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INTEGRAL AVERAGING TECHNIQUES

FOR OSCILLATION OF SECOND

ORDER NONLINEAR DIFFERENTIAL

EQUATIONS WITH DAMPING

Jelena V. Manojlovi�c

Communicated by Vojislav Mari�c

Abstract. New oscillation criteria are established for the second order
nonlinear di�erential equation with a damping term

[a(t) (x(t))x0(t)]0 + p(t)x0(t) + q(t)f(x(t)) = 0:

These criteria are obtained by using an integral averaging technique. More-
over, we give conditions which ensure that every solution x(t) of the forced
second order di�erential equation with a damping term

[a(t) (x(t))x0 (t)]0 + p(t)x0(t) + q(t)f(x(t)) = r(t)

satis�es lim inft!1 jx(t)j = 0.

1. Introduction

Consider the nonlinear di�erential equation with a damping term

(E) [a(t) (x(t))x0(t)]0 + p(t)x0(t) + q(t)f(x(t)) = 0

where
(i) a; p 2 C1([t0;1)), a(t) > 0 for t � t0,
(ii) q 2 C([t0;1)) and it has no restriction on its sign,
(iii)  2 C1(R),  (x) > 0 for x 6= 0,
(iv) f 2 C1(R) and

xf(x) > 0; f 0(x) � 0 for x 6= 0:
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We restrict our attention only to the solutions of the di�erential equation (E)
that exist on some ray [t0;1). Such a solution is said to be oscillatory if it has
arbitrarily large zeros, otherwise, it is said to be nonoscillatory. The equation (E)
is called oscillatory if all solutions are oscillatory.

Some e�ective oscillation criteria involve the average behaviour of the integral of
the alternating coeÆcient. For such averaging techniques for second order nonlinear
oscillation, we refer to the papers [1]{[8] and [18]{[20].

We will present new oscillation criteria in the case where equation (E) is strongly
superlinear in the sense that

(F1)

1Z
du

f(u)
<1 and

�1Z
du

f(u)
<1;

as well as in the case where equation (E) is strongly sublinear in the sense that

(F2)

Z
0+

du

f(u)
<1; and

Z
0�

du

f(u)
<1:

The special case f(x) = jxj�sgnx with 0 < � < 1 corresponds to the sublinear case
and with � > 1 corresponds to the superlinear case.

Investigation of the second order nonlinear oscillation in this work is motivated
by the most recent contributions in the sphere of weighted averages. Namely, among
numerous papers dealing with averaging techniques in the study of second order
nonlinear oscillation majority involve positive, continuously di�erentiable function
% such that %0 is nonnegative and decreasing function and the function (t � s)�,
for � � 1 integer or real, as the weighted functions. It is therefore natural to ask
if it is possible to use more extensive class of functions as the weighted functions.
An aÆrmative answer to this question has been given for the �rst time by Ch. G.
Philos [15], who has used averaging functions from a general class of parameter
functions H : D = f(t; s) : t � s � t0g ! R and proved the following oscillation
criterion for the linear di�erential equation:

Theorem A. Let H : D = f(t; s) : t � s � t0g ! R be a continuous function,

which is such that

H(t; t) = 0 for t � t0; H(t; s) > 0 for all (t; s) 2 D

and has a continuous and nonpositive partial derivative on D with respect to the

second variable. Moreover, let h : D ! R be a continuous function with

�
@H

@S
(t; s) = h(t; s)

p
H(t; s) for all (t; s) 2 D

Then, equation x00(t) + q(t)x(t) = 0 is oscillatory if

lim sup
t!1

1

H(t; t0)

Z t

t0

h
H(t; s)q(s)�

h2(t; s)

4

i
ds =1:
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By using such averaging functions Grace [8] proved oscillation theorems for
second order di�erential equations with damping, while Li and Yeh [10] proved
oscillation criteria for the undamped di�erential equation. The purpose of this
paper is to establish new criteria for the oscillation of the equation (E) by using
averaging conditions of type introduced by Philos [15] and following the results of
Grace and Lalli [2].

