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Abstract. We give a complete classi�cation of all non-planar spacelike
and timelike curves in Minkowski 3{space E

3

1
, which are of 3{type.

1. Introduction

The notion of submanifolds of �nite type was introduced by Chen in [2]. A
submanifold M in the Euclidean space En is said to be of �nite type if each com-
ponent of its position vector �eld x can be written as a �nite sum of eigenfunctions
of the Laplacian � of M . This means that

(1.1) x = x0 +

kX
t=1

xt; �xt = �txt;

where 0 = �0 < �1 < � � � < �k are mutually di�erent eigenvalues of �. When M

is compact, the component x0 in (1.1) is a constant vector. However, when M is
non-compact, the component x0 is not necessary a constant vector. In particular,
a submanifold M is said to be of k-type if all eigenvalues �1; �2; . . . ; �k are di�erent
from zero. If one of the �i's is equal to zero (i = 1; 2; . . . ; k), M is said to be of null
k-type.

Finite type curves in Euclidean space En were studied intensively in [2], [3]
and [4]. The classi�cation of all 2-type curves in En is given in [6].

2. Preliminaries

Let � be a curve in En
1 parameterized by a pseudo-arclength parameter s.

Then the Laplace operator � of � is given by � = � d2

ds2
. Its eigenfunctions are

s, cos(as), sin(as), cosh(as) and sinh(as). Following the de�nition of Chen, every
�nite type curve � in En

1 can be written as
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�(s) = a0 + b0s+

k1X
t=1

(at cos(pts) + bt sin(pts))

+

k2X
t=1

(ct cosh(qts) + dt sinh(qts));

where a0; b0; ai; bi; cj ; dj 2 Rn are constants, i = 1; . . . ; k1, j = 1; . . . ; k2 and 0 <

p1 < � � � < pk1 , 0 < q1 < � � � < qk2 are positive integers (frequency numbers of
the curve). For a �nite type curve �, frequency ratio is the ratio of its frequency
numbers.

In particular, a curve � in En
1 is said to be of k-type if there are k mutually

di�erent eigenvalues �1; . . . ; �k of � and they are all di�erent from zero. If one of
the �i's (i = 1; . . . ; k) is equal to zero, � is said to be of null k-type.

Recall that an arbitrary vector v in En
1 can have one of three causal characters:

it can be spacelike if g(v; v) > 0 or v = 0, timelike if g(v; v) < 0 and null if

g(v; v) = 0 and v 6= 0. The norm of a vector v is given by kvk =
p
jg(v; v)j.

The unit vectors, orthogonality and orthonormality are de�ned as in the Eu-
clidean spaces. An arbitrary curve �(s) in E3

1 can localy be spacelike, timelike or
null , if respectively all of its velocity vectors _� (s) are spacelike, timelike or null.

Curves of �nite type in Minkowski space{time have been investigated in [5] and
[7]. The following classi�cation theorem is obtained in [7].

Theorem 2.1. Every curve of �nite type in Minkowski plane E2
1 is of 1-type

and hence an open part of an orthogonal hyperbola or an open part of a straight
line.

Theorem 2.2. A planar 2-type curve, lying in an isotropic plane of E3
1 is a

null 2-type spacelike curve.

Theorem 2.3. Up to rigid motions of E3
1 , a non-planar curve � in E3

1 is a null
2-type curve if and only if � is a part of one of the following curves :

(i) �(s) = (as; b cos s; b sin s); a; b 2 R0; jaj 6= jbj;
(ii) �(s) = (a cosh s; a sinh s; bs); a; b 2 R0; jaj 6= jbj;
(iii) �(s) = (a sinh s; a cosh s; bs); a; b 2 R0; jaj 6= jbj;

Theorem 2.4. Up to rigid motions of E3
1 , a non-planar curve � in E3

1 is a
2-type curve with both eigenvalues di�erent from zero if and only if � is a part of
one of the following curves:

(i) �(s) = (� sin s; � cos s+ a cos 3s; � sin s+ a sin 3s), �2 � 12a� = 0,
(ii) �(s) = (a cosh s+ �b sinh s� 4ce3�s;�b cosh s� �a sinh s+ 4ce3�s; 2de�s),

d2 � 6(a� b)c = 0, � 2 f�1; 1g,
(iii) �(s) = (aes + b cosh 3s; aes + b sinh 3s; ce�s), c2 + 6ab = 0,
(iv) �(s) = (� cosh s+ a cosh3s; � sinh s+ a sinh 3s; � cosh s), �2 + 12a� = 0,
(v) �(s) = (� cosh s+ a cosh3s; � sinh s+ a sinh 3s; � sinh s), �2 + 12a� = 0,
(vi) �(s) = (aes + b sinh 3s; aes + b cosh 3s; ce�s), c2 � 6ab = 0,
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(vii) �(s) = (� sinh s+ a sinh 3s; � cosh s+ a cosh 3s; � cosh s), �2 � 12a� = 0,
(viii) �(s) = (� sinh s+ a sinh 3s; � cosh s+ a cosh 3s; � sinh s), �2 � 12a� = 0,
where a; b; c; d; �; � 2 R0.

