dy,ds), while equations (2) and (5) imply ¢ = (¢1,¢1,0), d = (di1,d1,0). Next
(1) implies b = (b1, b1, £1) and consequently « lies in the plane x; = x5, which is a
contradiction. Therefore, curve « of the form (i) does not exist.

CASE (ii). Since g(&, &) = £1 and 0 < p < t, we distinguish the subcases:

(ii.1) 2p=t—p; (ii.2) 2p=t; (ii.3) 2p#t—p,t.
In subcases (ii.1) and (ii.3), we obtain a contradiction.

(ii.2) 2p =t. Then the corresponding system reads:

2

(1) 9(6,5) + Z(g(c,¢) + g(d, d)) + Z(gle,e) + g(f, ) =
2) 2 (g(d, d) — gle,e)) + 2tg(b, f) = 0,
(3) g(f,f) —gle,e) =0,
(4) ~2pg(b, ¢) + ptg(c, f) — g(d,e)) =0,
(5) 2pg(b, d) + pt(g(c,e) + g(d, £)) = 0,
(6) ~2t9(b, e) — pPg(c,d) = 0,
(7) 9(d, ) = g(e,e) = 0,
(8) g(e, ) +g(d,e) =0,
(9) g(e, f) =0.

Now the equations (3) and (9) imply two possibilities: (ii.2.1) g(e,e) = g(f, f) =0,
gle, ) =0; (i.2.2) g(e,e) =g(f, f) > 0, g(e, f) = 0. Again, we shall discuss these
subcases separately.
(ii.2.1) In this subcase, we may take e = (e1,e1,0), e; # 0, so it follows that
f = Xe, A € R. We may take f = (f1, f1,0), fi € R. The equations (7) and (8)
now imply g(d,e) = g(c,e) = 0, so that d = (dy,d1,ds), ¢ = (¢1,¢1,¢3). Then the
equation of the curve a reads:
a(s) = (b1s + ¢1 cos(ps) + dy sin(ps) + eq cos(2ps) + f1 sin(2ps),
bas + ¢1 cos(ps) + dy sin(ps) + ey cos(2ps) + f1 sin(2ps),
bss + c3 cos(ps) + ds sin(ps)),
where by # by and by, by, b3, c1, 3, dy, ds3, e1, fi satisfy the conditions:
(1) —by + b3 + b3 + 5 (3 +d3) = +£1,
( ) d3—63 +8f1(b2—b1):0,
(4) —b101 + b261 + b303 = 0,
(5) —bidy + bady + bzds = 0,
( ) C3d3 + 461(b2 — bl) = 0
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Next, we shall regard the numbers b, b2, e; and f; as the parameters of a 4-
parameter family of curves. The equation (6) implies that

_ 461 (bl - bg)

d3 ’ d3 7é 07

C3

which together with the equation (2) gives
ds 4 8f1(by — by )d2 — 16€2(by — b2)? = 0.
If we put d3 = t, we get that

t=4(by —b2)(fr £/ f7 +ei)-

Thus we obtain that

ds :iQ\/(bl—bQ)(fl-F\/flz-i-@%), (b1 >b2),

or else
ds = ﬁ:Q\/(bl —bo)(fi =/ fE+€D), (b1 <Dbo).
Therefore,
o = 2e1 (b1 — b2) (> b),
/(b — bo)(fi + VT F )
or else

o — 261(b1 —bg)
jE\/(bl —b2)(fi =/ 7 +el)

The equation (1) implies that

s (bl < bg)

b3 =bi — b5 — (3 +d3) £1,
and the equations (4) and (5) give

o bzcs dv — bzds
T by — by YT b = by

C1

Therefore, we have expressed the solution b3, ¢1, dy, c3, d3 of the above system
of equations as the function of the parameters by, bs, e; and fi;. Consequently, «
belongs to a 4-parameter family of curves with frequency ratiop: ¢t =1: 2.