2. Main results

Let the functions f(x) and  (x) satisfy

(C1)

Z
0+

 (u)

f(u)
du <1;

Z
0�

 (u)

f(u)
du <1:

Furthermore, we de�ne the functions

�(x) =

8>><
>>:

Z x

0+

 (u)

f(u)
du; x > 0Z x

0�

 (u)

f(u)
du; x < 0

;

F1(x) =

8>><
>>:

Z x

0+

du

f(u)
; x > 0Z x

0�

du

f(u)
; x < 0

; F2(x) =

8>><
>>:

Z
1

x

du

f(u)
; x > 0

Z
�1

x

du

f(u)
; x < 0

:

Also, following the idea of Philos (see for example [11]{[14] and [16], [17]) we intro-
duce the constant Mf; de�ned by

Mf; = min

(
inf
x>0

f 0(x)�(x)
 (x)

1 + inf
x>0

f 0(x)�(x)
 (x)

;
inf
x<0

f 0(x)�(x)
 (x)

1 + inf
x<0

f 0(x)�(x)
 (x)

)
;

and suppose that the functions f and  are such that 0 < Mf; < 1.

Theorem 1. Let the function p(t) be nonnegative on [t0;1) and let the func-

tion f satis�es (F1). Suppose that there exists a continuous function

H : D = f (t; s) j t � s � t0 g ! R

such that

(H1) H(t; t) = 0; t � t0; H(t; s) > 0; (t; s) 2 D

(H2)
@H

@s
(t; t) = 0; t � t0;

@H

@s
(t; s) � 0; (t; s) 2 D

(H3)
@2H

@s2
(t; s) � 0; (t; s) 2 D

(H4) lim inf
t!1

@H

@s
(t; s)

H(t; s)
> �1; s � t0:
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Equation (E) is oscillatory if there exists a positive function % 2 C2([t0;1)), such
that for some � 2 [0;Mf; ]

�
p(t)%�(t)

a(t)

�
0

� 0; t � t0;(R1)

a0(t)

a(t)

%0(t)

%(t)
�

�

1� �

%00(t)

%(t)
+

1

4�

�
a0(t)

a(t)

�2

; t � t0:(R2)

lim sup
t!1

1

H(t; t0)

Z t

t0

H(t; s)%�(s)
q(s)

a(s)
ds =1:(C2)

Proof. Assume the conclusion is false. Then there is a nonoscillatory solution
x(t) of (E), with x(t) 6= 0 for t � T . If we de�ne w(t) by

(1) w(t) = %�(t)�(x(t)); t � T

for every t � T we obtain

w0(t) = �
%0(t)

%(t)
w(t) + %�(t)

 (x(t))x0(t)

f(x(t))

and consequently

w00(t) = �
%0(t)

%(t)
w0(t) + �

�
%0(t)

%(t)

�
0

w(t) +
%�(t)

a(t)

�
a(t) (x(t))x0(t)

�
0

f(x(t))

+

�
%�(t)

a(t)

�
0

a(t)

%�(t)

%�(t) (x(t)x0(t)

f(x(t))

� %�(t)
 (x(t))f 0(x(t))

�
x0(t)

�2
f2(x(t))

:

Denote by Q(t) = w0(t) � �
%0(t)

%(t)
w(t), so that x0(t) =

Q(t) f(x(t))

%�(t) (x(t))
. Then, from

the previous equality we get

(2)

w00(t) = �
%0(t)

%(t)
Q(t) + �2

�
%0(t)

%(t)

�2

w(t) + �

"
%00(t)

%(t)
�

�
%0(t)

%(t)

�2
#
w(t)

� %�(t)
q(t)

a(t)
� %�(t)

p(t)

a(t)

x0(t)

f(x(t))
+

�
�
%0(t)

%(t)
�
a0(t)

a(t)

�
Q(t)

�
�(x(t))f 0(x(t))

 (x(t))w(t)
Q2(t) :

Using the de�nition of �, we have

(3)
f 0(x(t))�(x(t))

 (x(t))
�

�

1� �
:
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By the method of completing the square, the previous equality becomes

w00(t) �� %�(t)
q(t)

a(t)
� %�(t)

p(t)

a(t)

x0(t)

f(x(t))

�
�

(1� �)w(t)

�
Q(t)�

1� �

2�
w(t)

�
2�
%0(t)

%(t)
�
a0(t)

a(t)