All closed 3-type curves in Euclidean 3-space E3 were classi�ed by Blair in [1].
He obtained the following classi�cation theorem.

Theorem 2.5. A closed 3-type curve in E3 is either a curve which lies on a
quadric of revolution or a curve whose frequency ratio is 1 : 3 : 7 and the curve
belongs to a 3-parameter family of such curves, or the frequency ratio is 1 : 3 : 5
and the curve belongs to a 5-parameter family of such curves. Some curves with
frequency ratio 1 : 3 : 5 or 1 : 3 : 7 also lie on quadrics of revolution.

3. A classi�cation of all non-planar 3-type curves in E3
1

All planar 3-type curves in E3
1 have been classi�ed in the part I of this paper

([8]). Now we shall classify all non-planar spacelike and timelike 3-type curves
in this space. For a non-planar 3-type curve � in E3

1 all three eigenvalues of its
Laplacian can be di�erent from zero, or two of them can be di�erent from zero and
one of them equal to zero. In the second case, � is said to be of a null 3-type.

Theorem 3.1. A non-planar spacelike or timelike curve � in E3
1 is a null 3-

type curve if and only if its frequency ratio is 1 : 2 and the curve belongs to one
of three a 3-parameter families of such curves, or to one of three a 4-parameter
families of such curves.

Proof. Let �(s) be a non-planar null 3-type spacelike or timelike curve in E3
1 ,

parameterized by a pseudo-arclength parameter s. Then � can be written as:
(i) �(s) = a+ bs+ c cos(ps) + d sin(ps) + e cosh(ts) + f sinh(ts),
(ii) �(s) = a+ bs+ c cos(ps) + d sin(ps) + e cos(ts) + f sin(ts),
(iii) �(s) = a+ bs+ c cosh(ps) + d sinh(ps) + e cosh(ts) + f sinh(ts),

where 0 < p < t and a; b; c; d; e; f 2 R3. Let b; c; d; e; f 2 R3 be of the form
b = (b1; b2; b3); c = (c1; c2; c3), and so on. We may take up to a translation that
a = (0; 0; 0). In the sequel, we shall consider the cases (i), (ii) and (iii) separately.
In all of them, we may take p = 1.

Case (i). Since the functions sinx, cosx, sinhx, coshx are linearly indepen-
dent, from the condition g( _�; _�) = �1, we get the following system of equations:

g(b; b) + p2

2 (g(c; c) + g(d; d))7 + t2

2 (g(f; f)� g(e; e)) = �1;(1)

g(d; d)� g(c; c) = 0;(2)

g(e; e) + g(f; f) = 0;(3)

g(b; c) = g(b; d) = g(b; e) = g(b; f) = 0;(4)

g(c; d) = g(c; e) = g(c; f) = 0;(5)

g(d; e) = g(d; f) = 0;(6)

g(e; f) = 0:(7)
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If vectors c, d, e and f are di�erent from zero and not null vectors, then equations
(2),(3),(5) and (6) imply that there are three mutually orthogonal spacelike vectors
in E3

1 , which is impossible. So, there is a vector, say e, with the property g(e; e) = 0.
Now, equations (3) and (7) imply f = �e, for some � 2 R. Taking e = (e1; e1; 0),
e1 6= 0, equations (4), (5) and (6) imply b = (b1; b1; b3), c = (c1; c1; c3), d =
(d1; d1; d3), while equations (2) and (5) imply c = (c1; c1; 0), d = (d1; d1; 0). Next
(1) implies b = (b1; b1;�1) and consequently � lies in the plane x1 = x2, which is a
contradiction. Therefore, curve � of the form (i) does not exist.

Case (ii). Since g( _�; _�) = �1 and 0 < p < t, we distinguish the subcases:
(ii.1) 2p = t� p; (ii.2) 2p = t; (ii.3) 2p 6= t� p; t.

In subcases (ii.1) and (ii.3), we obtain a contradiction.
(ii.2) 2p = t. Then the corresponding system reads:

g(b; b) + p2

2 (g(c; c) + g(d; d)) + t2

2 (g(e; e) + g(f; f)) = �1;(1)

p2

2 (g(d; d) � g(c; c)) + 2tg(b; f) = 0;(2)

g(f; f)� g(e; e) = 0;(3)

�2pg(b; c) + pt(g(c; f)� g(d; e)) = 0;(4)

2pg(b; d) + pt(g(c; e) + g(d; f)) = 0;(5)

�2tg(b; e)� p2g(c; d) = 0;(6)

g(d; f)� g(c; e) = 0;(7)

g(c; f) + g(d; e) = 0;(8)

g(e; f) = 0:(9)

Now the equations (3) and (9) imply two possibilities: (ii.2.1) g(e; e) = g(f; f) = 0,
g(e; f) = 0; (ii.2.2) g(e; e) = g(f; f) > 0, g(e; f) = 0. Again, we shall discuss these
subcases separately.