(ii.2.2) In this subcase, we may take e = (0,e2,0), f = (0,0,e2), ea # 0.
Equations (7) and (8) imply ¢ = (¢, ¢2,¢3) and d = (di, —c3, ¢2), so that the curve
a has the form

a(s) = (bis + ¢1 cos(ps) + dy sin(ps), bas + ¢o cos(ps) — c3 sin(ps) + ea cos(2ps),
bss + c3 cos(ps) + ca sin(ps) + ez sin(2ps)),
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where by, bs, b3, c1, c2, c3, di, es satisfy the following equations:

(1) —b7 + b3 + b3 + $(2¢3 + 2c3 — & —d?) +4e5 = +1,
(2) —d} +8bzes =0,
(4) bicr — b202 — b3eg + 2c3e =0,
(5) —bid; — bacs + bzca + 2c0e9 =0,
(6) c1d; — 4bses = 0.

Therefore, a belongs to a 3-parameter family of curves with frequency ratio p: t =
1:2.

CAsE (iii) Since g(é&, &) = £1 and 0 < p < t, we shall distinguish the subcases:
(iii.1) 2p=t—p; (ii.2) 2p=+¢; (iii.3) 2p #t —p,t. It is easy to see that in
subcases (iii.1) and (iii.3) we get a contradiction.

(iii.2) 2p =t. Then the corresponding system reads:

2

(1) g(b,b) + & (g(d, d) — g(e,¢) + 5 (g(f, ) — gle,e) = £1,
2) 2 (g(c,c) + g(d, d)) + 2tg(b, f) = 0,
(3) gle,e) +g(f,f) =0,
(4) 2pg(b, c) + pt(g(d,e) — g(c, f)) =0,
(5) 2pg(b, d) + pt(g(d, f) — glc,e)) =0,
(6) 2tg(b,e) + p°g(c,d) = 0,
(7) glc,e) +g(d, f) =0,
(8) gle, f) +g(d,e) =0,
9) gle, f) = 0.

Equations (3) and (9) imply three possibilities:
(iii.2.1) g(e,e) =g(f,f) =0, gle,f)=0;
(11122) g(ev 6) = _g(f7 f) >0, g(ea f) =0;
(iii.2.3) g(e,e) = —g(f,f) <0, g(e, f) = 0;
We shall again discuss all these subcases separately.
(iii.2.1) In this subcase, we may take e = (e1,e1,0), e1 # 0, f = Xe, X €
R. Equations (7) and (8) imply (1 — A?)g(d,e) = 0 and we shall distinguish the
subcases: (iii.2.1.1) g(d,e) = 0, A2 # 1; (iii.2.1.2) A2 =1, g(d,e) # 0.
(iii.2.1.1) From g(d,e) = 0, it follows that d = (dy,d1,d3), while (8) implies
that ¢ = (¢1,¢1,c3). Therefore, « has the form:

a(s) = (b1, b2,b3)s + (c1,c1,c3) cosh(s) + (di,dy,ds) sinh(s)
+ (e1,€1,0) cosh(2s) + A(ey, e1, 0) sinh(2s),
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where b1 7é b2 and bl, b2, b3, C1, C3, dl, d3, e, A satisfy

(1) —bi + b5+ b5 + (df — ) = £,
(2) 3+ dj + 8Xei(by — b1) =0,
(4) —bier + baer + bzez =0,
(5) —bidy + bady + b3d3 =0,
(6) csds + 4eq (by — by) = 0.

Consequently, a belongs to a 4-parameter family of curves with frequency ratio
p:t=1:2.

(iii.2.1.2) Then the equations (2) and (6) imply g(c — Ad,c — Ad) = 0. The
vectors e and ¢ — Ad are linear independent null vectors, so we may take e =
(—e1,€1,0), e1 # 0, ¢ — Ad = (n1,n1,0), n1 # 0. Equation (7) now implies that
¢+ Ad = (m1, —m1,mg3), whence ¢ = %(ml +n1,n1 —mi,ms) and d = %(ml —nq,
—my —ny,m3). Next equations (4) and (5) imply b = (b1, b1, b3), so that the curve
a has the form:

Oé(S) = (bl, bl, b3)8 + %(Tﬂq +ny,ny —mq, TH3) COSh(S)
+ %(ml —n1,—m1 — ni1,mgz) sinh(s)
+ (—e1,e1,0) cosh(2s) + A(—eq, e1,0) sinh(2s),

where A2 = 1 and by, b3, m1, ni, ms, e; satisfy the equations

(1) b +ming = £1,
(5) —2b1m1 + b3m3 - 4)\”161 = 0,
(6) m32 + 32\be; = 0.

Consequently, a belongs to a 3-parameter family of curves with frequency ratio
p:t=1:2.