��2

+ (1� �)

"
�

1� �

%00(t)

%(t)
+

1

4�

�
a0(t)

a(t)

�2

�
a0(t)

a(t)

%0(t)

%(t)

#
w(t)

By the condition (R2), we get

w00(t) � �%�(t)
q(t)

a(t)
� %�(t)

p(t)

a(t)

x0(t)

f(x(t))
; t � T;

and therefore

(4)

Z t

T

H(t; s)%�(s)
q(s)

a(s)
ds

� �

Z t

T

H(t; s)w00(s) ds�

Z t

T

H(t; s)%�(s)
p(s)

a(s)

x0(s)

f(x(s))
ds:

Since

�

Z t

T

H(t; s)w00(s) ds = H(t; T )w0(T ) +

Z t

T

@H

@s
(t; s)w0(s) ds

= H(t; T )w0(T )�
@H

@s
(t; T )w(T )

�

Z t

T

@2H

@s2
(t; s)w(s) ds;

condition (H3) implies

(5) �

Z t

T

H(t; s)w00(s) ds � H(t; T )w0(T )�
@H

@s
(t; T )w(T ):

Using condition (R1) and applying the Bonnet theorem, we conclude that for any
�xed s � T and for some � 2 [T; s]

(6)

�

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du = �%�(T )

p(T )

a(T )

Z �

T

x0(u)

f(x(u))
du

= %�(T )
p(T )

a(T )

Z x(T )

x(�)

d�

f(�)
:
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Since

Z x(T )

x(�)

d�

f(�)
<

8<
:

0; if x(�) > x(T )Z x(T )

0+

d�

f(�)
; if x(�) � x(T )

for x > 0;

Z x(T )

x(�)

d�

f(�)
<

8<
:

0; if x(�) < x(T )Z x(T )

0�

d�

f(�)
; if x(�) � x(T )

for x < 0;

and %�(T ) p(T )
a(T ) � 0, we obtain from (6) that

(7) �

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du � %�(T )

p(T )

a(T )
F1[x(T )] = K1 for all s � T:

Now, using (7), we obtain

(8)

�

Z t

T

H(t; s)%�(s)
p(s)

a(s)

x0(s)

f(x(s))
ds

=

Z t

T

H(t; s)d
�
�

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du
�

= �

Z t

T

@H

@s
(t; s)

�
�

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du

�
ds

� K1

�
�

Z t

T

@H

@s
(t; s) ds

�
= K1H(t; T ):

From (4), by (5) and (8), we obtainZ t

T

H(t; s)%�(s)
q(s)

a(s)
ds � L1H(t; T )�

@H

@s
(t; T )w(T ):

where L1 = w0(T ) +K1. Consequently,

lim sup
t!1

1

H(t; T )

Z t

T

H(t; s)%�(s)
q(s)

a(s)
ds � L1 � w(T ) lim inf

t!1

@H

@s
(t; T )

H(t; T )
;

which together with condition (H4) contradicts condition (C2). �

Theorem 2. Let the function p(t) be a nonpositive on [t0;1) and let the

function f satis�es (F2). Suppose that there exists a continuous function H 2
C(D;R) which satis�es conditions (H1){(H4). The equation (E) is oscillatory if

there exists a positive function % 2 C2([t0;1)), such that for some � 2 [0;Mf; ]
satis�es conditions (R2),

(R3)

�
p(t)%�(t)

a(t)

�
0

� 0; t � t0;

and (C2).
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Proof. We consider a nonoscillatory solution x on an interval [T;1), T � t0
of the di�erential equation (E) and as in the proof of Theorem 1, we observe that
(4) and (5) hold for all t � T , where the function w(t) is de�ned by (1).