(ii.2.1) In this subcase, we may take e = (e1; e1; 0), e1 6= 0, so it follows that
f = �e, � 2 R. We may take f = (f1; f1; 0), f1 2 R. The equations (7) and (8)
now imply g(d; e) = g(c; e) = 0, so that d = (d1; d1; d3), c = (c1; c1; c3). Then the
equation of the curve � reads:

�(s) = (b1s+ c1 cos(ps) + d1 sin(ps) + e1 cos(2ps) + f1 sin(2ps);

b2s+ c1 cos(ps) + d1 sin(ps) + e1 cos(2ps) + f1 sin(2ps);

b3s+ c3 cos(ps) + d3 sin(ps));

where b1 6= b2 and b1, b2, b3, c1, c3, d1, d3, e1, f1 satisfy the conditions:

�b21 + b22 + b23 +
1
2 (c

2
3 + d23) = �1;(1)

d23 � c23 + 8f1(b2 � b1) = 0;(2)

�b1c1 + b2c1 + b3c3 = 0;(4)

�b1d1 + b2d1 + b3d3 = 0;(5)

c3d3 + 4e1(b2 � b1) = 0:(6)
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Next, we shall regard the numbers b1, b2, e1 and f1 as the parameters of a 4-
parameter family of curves. The equation (6) implies that

c3 =
4e1(b1 � b2)

d3
; d3 6= 0;

which together with the equation (2) gives

d43 + 8f1(b2 � b1)d
2
3 � 16e21(b1 � b2)

2 = 0:

If we put d23 = t, we get that

t = 4(b1 � b2)(f1 �
q
f21 + e21):

Thus we obtain that

d3 = �2

r
(b1 � b2)(f1 +

q
f21 + e21); (b1 > b2);

or else

d3 = �2

r
(b1 � b2)(f1 �

q
f21 + e21); (b1 < b2):

Therefore,

c3 =
2e1(b1 � b2)

�
q
(b1 � b2)(f1 +

p
f21 + e21)

; (b1 > b2);

or else

c3 =
2e1(b1 � b2)

�
q
(b1 � b2)(f1 �

p
f21 + e21)

; (b1 < b2):

The equation (1) implies that

b23 = b21 � b22 �
1
2 (c

2
3 + d23)� 1;

and the equations (4) and (5) give

c1 =
b3c3

b1 � b2
; d1 =

b3d3

b1 � b2
:

Therefore, we have expressed the solution b3, c1, d1, c3, d3 of the above system
of equations as the function of the parameters b1, b2, e1 and f1. Consequently, �
belongs to a 4-parameter family of curves with frequency ratio p : t = 1 : 2.

(ii.2.2) In this subcase, we may take e = (0; e2; 0), f = (0; 0; e2), e2 6= 0.
Equations (7) and (8) imply c = (c1; c2; c3) and d = (d1;�c3; c2), so that the curve
� has the form

�(s) = (b1s+ c1 cos(ps) + d1 sin(ps); b2s+ c2 cos(ps)� c3 sin(ps) + e2 cos(2ps);

b3s+ c3 cos(ps) + c2 sin(ps) + e2 sin(2ps));
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where b1, b2, b3, c1, c2, c3, d1, e2 satisfy the following equations:

�b21 + b22 + b23 +
1
2 (2c

2
2 + 2c23 � c21 � d21) + 4e22 = �1;(1)

c21 � d21 + 8b3e2 = 0;(2)

b1c1 � b2c2 � b3c3 + 2c3e2 = 0;(4)

�b1d1 � b2c3 + b3c2 + 2c2e2 = 0;(5)

c1d1 � 4b2e2 = 0:(6)

Therefore, � belongs to a 3-parameter family of curves with frequency ratio p : t =
1 : 2.

Case (iii) Since g( _�; _�) = �1 and 0 < p < t, we shall distinguish the subcases:
(iii.1) 2p = t � p; (iii.2) 2p = t; (iii.3) 2p 6= t � p; t. It is easy to see that in
subcases (iii.1) and (iii.3) we get a contradiction.

(iii.2) 2p = t. Then the corresponding system reads:

g(b; b) + p2

2 (g(d; d)� g(c; c)) + t2

2 (g(f; f)� g(e; e)) = �1;(1)

p2

2 (g(c; c) + g(d; d)) + 2tg(b; f) = 0;(2)

g(e; e) + g(f; f) = 0;(3)

2pg(b; c) + pt(g(d; e)� g(c; f)) = 0;(4)

2pg(b; d) + pt(g(d; f)� g(c; e)) = 0;(5)

2tg(b; e) + p2g(c; d) = 0;(6)

g(c; e) + g(d; f) = 0;(7)

g(c; f) + g(d; e) = 0;(8)

g(e; f) = 0:(9)

Equations (3) and (9) imply three possibilities:

(iii.2.1) g(e; e) = g(f; f) = 0, g(e; f) = 0;

(iii.2.2) g(e; e) = �g(f; f) > 0, g(e; f) = 0;

(iii.2.3) g(e; e) = �g(f; f) < 0, g(e; f) = 0;

We shall again discuss all these subcases separately.

(iii.2.1) In this subcase, we may take e = (e1; e1; 0), e1 6= 0, f = �e, � 2
R. Equations (7) and (8) imply (1 � �2)g(d; e) = 0 and we shall distinguish the
subcases: (iii.2.1.1) g(d; e) = 0, �2 6= 1; (iii.2.1.2) �2 = 1, g(d; e) 6= 0.