(iii.2.2) In this subcase, we may take e = (0, e3,0), f = (e2,0,0), ex # 0. Now
the equations (7) and (8) imply ¢ = (c1,¢2,¢3) and d = (¢2,¢1,d3), so that a has
the form:

Oé(S) = (bl, bs, b3)8 + (01 ,C2, 03) COSh(S) + (CQ, c1, d3) sinh(s)
+ (0, e2,0) cosh(2s) + (e2,0,0) sinh(2s),

where by, by, b3, c1, 2, c3, d3, e> satisfy
—B2 b+ b2+ 122 — 2¢ + dF — 3) — ded = +1,
C% + d§ —8biey =0,

—bico + bacy + bzds — 2¢0es = 0,
c3ds + 4bses = 0.
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Hence the curve a belongs to a 4-parameter family of curves with frequency ratio
p:t=1:2.

(iii.2.3) In this subcase, we may take e = (e1,0,0), f = (0,e1,0), e; # 0.
Equations (7) and (8) imply ¢ = (¢1,¢2,¢3), d = (ca,¢1,ds3), so that a has the form:

a(s) = (by,b2,b3)s + (c1, ¢, c3) cosh(s) + (¢2,¢1,ds) sinh(s)
+ (e1,0,0) cosh(2s) + (0, e1,0) sinh(2s),

where by, bs, bs, c1, c2, c3, d3, e; satisfy the relations

(1) —b7 + b3 + b3 + 5(2¢% — 263 + dE — ) + 4ef = £1,

( ) C§+d§+8b261:0,

(4) —bicr + bacs + b3ez — 2c0e; =0,

(5) —bicy + bocy + byds + 2c1e1 =0,

(6) cads — 4bie; = 0.

It follows that a belongs to a 3-parameter family of curves with frequency ratio
p:t=1:2. This completes the proof of Theorem 3.1. O

In the sequel, let a(s) be a 3-type curve in E? of the form

a + bcos(ps) + csin(ps) + dcos(ts) + esin(ts) + f cos(gs) + hsin(gs),

or of the form

a + bcosh(ps) + csinh(ps) + d cosh(ts) + esinh(ts) + f cosh(gs) + hsinh(gs).

Then it is easy to prove that the following two Lemmas hold.

LEMMA 3.1. For a non-planar 3-type spacelike or timelike curve a in E3, of
the form (A) or (B), we have q # 3t.

LEMMA 3.2. For a non-planar 3 type spacelike or timelike curve a in E}, of
the form (A) or (B), at least one of the following possibilities holds:
(I) 2t=q—p, (II) 2t=p+gq, (I) 2p=q-—t.

A non-planar curves in E} with all three eigenvalues different from zero, are
characterized by the following theorem.

THEOREM 3.2.. A non-planar 3-type spacelike or timelike curve o in E} with
all three eigenvalues of its Laplacian A different from zero, is either a curve which
lies on a quadric of revolution in E3, or it belongs to one a 4-parameter or to one of
two a 2-parameter families of curves with frequency ratio 1 : 3 : 7, or it belongs to
one of three a 4-parameter or to one of two a 5-parameter families of curves with
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frequency ratio 1 : 3 : 5, or it belongs to one of three a 2-parameter or to one of
two a 3-parameter families of curves with frequency ratiol:2: 3.

Proof. Let a(s) be a non-planar 3-type spacelike or timelike curve in E}, pa-
rameterized by a pseudo-arclength parameter s. Suppose that all three eigenvalues
of its Laplacian A are different from zero. Then « can be written as:

a(s) = a + bcos(ps) + csin(ps) + dcos(ts) + esin(ts)

(1) + fcosh(gs) + hsinh(gs),

a(s) = a + bceosh(ps) + csinh(ps) + d cosh(ts) + e sinh(ts)
(i) + fcos(gs) + hsin(gs),

a(s) = a + bcos(ps) + csin(ps) + dcos(ts) + esin(ts)
(iii) + fcos(gs) + hsin(gs),

a(s) = a + bceosh(ps) + csinh(ps) + d cosh(ts) + e sinh(ts)
(iv) + fcosh(gs) + hsinh(gs),

where 0 < p <t < qand a,b,c,d,e, f,h € R3. Let b,c,d, e, f,h € R? be of the form
b = (bi,bs,b3), ¢ = (c¢1,¢2,c3), and so on. We may take up to a translation that
a = (0,0,0). In the sequel, we shall distinguish the cases (i), (ii), (iii) and (iv). In
all these cases, we may take p = 1.