Using the fact that the function %�(t) p(t)
a(t) is nonpositive and condition (R3),

by the Bonnet theorem we have for a �xed s � T and for some � 2 [T; s]

(9)

�

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du = �%�(T )

p(T )

a(T )

Z �

T

x0(u)

f(x(u))
du

= �%�(T )
p(T )

a(T )

Z x(�)

x(T )

d�

f(�)
:

Since �%�(T ) p(T )
a(T ) � 0 and

Z x(�)

x(T )

d�

f(�)
<

8<
:

0; if x(�) < x(T )Z
1

x(T )

d�

f(�)
; if x(�) � x(T )

for x > 0;

Z x(�)

x(T )

d�

f(�)
<

8<
:

0; if x(�) > x(T )Z
�1

x(T )

d�

f(�)
; if x(�) � x(T )

for x < 0;

we have for s � T

�

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du � �%�(T )

p(T )

a(T )
F2[x(T )] = K2:

Hence, for t � T , we get

�

Z t

T

H(t; s)%�(s)
p(s)

a(s)

x0(s)

f(x(s))
ds

= �

Z t

T

@H

@s
(t; s)

�
�

Z s

T

%�(u)
p(u)

a(u)

x0(u)

f(x(u))
du

�
ds

� K2

�
�

Z t

T

@H

@s
(t; s) ds

�
= K2H(t; T ):

Thus, (4) becomes

Z t

T

H(t; s)%�(s)
q(s)

a(s)
ds � L2H(t; T )�

@H

@s
(t; T )w(T ):

where L2 = w0(T ) + K2. Then, we come to the contradiction as in the proof of
Theorem 1. �

Next theorem is an oscillation criterion for the equation (E) when no restriction
is imposed on the sign of the damping term p(t).
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We assume that

(	)  (x) � c > 0 for all x

and for arbitrary positive function % 2 C2([t0;1)) we de�ne the functions

1(t) =
a0(t)

a(t)

%0(t)

%(t)
�

�

1� �

%00(t)

%(t)
�

1

4�

�
a0(t)

a(t)

�2

2(t) = p(t)

�
1

4c

p(t)

a(t)
+
a0(t)

2a(t)
� �

%0(t)

%(t)

�
:

Theorem 3. Let the function H 2 C(D;R) satis�es conditions (H1){(H4). If
there exists a positive function % 2 C2([t0;1)), such that for some � 2 [0;Mf; ]

(R4) 2(t) � 0 and 2(t) � � c a(t)1(t) for t � t0

and condition (C2) holds, then the equation (E) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (E), with x(t) 6= 0
for all t � T and w(t) de�ned by (1). Then, as in the proof of Theorem 1. we have
that (2) holds. Since

%�(t)
p(t)

a(t)

x0(t)

f(x(t))
=
p(t)

a(t)

Q(t)

 (x(t))
;

using (3), (2) now becomes

w00(t) �� %�(t)
q(t)

a(t)
+

"
�
%00(t)

%(t)
+ � (�� 1)

�
%0(t)

%(t)

�2
#
w(t)

+

�
2�

%0(t)

%(t)
�
a0(t)

a(t)
�

p(t)

a(t) (x(t))

�
Q(t)�

�

(1� �)w(t)
Q2(t) :

By the method of completing the square, we obtain

(8)

w00(t) � �%�(t)
q(t)

a(t)
+

"
�
%00(t)

%(t)
+ �(� � 1)

�
%0(t)

%(t)

�2
#
w(t)

�
�

(1� �)w(t)

�
Q(t)�

1� �

2�
w(t)�(t)

�2
+

1� �

4�
�2(t)w(t) ;

where we set that

�(t) = 2�
%0(t)

%(t)
�
a0(t)

a(t)
�

p(t)

a(t) (x(t))
:
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Further, using assumptions (	) and (R4), we have that

�
%00(t)

%(t)
+ � (�� 1)

�
%0(t)

%(t)

�2

+
1� �

4�

�
2�

%0(t)

%(t)
�
a0(t)

a(t)
�

p(t)

a(t) (x(t))

�2

= �(1� �)1(t) +
1� �

�

1

 (x(t))

�

"�
p(t)

a(t)

�2
1

4 (x(t))
+
p(t)

a(t)

�
a0(t)

2 a(t)
� �

%0(t)

%(t)

�#

� (� � 1)1(t) +
1� �

�

1

 (x(t))

�

"
1

4 c

�
p(t)

a(t)

�2

+
p(t)

a(t)

�
a0(t)

2 a(t)
� �

%0(t)

%(t)

�#

= (� � 1)1(t) +
1� �

�

2(t)

a(t) (x(t))
�

1� �

c� a(t)

�
2(t)� c � a(t) 1(t)