(iii.2.1.1) From g(d; e) = 0, it follows that d = (d1; d1; d3), while (8) implies
that c = (c1; c1; c3). Therefore, � has the form:

�(s) = (b1; b2; b3)s+ (c1; c1; c3) cosh(s) + (d1; d1; d3) sinh(s)

+ (e1; e1; 0) cosh(2s) + �(e1; e1; 0) sinh(2s);
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where b1 6= b2 and b1, b2, b3, c1, c3, d1, d3, e1, � satisfy

�b21 + b22 + b23 +
1
2 (d

2
3 � c23) = �1;(1)

c23 + d23 + 8�e1(b2 � b1) = 0;(2)

�b1c1 + b2c1 + b3c3 = 0;(4)

�b1d1 + b2d1 + b3d3 = 0;(5)

c3d3 + 4e1(b2 � b1) = 0:(6)

Consequently, � belongs to a 4-parameter family of curves with frequency ratio
p : t = 1 : 2.

(iii.2.1.2) Then the equations (2) and (6) imply g(c � �d; c � �d) = 0. The
vectors e and c � �d are linear independent null vectors, so we may take e =
(�e1; e1; 0), e1 6= 0, c � �d = (n1; n1; 0), n1 6= 0. Equation (7) now implies that
c+ �d = (m1;�m1;m3), whence c =

1
2 (m1 + n1; n1�m1;m3) and d = �

2 (m1�n1;

�m1�n1;m3). Next equations (4) and (5) imply b = (b1; b1; b3), so that the curve
� has the form:

�(s) = (b1; b1; b3)s+
1
2 (m1 + n1; n1 �m1;m3) cosh(s)

+ �
2 (m1 � n1;�m1 � n1;m3) sinh(s)

+ (�e1; e1; 0) cosh(2s) + �(�e1; e1; 0) sinh(2s);

where �2 = 1 and b1, b3, m1, n1, m3, e1 satisfy the equations

b23 +m1n1 = �1;(1)

�2b1m1 + b3m3 � 4�n1e1 = 0;(5)

m2
3 + 32�b1e1 = 0:(6)

Consequently, � belongs to a 3-parameter family of curves with frequency ratio
p : t = 1 : 2.

(iii.2.2) In this subcase, we may take e = (0; e2; 0), f = (e2; 0; 0), e2 6= 0. Now
the equations (7) and (8) imply c = (c1; c2; c3) and d = (c2; c1; d3), so that � has
the form:

�(s) = (b1; b2; b3)s+ (c1; c2; c3) cosh(s) + (c2; c1; d3) sinh(s)

+ (0; e2; 0) cosh(2s) + (e2; 0; 0) sinh(2s);

where b1, b2, b3, c1, c2, c3, d3, e2 satisfy

�b21 + b22 + b23 +
1
2 (2c

2
1 � 2c22 + d23 � c23)� 4e22 = �1;(1)

c23 + d23 � 8b1e2 = 0;(2)

�b1c2 + b2c1 + b3d3 � 2c2e2 = 0;(5)

c3d3 + 4b2e2 = 0:(6)
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Hence the curve � belongs to a 4-parameter family of curves with frequency ratio
p : t = 1 : 2.

(iii.2.3) In this subcase, we may take e = (e1; 0; 0), f = (0; e1; 0), e1 6= 0.
Equations (7) and (8) imply c = (c1; c2; c3), d = (c2; c1; d3), so that � has the form:

�(s) = (b1; b2; b3)s+ (c1; c2; c3) cosh(s) + (c2; c1; d3) sinh(s)

+ (e1; 0; 0) cosh(2s) + (0; e1; 0) sinh(2s);

where b1, b2, b3, c1, c2, c3, d3, e1 satisfy the relations

�b21 + b22 + b23 +
1
2 (2c

2
1 � 2c22 + d23 � c23) + 4e21 = �1;(1)

c23 + d23 + 8b2e1 = 0;(2)

�b1c1 + b2c2 + b3c3 � 2c2e1 = 0;(4)

�b1c2 + b2c1 + b3d3 + 2c1e1 = 0;(5)

c3d3 � 4b1e1 = 0:(6)

It follows that � belongs to a 3-parameter family of curves with frequency ratio
p : t = 1 : 2. This completes the proof of Theorem 3.1. �

In the sequel, let �(s) be a 3-type curve in E3
1 of the form

(A) �(s) =

a+ b cos(ps) + c sin(ps) + d cos(ts) + e sin(ts) + f cos(qs) + h sin(qs);

or of the form

(B) �(s) =

a+ b cosh(ps) + c sinh(ps) + d cosh(ts) + e sinh(ts) + f cosh(qs) + h sinh(qs):

Then it is easy to prove that the following two Lemmas hold.

Lemma 3.1. For a non-planar 3-type spacelike or timelike curve � in E3
1 , of

the form (A) or (B), we have q 6= 3t.

Lemma 3.2. For a non-planar 3 type spacelike or timelike curve � in E3
1 , of

the form (A) or (B), at least one of the following possibilities holds:
(I) 2t = q � p, (II) 2t = p+ q, (III) 2p = q � t.

A non-planar curves in E3
1 with all three eigenvalues di�erent from zero, are

characterized by the following theorem.