CasEs (i) AND (ii). Using the same methods as in Theorem 3.1 and distin-
guishing the subcases t —p = 2p, t — p # 2p, we find that a curve a in E} of such
forms does not exist.

CASE (iii). The corresponding proof follows the cases of Lemma 3.2 and the
same methods as in Theorem 3.1, so we distinguish the subcases: (iii.1) 2t = ¢ —p;
(iii.2) 2t =p+gq; (iii.3) 2p=q—t.

(iii.1) 2t = g — p. It follows that ¢ —t = ¢t + p. Then we shall also distinguish
the subcases: (iii.1.1) t—p=2p; (iii.1.2) t—p # 2p.

(iii.1.1) 2p =t — p. It follows that p : ¢ : ¢ = 1 : 3 : 7. Assuming that
g(f,f) = g(h,h) > 0, we find that the curve a has the form

a(s) = (b1 cos(s) + ¢1 sin(s) + dq cos(3s) + e sin(3s),

by cos(s) — bgsin(s) + e3 cos(3s) + ez sin(3s) + f2 cos(7s),
b3 cos(s) + b sin(s) — ez cos(3s) + ez sin(3s) + f2 sin(7s)),

where by, bs, b3, c1, dyi, €1, e, e3, fo satisfy the relations

(1) 1(—bF — ¢ +2b3 +2b3) + 2(—€} — d +2(e3 + €3)) + 49f5 = £1,
(2) b — 3 +6(—bidy — cre; + 2(bres — bses)) = 0,
(3) 9(di — e}) +28bafo = 0,
(4) —bicy + 3(brer — e1dy — 2(bseg + baes)) = 0,
(5) bidy — c1e1 + 14 fre3 = 0,
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(6) —bie; —c1dy + 14f262 =0,
(7) 14b3f2 + 9d161 =0.
Hence we conclude that the curve a belongs to a 2-parameter family of curves. One

set of the solutions of the above system of equations is by = ¢; = e; == e3 = 0,
with b2, b3, dl, €1, f2 related by

(1) 3 (203 +2b3) + §(—ef — di) +49fF = £1,
(3) 9(d? — €2) + 28byfo =0,
(7) 14b3f2 +9dye; =0,

so we find that « has the form

a(s) = (di cos(3s) + e1 sin(3s), ba cos(s) — b sin(s) + fa cos(7s)
bz cos(s) + by sin(s) + fosin(7s)).

Thus this curve lies on the quadric
92° + 7(y* + 2°) = 2(d} + €3) + T(b3 + b3 + f3).

1:3:7,lie on
0, we obtain a

Consequently, some of the curves with frequency ratio p : ¢ : ¢
a quadric in E}. In the sequel, assuming that g(f, f) = g(h,h)
contradiction.

(iii.1.2) t —p # 2p. Then we find that the curve a has the form

a(s) = (dy cos(ts) + ey sin(ts), by cos(ps) — bs sin(ps) + fa2 cos(gs),
bs cos(ps) + bo sin(ps) + fo sin(gs)),

where by, b3, dq, e1, f> satisfy the relations

(1) t*(d; — €7) + 4pgba f = 0,
(2) t*dier + 2pgbs f2 = 0,
2
(3) pP(b5 +b3) + 5 (—ef —di) +¢°fF = £1.

It follows that « lies on the quadric
2
t*2” + pa(y® +2%) = 5(d7 +ef) + pa(b3 + b3 + f3).
(iii.2) 2t = p+ q. It follows that ¢ — ¢ = ¢ — p. We shall distinguish the
subcases: (iii.2.1) ¢—t=t—p=2p; (iii.2.2) q—t=t—pF# 2p.
(iii.2.1) ¢g—t=t—p=2p. It follows that p:t:q=1:3:5 If g(f,f) =
g(h,h) > 0, we obtain that the curve a has the form:
a(s) = (by cos(s) + ¢y sin(s) + dy cos(3s) + eq sin(3s),
by cos(s) + ca sin(s) + e3 cos(3s) + ez sin(3s) + f2 cos(5s),
b3 cos(s) + ¢ sin(s) — e3 cos(3s) + ez sin(3s) + f2 sin(5s)),
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where b1, b2, b3, ci1, C2, C3, dl, €1, €2, €3, fQ satisfy the relations

(1) b +b2+b2—cl+cE+c2+92(e5+e2) —el —di) +50f] = +2,
(2) - - -y

+6(—b1dy + baes — bzea — cre1 + caen + cze3) + 60e3 fo =0,
(3) 9(d} — e1) + 10f2(cs — by) =0,

(4) b1 C1 — bQCQ — b3C3
—3(—61d1 + cae3 — C3€9 + b1€1 — b262 — b3€3) + 30€2f2 = 0,

(5) 3(—cie1 + coex + czez + bidi — baez + bzea) + 5f2(b2 + c3) =0,
(6) 3(—b161 + b262 + b363 — Cld1 + Coe3z — 0362) + 5f2(02 — b3) = 0,
(7) 5f2(b3 + Cg) — 9d161 = 0

One set of solutions of the above system of equations is by = ¢; = es = e3 = 0 with
b2 = —Cs, b3 = C3, dl, €1, f2 related by

(1) 2b3 + 203 — 9(d} + e]) + 50fF = £2,
(3) 9(df — e) — 2002 f> = 0,
(7) 10b3f2 — 9d161 = 0,

where d; and e; are not both 0 and f2 # 0. So we get that a has the form

a(s) = (dy cos(3s) + eq sin(3s), by cos(s) + bz sin(s) + fo cos(5s),
bz cos(s) — by sin(s) + f2 sin(5s)),

thus it lies on the quadric
927 — 5(y* + 2%) = 2(d} + €3) — 5(b3 + b3 + f3).

Hence, a belongs to a 4-parameter family of curves with frequency ratio p:¢:q =
1:3:5. Next assuming that g(f, f) = g(h,h) = 0, it can be proved that a belongs
to a 5-parameter family of curves with frequency ratiop:t:q=1:3:5.

(iii.2.2) ¢ —t =1t — p # 2p. Now we shall distinguish the subcases:

(iii.2.2.1) ¢g—p=2p; (iii.2.2.2) ¢—p# 2p.

(iii.2.2.1) ¢ —p = 2p. It follows that p: ¢ : ¢ =1:2: 3. Then we get that «
belongs to a 2-parameter or to a 3-parameter family of curves with frequency ratio
p:t:q=1:2:3. It is easy to prove that some of these curves lie on quadrics.

(iii.2.2.2) ¢ — p # 2p. Then we get that o has the form

a(s) = (dy cos(ts) + e sin(ts), bs cos(ps) + bz sin(ps) + f2 cos(gs),
bs cos(ps) — ba sin(ps) + fo sin(gs)),
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where by, b3, dy, e1, f2 satisfy the relations

(1) PR3 +83) + 5 (—e2 — ) + g2 f2 = +1,
(2) t*(d; — e7) — 4pgba f> = 0,
(3) —2pqbs fo + t>dye; = 0.

Thus we obtain that « lies on the quadric
Pa? = pa(y? +2%) = (e} + d3) — pa(b3 + b3 + f3).

(iii.3) 2p = q —t. It follows that ¢ — p = p + t. Now we shall distinguish the
subcases: (iii.3.1) 2p=q—t=t—p; (iii.3.2) 2p=q—t#t—p.

(iii.3.1) 2p = ¢ —t =1t —p. This subcase is equivalent to the subcase (iii.2.1),
which was already considered.

(iii.3.2) 2p=gq—t #t — p. In this subcase, we obtain that « has the form

a(s) = (by cos(ps) + c1 sin(ps), e cos(ts) + ez sin(ts) + f2 cos(gs),
—es cos(ts) + eg sin(ts) + fosin(gs)),

where by, ¢1, e, e3, fo satisfy the relations

2
0 B8 - ) + (S + D)+ = 1,
(2) p* (b7 — i) + 4tges fo = 0,
(3) p2b101 — 2tgesfo = 0.

Hence, a lies on the quadric
Pa? +tg(y? + 22) = B (03 + c) + ta(e} + e + f3)
5 \01 1 q(e; 3 2)

CASE (iv). The corresponding proof follows the cases of Lemma 3.2 and the
same methods as in Theorem 3.1. Hence we shall distinguish the subcases:
(iv.l]) 2t=q—p; (iv.2) 2t=p+gq; (iv.3) 2p=q—t.