Theorem 3.2.. A non-planar 3-type spacelike or timelike curve � in E3
1 with

all three eigenvalues of its Laplacian � di�erent from zero, is either a curve which
lies on a quadric of revolution in E3

1 , or it belongs to one a 4-parameter or to one of
two a 2-parameter families of curves with frequency ratio 1 : 3 : 7, or it belongs to
one of three a 4-parameter or to one of two a 5-parameter families of curves with
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frequency ratio 1 : 3 : 5, or it belongs to one of three a 2-parameter or to one of
two a 3-parameter families of curves with frequency ratio 1 : 2 : 3.

Proof. Let �(s) be a non-planar 3-type spacelike or timelike curve in E3
1 , pa-

rameterized by a pseudo-arclength parameter s. Suppose that all three eigenvalues
of its Laplacian � are di�erent from zero. Then � can be written as:

�(s) = a+ b cos(ps) + c sin(ps) + d cos(ts) + e sin(ts)

+ f cosh(qs) + h sinh(qs);(i)

�(s) = a+ b cosh(ps) + c sinh(ps) + d cosh(ts) + e sinh(ts)

+ f cos(qs) + h sin(qs);(ii)

�(s) = a+ b cos(ps) + c sin(ps) + d cos(ts) + e sin(ts)

+ f cos(qs) + h sin(qs);(iii)

�(s) = a+ b cosh(ps) + c sinh(ps) + d cosh(ts) + e sinh(ts)

+ f cosh(qs) + h sinh(qs);(iv)

where 0 < p < t < q and a; b; c; d; e; f; h 2 R3. Let b; c; d; e; f; h 2 R3 be of the form
b = (b1; b2; b3), c = (c1; c2; c3), and so on. We may take up to a translation that
a = (0; 0; 0). In the sequel, we shall distinguish the cases (i), (ii), (iii) and (iv). In
all these cases, we may take p = 1.

Cases (i) and (ii). Using the same methods as in Theorem 3.1 and distin-
guishing the subcases t� p = 2p, t� p 6= 2p, we �nd that a curve � in E3

1 of such
forms does not exist.

Case (iii). The corresponding proof follows the cases of Lemma 3.2 and the
same methods as in Theorem 3.1, so we distinguish the subcases: (iii.1) 2t = q�p;
(iii.2) 2t = p+ q; (iii.3) 2p = q � t.

(iii.1) 2t = q � p. It follows that q � t = t+ p. Then we shall also distinguish
the subcases: (iii.1.1) t� p = 2p; (iii.1.2) t� p 6= 2p.

(iii.1.1) 2p = t � p. It follows that p : t : q = 1 : 3 : 7. Assuming that
g(f; f) = g(h; h) > 0, we �nd that the curve � has the form

�(s) = (b1 cos(s) + c1 sin(s) + d1 cos(3s) + e1 sin(3s);

b2 cos(s)� b3 sin(s) + e3 cos(3s) + e2 sin(3s) + f2 cos(7s);

b3 cos(s) + b2 sin(s)� e2 cos(3s) + e3 sin(3s) + f2 sin(7s));

where b1, b2, b3, c1, d1, e1, e2, e3, f2 satisfy the relations

1
2 (�b

2
1 � c21 + 2b22 + 2b23) +

9
2 (�e

2
1 � d21 + 2(e22 + e23)) + 49f22 = �1;(1)

b21 � c21 + 6(�b1d1 � c1e1 + 2(b2e3 � b3e2)) = 0;(2)

9(d21 � e21) + 28b2f2 = 0;(3)

�b1c1 + 3(b1e1 � c1d1 � 2(b3e3 + b2e2)) = 0;(4)

b1d1 � c1e1 + 14f2e3 = 0;(5)
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�b1e1 � c1d1 + 14f2e2 = 0;(6)

14b3f2 + 9d1e1 = 0:(7)

Hence we conclude that the curve � belongs to a 2-parameter family of curves. One
set of the solutions of the above system of equations is b1 = c1 = e2 == e3 = 0,
with b2, b3, d1, e1, f2 related by

1
2 (2b

2
2 + 2b23) +

9
2 (�e

2
1 � d21) + 49f22 = �1;(1)

9(d21 � e21) + 28b2f2 = 0;(3)

14b3f2 + 9d1e1 = 0;(7)

so we �nd that � has the form

�(s) = (d1 cos(3s) + e1 sin(3s); b2 cos(s)� b3 sin(s) + f2 cos(7s);

b3 cos(s) + b2 sin(s) + f2 sin(7s)):

Thus this curve lies on the quadric

9x2 + 7(y2 + z2) = 9
2 (d

2
1 + e21) + 7(b22 + b23 + f22 ):

Consequently, some of the curves with frequency ratio p : t : q = 1 : 3 : 7, lie on
a quadric in E3

1 . In the sequel, assuming that g(f; f) = g(h; h) = 0, we obtain a
contradiction.

(iii.1.2) t� p 6= 2p. Then we �nd that the curve � has the form

�(s) = (d1 cos(ts) + e1 sin(ts); b2 cos(ps)� b3 sin(ps) + f2 cos(qs);

b3 cos(ps) + b2 sin(ps) + f2 sin(qs));

where b2, b3, d1, e1, f2 satisfy the relations

t2(d21 � e21) + 4pqb2f2 = 0;(1)

t2d1e1 + 2pqb3f2 = 0;(2)

p2(b22 + b23) +
t2

2 (�e
2
1 � d21) + q2f22 = �1:(3)

It follows that � lies on the quadric

t2x2 + pq(y2 + z2) = t2

2 (d
2
1 + e21) + pq(b22 + b23 + f22 ):

(iii.2) 2t = p + q. It follows that q � t = t � p. We shall distinguish the
subcases: (iii.2.1) q � t = t� p = 2p; (iii.2.2) q � t = t� p 6= 2p.

(iii.2.1) q � t = t � p = 2p. It follows that p : t : q = 1 : 3 : 5. If g(f; f) =
g(h; h) > 0, we obtain that the curve � has the form:

�(s) = (b1 cos(s) + c1 sin(s) + d1 cos(3s) + e1 sin(3s);

b2 cos(s) + c2 sin(s) + e3 cos(3s) + e2 sin(3s) + f2 cos(5s);

b3 cos(s) + c3 sin(s)� e2 cos(3s) + e3 sin(3s) + f2 sin(5s));
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where b1, b2, b3, c1, c2, c3, d1, e1, e2, e3, f2 satisfy the relations

�b21 + b22 + b23 � c21 + c22 + c23 + 9(2(e22 + e23)� e21 � d21) + 50f22 = �2;(1)

�c21 + c22 + c23 + b21 � b22 � b23(2)

+6(�b1d1 + b2e3 � b3e2 � c1e1 + c2e2 + c3e3) + 60e3f2 = 0;

9(d21 � e21) + 10f2(c3 � b2) = 0;(3)

b1c1 � b2c2 � b3c3(4)

�3(�c1d1 + c2e3 � c3e2 + b1e1 � b2e2 � b3e3) + 30e2f2 = 0;

3(�c1e1 + c2e2 + c3e3 + b1d1 � b2e3 + b3e2) + 5f2(b2 + c3) = 0;(5)

3(�b1e1 + b2e2 + b3e3 � c1d1 + c2e3 � c3e2) + 5f2(c2 � b3) = 0;(6)

5f2(b3 + c2)� 9d1e1 = 0:(7)

One set of solutions of the above system of equations is b1 = c1 = e2 = e3 = 0 with
b2 = �c3, b3 = c2, d1, e1, f2 related by

2b22 + 2b23 � 9(d21 + e21) + 50f22 = �2;(1)

9(d21 � e21)� 20b2f2 = 0;(3)

10b3f2 � 9d1e1 = 0;(7)

where d1 and e1 are not both 0 and f2 6= 0. So we get that � has the form

�(s) = (d1 cos(3s) + e1 sin(3s); b2 cos(s) + b3 sin(s) + f2 cos(5s);

b3 cos(s)� b2 sin(s) + f2 sin(5s));

thus it lies on the quadric

9x2 � 5(y2 + z2) = 9
2 (d

2
1 + e21)� 5(b22 + b23 + f22 ):

Hence, � belongs to a 4-parameter family of curves with frequency ratio p : t : q =
1 : 3 : 5. Next assuming that g(f; f) = g(h; h) = 0, it can be proved that � belongs
to a 5-parameter family of curves with frequency ratio p : t : q = 1 : 3 : 5.

(iii.2.2) q � t = t� p 6= 2p. Now we shall distinguish the subcases:

(iii.2.2.1) q � p = 2p; (iii.2.2.2) q � p 6= 2p.

(iii.2.2.1) q � p = 2p. It follows that p : t : q = 1 : 2 : 3. Then we get that �
belongs to a 2-parameter or to a 3-parameter family of curves with frequency ratio
p : t : q = 1 : 2 : 3. It is easy to prove that some of these curves lie on quadrics.

(iii.2.2.2) q � p 6= 2p. Then we get that � has the form

�(s) = (d1 cos(ts) + e1 sin(ts); b2 cos(ps) + b3 sin(ps) + f2 cos(qs);

b3 cos(ps)� b2 sin(ps) + f2 sin(qs));
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where b2, b3, d1, e1, f2 satisfy the relations

p2(b22 + b23) +
t2

2 (�e
2
1 � d21) + q2f22 = �1;(1)

t2(d21 � e21)� 4pqb2f2 = 0;(2)

�2pqb3f2 + t2d1e1 = 0:(3)

Thus we obtain that � lies on the quadric

t2x2 � pq(y2 + z2) = t2

2 (e
2
1 + d21)� pq(b22 + b23 + f22 ):

(iii.3) 2p = q � t. It follows that q � p = p+ t. Now we shall distinguish the
subcases: (iii.3.1) 2p = q � t = t� p; (iii.3.2) 2p = q � t 6= t� p.

(iii.3.1) 2p = q� t = t� p. This subcase is equivalent to the subcase (iii.2.1),
which was already considered.