(iv.1) 2t = g —p. It follows that ¢ — ¢t = ¢t + p. In this subcase, we shall
consider the subcases: (iv.1.1) ¢t —p=2p; (iv.1.2) ¢—p # 2p.

(iv.1.1) 2p =t —p. It follows that p : t : ¢ = 1 : 3 : 7. Assuming that
g9(f, f) = —g(h,h) > 0, we find that o has the form:

a(s) = (by cosh(s) + by sinh(s) + e3 cosh(3s) + ey sinh(3s) + f2 sinh(7s),
by cosh(s) + by sinh(s) + e1 cosh(3s) + es sinh(3s) + f> cosh(7s),
bs cosh(s) + ¢z sinh(s) + dg cosh(3s) + e3 sinh(3s)),
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where by, ba, b3, c3, €1, €2, e3, d3, fo satisfy the relations

3(2(0F — b3) + 3 — b3) + 5(2(e3 —ef) + €3 — d3) — 49fF = £1,
b3 + 5 + 6(czez — bads + 2(by — ba)er) =0,
9(d3 + €3) — 28b2f> = 0,
bscs + 3(csds — bses + 2(bre; — baes)) =0,
bsds + cses — 1dey fo = 0,
csds + bses + 1deafy = 0,
9e3ds + 14by fo = 0.

N N N N N SN N
U
N’ N N N S’ N’ N

Therefore, a belongs to a 2-parameter family of curves. One set of solutions of the
above system of equations is e; = ex = b3 = ¢3 = 0, with by, b2, es, d3, fo related
by

(1) by — b3 + §(e3 — d3) —49f3F = £1,
(3) 9(d3 + e3) — 28byfo = 0,
(7) 9ezds + 14by f> = 0.

So we get that o has the form

a(s) = (by cosh(s) + by sinh(s) + fo sinh(7s),
by cosh(s) + by sinh(s) + fo cosh(7s), ds cosh(3s) + es sinh(3s)),

where ds and e3 are not both 0, fy # 0. Hence, « lies on the quadric
T(a? —y?*) +92° = T(0] — b5 — f3) + 5(d5 — €3).

Consequently, some of the curves with frequency ratiop :t: ¢ =1:3:7 lie on
quadrics. Further, assuming that g(f, f) = —¢g(h,h) < 0or g(f, f) = g(h,h) =0, it
can be proved that a belongs respectively to a 2-parameter or a 4-parameter family
of curves with frequency ratiop:t:q=1:3:7.

(iv.1.2) t —p # 2p. Then we find that « has the form

a(s) = (by cosh(ps) + by sinh(ps) + f2 sinh(gs),
by cosh(ps) + by sinh(ps) + f2 cosh(gs), ds cosh(ts) + es sinh(ts)),

where by, bs, d3, e3, f> satisfy the relations

(1) p*(0f = 03) + 5 (e — df) — ¢ fF = 1,
(2) t*(e3 + d3) — 4pgba f> = 0,
(3) 2qu1f2 + t263d3 = 0,
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ds and e3 are not both 0, fo # 0. Hence we find that « lies on the quadric
paa® =) + 22 = pa(B] = b3 — f3) + 5 (& - €3).

(iv.2) 2t = p+ q. It follows that ¢ — ¢t = ¢ — p. In this subcase, we shall
distinguish the subcases: (iv.2.1) ¢—t=t—p=2p; (iv.2.2) g—t=t—p# 2p.

(iv.2.1) ¢—t=1t—p=2p. It follows that p:¢t:¢=1:3:5. In this subcase,
assuming that g(f, f) = —g(h,h) > 0, we find that « has the form:

a(s) = (b1 cosh(s) + ¢ sinh(s) + e3 cosh(3s) + e; sinh(3s) + f sinh(5s),
by cosh(s) + ¢z sinh(s) + e1 cosh(3s) + es sinh(3s) + f> cosh(5s),
b3 cosh(s) + ¢z sinh(s) + ds cosh(3s) + ez sinh(3s)),

where by, bs, b3, c1, C2, c3, d3, €1, €2, ez, fo satisfy the relations

(-3 +B+cE+b3—b3—0b3) +2(2(e} —€}) + €3 —d3) —25fF = £1,
(= + 3+ — b3 + b3 +b3)