(iii.3.2) 2p = q � t 6= t� p. In this subcase, we obtain that � has the form

�(s) = (b1 cos(ps) + c1 sin(ps); e3 cos(ts) + e2 sin(ts) + f2 cos(qs);

�e2 cos(ts) + e3 sin(ts) + f2 sin(qs));

where b1, c1, e2, e3, f2 satisfy the relations

p2

2 (�b
2
1 � c21) + t2(e22 + e23) + q2f22 = �1;(1)

p2(b21 � c21) + 4tqe3f2 = 0;(2)

p2b1c1 � 2tqe2f2 = 0:(3)

Hence, � lies on the quadric

p2x2 + tq(y2 + z2) = p2

2 (b
2
1 + c21) + tq(e22 + e23 + f22 ):

Case (iv). The corresponding proof follows the cases of Lemma 3.2 and the
same methods as in Theorem 3.1. Hence we shall distinguish the subcases:
(iv.1) 2t = q � p; (iv.2) 2t = p+ q; (iv.3) 2p = q � t.

(iv.1) 2t = q � p. It follows that q � t = t + p. In this subcase, we shall
consider the subcases: (iv.1.1) t� p = 2p; (iv.1.2) t� p 6= 2p.

(iv.1.1) 2p = t � p. It follows that p : t : q = 1 : 3 : 7. Assuming that
g(f; f) = �g(h; h) > 0, we �nd that � has the form:

�(s) = (b1 cosh(s) + b2 sinh(s) + e2 cosh(3s) + e1 sinh(3s) + f2 sinh(7s);

b2 cosh(s) + b1 sinh(s) + e1 cosh(3s) + e2 sinh(3s) + f2 cosh(7s);

b3 cosh(s) + c3 sinh(s) + d3 cosh(3s) + e3 sinh(3s));



A CLASSIFICATION OF 3-TYPE CURVES IN MINKOWSKI 3-SPACE E
3

1
, II 129

where b1, b2, b3, c3, e1, e2, e3, d3, f2 satisfy the relations

1
2 (2(b

2
1 � b22) + c23 � b23) +

9
2 (2(e

2
2 � e21) + e23 � d23)� 49f22 = �1;(1)

b23 + c23 + 6(c3e2 � b3d3 + 2(b1 � b2)e1) = 0;(2)

9(d23 + e23)� 28b2f2 = 0;(3)

b3c3 + 3(c3d3 � b3e3 + 2(b1e1 � b2e2)) = 0;(4)

b3d3 + c3e3 � 14e1f2 = 0;(5)

c3d3 + b3e3 + 14e2f2 = 0;(6)

9e3d3 + 14b1f2 = 0:(7)

Therefore, � belongs to a 2-parameter family of curves. One set of solutions of the
above system of equations is e1 = e2 = b3 = c3 = 0, with b1, b2, e3, d3, f2 related
by

b21 � b22 +
9
2 (e

2
3 � d23)� 49f22 = �1;(1)

9(d23 + e23)� 28b2f2 = 0;(3)

9e3d3 + 14b1f2 = 0:(7)

So we get that � has the form

�(s) = (b1 cosh(s) + b2 sinh(s) + f2 sinh(7s);

b2 cosh(s) + b1 sinh(s) + f2 cosh(7s); d3 cosh(3s) + e3 sinh(3s));

where d3 and e3 are not both 0, f2 6= 0. Hence, � lies on the quadric

7(x2 � y2) + 9z2 = 7(b21 � b22 � f22 ) +
9
2 (d

2
3 � e23):

Consequently, some of the curves with frequency ratio p : t : q = 1 : 3 : 7 lie on
quadrics. Further, assuming that g(f; f) = �g(h; h) < 0 or g(f; f) = g(h; h) = 0, it
can be proved that � belongs respectively to a 2-parameter or a 4-parameter family
of curves with frequency ratio p : t : q = 1 : 3 : 7.

(iv.1.2) t� p 6= 2p. Then we �nd that � has the form

�(s) = (b1 cosh(ps) + b2 sinh(ps) + f2 sinh(qs);

b2 cosh(ps) + b1 sinh(ps) + f2 cosh(qs); d3 cosh(ts) + e3 sinh(ts));

where b1, b2, d3, e3, f2 satisfy the relations

p2(b21 � b22) +
t2

2 (e
2
3 � d23)� q2f22 = �1;(1)

t2(e23 + d23)� 4pqb2f2 = 0;(2)

2pqb1f2 + t2e3d3 = 0;(3)
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d3 and e3 are not both 0, f2 6= 0. Hence we �nd that � lies on the quadric

pq(x2 � y2) + t2z2 = pq(b21 � b22 � f22 ) +
t2

2 (d
2
3 � e23):

(iv.2) 2t = p + q. It follows that q � t = t � p. In this subcase, we shall
distinguish the subcases: (iv.2.1) q�t = t�p = 2p; (iv.2.2) q�t = t�p 6= 2p.