+3(—c1e1 + czea + cze3 + bieg — baey — bsds) — 30 f2e1 = 0,
(3) 9(e3 +d3) + 10f2(bs — c1) =0,
(4)  —bic1 + baca + bses
+3(—c1es + coe1 + c3ds + bre; — baes — bzes) + 30eafo = 0,

1
2
1
2

(5) 3(—biea + baey + b3ds — crer + caez + c3e3) — 5 fa(c1 + b2) =0,
(6) 3(—0162 + e + C3d3 — b161 + b262 + b3€3) + 5f2(02 + b1) = 0,
(7) 963d3 + 5f2(62 - bl) =0.

Therefore, a belongs to a 4-parameter family of curves. One set of solutions of the
above system of equations is b3 = ¢3 = e; = ex = 0, with by, bs, ¢1, ¢2, €3, d3, fo
related by

(1) c1 = —bo,

(2) Cy = —bl,

(3) 9esds — 10by f» = 0,
(4) 9(e2 + d2) + 20by fo = 0,
(5) bi — b5 + 3(ef — d§) — 253 = +1,

ds and e3 not both 0 and fy # 0. Hence we get that « has the form

a(s) = (by cosh(s) — by sinh(s) + fo sinh(5s),
by cosh(s) — by sinh(s) + fo cosh(5s), ds cosh(3s) + es sinh(3s)),

thus it lies on the quadric

—5(z” —y®) +92% = =5(b — b3 — f3) + 5(d5 — €3).
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Further, assuming that g(f, f) = g(h,h) = 0 or g(f,f) = —g(h,h) < 0, it can
be proved that « belongs respectively to a 5-parameter or a 4-parameter family of
curves with frequency ratiop:t:q=1:3:5.

(iv2.2) ¢g—t = t—p # 2p. Next we distinguish the subcases:
(iv.2.2.1) g—p=2p; (iv.2.2.2) q—p# 2p.

(iv.2.2.1) g —p = 2p. Tt follows that p : t : ¢ = 1 : 2 : 3. In this subcase,
we find that « belongs to one of two a 2-parameter families of curves or to a 3-
parameter family of curves with frequency ratio 1 : 2 : 3. It is easy to prove that
some of them lie on quadrics. (iv.2.2.2) ¢ — p # 2p. In this subcase, we find that
a has the form:

a(s) = (by cosh(ps) — by sinh(ps) + f2 sinh(gs),
by cosh(ps) — by sinh(ps) + f2 cosh(gs), ds cosh(ts) + es sinh(ts)),

where by, bs, d3, e3, f> satisfy the relations

2
(1) P (b = b3) + 5 (e§ — ) — ¢° f5 = £1,
(2) t*(e3 + d3) + 4pgba fo = 0,
(3) t2d3€3 — 2qu1f2 = 0,

ds and es are not both zero, b; and by are not both zero and fy # 0. Therefore, o
lies on the quadric

—pq(2® — y*) + t°2° = —pq(b] — b3 — f3) + L (df — €3).

(iv.3) 2p=q—t. It follows that ¢ — p = p + t. Now, we shall distinguish the
subcases: (iv.3.1) 2p=q—t=t—p; (iv.3.2) 2p=q—t#t—0p.

(iv.3.1) 2p=gq—t =1t —p. This subcase is equivalent to the subcase (iv.2.1),
which was already considered.

(iv.3.2) 2p =q—t # t —p. Assuming that g(f, f) = —g(h,h) > 0, we find
that « has the form

a(s) = (es cosh(ts) + ey sinh(ts) + fo sinh(gs),
e1 cosh(ts) + ea sinh(ts) + f2 cosh(gs), bs cosh(ps) + c3 sinh(ps)),

where b3, c3, €1, es, fo satisfy the relations

2
(1) B(c3 —b3) +1%(e3 — ef) — ¢° f5 = £1,
(2) p?(b3 + c3) — 4tgey fo = 0,
(3) p?bscs + 2tgesfo =0,

b3 and c3 are not both zero, e; and ey are not both zero and f» # 0. Hence, « lies
on the quadric

2
tq(z®> — y°) + p°2° = tqle — el — f3) + & (b3 — 3).

This completes the proof of the Theorem 3.2. O
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