(iv.2.1) q � t = t� p = 2p. It follows that p : t : q = 1 : 3 : 5. In this subcase,
assuming that g(f; f) = �g(h; h) > 0, we �nd that � has the form:

�(s) = (b1 cosh(s) + c1 sinh(s) + e2 cosh(3s) + e1 sinh(3s) + f2 sinh(5s);

b2 cosh(s) + c2 sinh(s) + e1 cosh(3s) + e2 sinh(3s) + f2 cosh(5s);

b3 cosh(s) + c3 sinh(s) + d3 cosh(3s) + e3 sinh(3s));

where b1, b2, b3, c1, c2, c3, d3, e1, e2, e3, f2 satisfy the relations

1
2 (�c

2
1 + c22 + c23 + b21 � b22 � b23) +

9
2 (2(e

2
2 � e21) + e23 � d23)� 25f22 = �1;(1)

1
2 (�c

2
1 + c22 + c23 � b21 + b22 + b23)(2)

+3(�c1e1 + c2e2 + c3e3 + b1e2 � b2e1 � b3d3)� 30f2e1 = 0;

9(e23 + d23) + 10f2(b2 � c1) = 0;(3)

�b1c1 + b2c2 + b3c3(4)

+3(�c1e2 + c2e1 + c3d3 + b1e1 � b2e2 � b3e3) + 30e2f2 = 0;

3(�b1e2 + b2e1 + b3d3 � c1e1 + c2e2 + c3e3)� 5f2(c1 + b2) = 0;(5)

3(�c1e2 + c2e1 + c3d3 � b1e1 + b2e2 + b3e3) + 5f2(c2 + b1) = 0;(6)

9e3d3 + 5f2(c2 � b1) = 0:(7)

Therefore, � belongs to a 4-parameter family of curves. One set of solutions of the
above system of equations is b3 = c3 = e1 = e2 = 0, with b1, b2, c1, c2, e3, d3, f2
related by

c1 = �b2;(1)

c2 = �b1;(2)

9e3d3 � 10b1f2 = 0;(3)

9(e23 + d23) + 20b2f2 = 0;(4)

b21 � b22 +
9
2 (e

2
3 � d23)� 25f22 = �1;(5)

d3 and e3 not both 0 and f2 6= 0. Hence we get that � has the form

�(s) = (b1 cosh(s)� b2 sinh(s) + f2 sinh(5s);

b2 cosh(s)� b1 sinh(s) + f2 cosh(5s); d3 cosh(3s) + e3 sinh(3s));

thus it lies on the quadric

�5(x2 � y2) + 9z2 = �5(b21 � b22 � f22 ) +
9
2 (d

2
3 � e23):
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Further, assuming that g(f; f) = g(h; h) = 0 or g(f; f) = �g(h; h) < 0, it can
be proved that � belongs respectively to a 5-parameter or a 4-parameter family of
curves with frequency ratio p : t : q = 1 : 3 : 5.

(iv.2.2) q � t = t � p 6= 2p. Next we distinguish the subcases:
(iv.2.2.1) q � p = 2p; (iv.2.2.2) q � p 6= 2p.

(iv.2.2.1) q � p = 2p. It follows that p : t : q = 1 : 2 : 3. In this subcase,
we �nd that � belongs to one of two a 2-parameter families of curves or to a 3-
parameter family of curves with frequency ratio 1 : 2 : 3. It is easy to prove that
some of them lie on quadrics. (iv.2.2.2) q � p 6= 2p. In this subcase, we �nd that
� has the form:

�(s) = (b1 cosh(ps)� b2 sinh(ps) + f2 sinh(qs);

b2 cosh(ps)� b1 sinh(ps) + f2 cosh(qs); d3 cosh(ts) + e3 sinh(ts));

where b1, b2, d3, e3, f2 satisfy the relations

p2(b21 � b22) +
t2

2 (e
2
3 � d23)� q2f22 = �1;(1)

t2(e23 + d23) + 4pqb2f2 = 0;(2)

t2d3e3 � 2pqb1f2 = 0;(3)

d3 and e3 are not both zero, b1 and b2 are not both zero and f2 6= 0. Therefore, �
lies on the quadric

�pq(x2 � y2) + t2z2 = �pq(b21 � b22 � f22 ) +
t2

2 (d
2
3 � e23):

(iv.3) 2p = q � t. It follows that q � p = p+ t. Now, we shall distinguish the
subcases: (iv.3.1) 2p = q � t = t� p; (iv.3.2) 2p = q � t 6= t� p.

(iv.3.1) 2p = q� t = t� p. This subcase is equivalent to the subcase (iv.2.1),
which was already considered.

(iv.3.2) 2p = q � t 6= t � p. Assuming that g(f; f) = �g(h; h) > 0, we �nd
that � has the form

�(s) = (e2 cosh(ts) + e1 sinh(ts) + f2 sinh(qs);

e1 cosh(ts) + e2 sinh(ts) + f2 cosh(qs); b3 cosh(ps) + c3 sinh(ps));

where b3, c3, e1, e2, f2 satisfy the relations

p2

2 (c
2
3 � b23) + t2(e22 � e21)� q2f22 = �1;(1)

p2(b23 + c23)� 4tqe1f2 = 0;(2)

p2b3c3 + 2tqe2f2 = 0;(3)

b3 and c3 are not both zero, e1 and e2 are not both zero and f2 6= 0. Hence, � lies
on the quadric

tq(x2 � y2) + p2z2 = tq(e22 � e21 � f22 ) +
p2

2 (b
2
3 � c23):

This completes the proof of the Theorem 3.2. �
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