�
� 0 :

Accordingly, from (8) we obtain

w00(t) � �%�(s)
q(s)

a(s)
; t � T:

Since the function H satis�es the same conditions as in Theorem 1, (3) holds for
all t � T . Therefore, for all t � T , we haveZ t

T

H(t; s)%�(s)
q(s)

a(s)
ds � �

Z t

T

H(t; s)w00(s) ds

� H(t; T )w0(T )�
@H

@s
(t; T )w(T );

which leads us to the contradiction to (C2) by the application of condition (H4),
as in the proof of Theorem 1. �

Remark 1. Taking H(t; s) = (t� s) for some constant  > 1, which obviously
satis�es the conditions (H1) � (H4), Theorem 3 reduces to Theorem 2 in Grace,
Lalli [2].

By choosing various speci�c functions H(t; s), we can derive several useful
corollaries. Let us consider the function H de�ned by

H(t; s) =

�Z t

s

du

�(u)

�
for t � s � t0;

for some constant  > 1, where �(t) is a positive continuous function on [t0;1)
such that

(C3)

Z
1

t0

du

�(u)
=1
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Clearly,
H(t; t) = 0 for t � t0; H(t; s) > 0 for t > s � t0

and

@H

@s
(t; s) = �



�(s)

�Z t

s

du

�(u)

��1
< 0 for t � s � t0;

lim inf
t!1

@H(t; s)

@s
H(t; s)

= � lim sup
t!1



�(s)

�Z t

s

du

�(u)

��1
= 0 > �1:

Further, if the function �(t) satis�es the condition

(C4) �0(t)

Z t

s

du

�(u)
� 1� ;

then the function H satis�es condition (H3). Thus, we have the following corollary:

Corollary 1. Let �(t) be a positive continuous function on [t0;1) that sat-
is�es conditions (C3) and (C4) for some constant  > 1. The equation (E) is

oscillatory in the strongly sublinear case if p(t) � 0 for t � t0 and there exists a

positive function % 2 C2([t0;1)) that satis�es conditions (R1), (R2) and

lim sup
t!1

�Z t

t0

du

�(u)

�� Z t

t0

�Z t

s

du

�(u)

�
%�(s)

q(s)

a(s)
ds =1 ;

for some � 2 [0;Mf; ].

By similar arguments, we can formulate corollaries from Theorems 2 and 3.
Moreover, Li and Yeh have proved in [10] that the conditions (H1){(H4) are

also satis�ed by the following functions:

H(t; s) = [A(t) �A(s)] ; for t � s � t0;  > 1;

H(t; s) =

�
log

A(t)

A(s)

�
; for t � s � t0;  > 1;

where A(t) is a positive di�erentiable function such that A0(t) = 1
a(t) and also the

following functions

H(t; s) =

�
ln
A1(s)

A1(t)

�
A1(t); for t � s � t0;  > 1

H(t; s) =

�
1

A1(t)
�

1

A1(s)

�
A2
1(s); for t � s � t0;  > 1;

where

A1(t) =

Z
1

t

ds

a(s)
<1; t � t0:

Therefore, by Theorems 1, 2 and 3, we get many new oscillation criteria for the
equation (E).
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3. Asymptotic behavior of solutions of the forced di�erential equation

Let us consider the forced di�erential equation with a damping term

(E1) [a(t) (x(t))x0(t)]0 + p(t)x0(t) + q(t)f(x(t)) = r(t)

where r 2 C([t0;1);R).

Theorem 4. If in addition to the hypotheses of Theorem 1, we assume that

(C5) lim sup
t!1

1

H(t; T )

Z t

T

H(t; s)
%�(s)

a(s)
jr(s)j ds <1; for all T � t0;

then every solution x(t) of (E1) satis�es lim inft!1 jx(t)j = 0.

Proof. Assume the conclusion is false. Then there is a solution x(t) of (E1)
such that satis�es lim inft!1 jx(t)j > 0 and therefore, there exist m > 0, M > 0
and T � t0 such that

jx(t)j > m and jf(x(t))j �M for t � T:

As in the proof of Theorem 1, we obtain for every t � T

w00(t) �
%�(t)

a(t)

�
r(t)

f(x(t))
� q(t)

�
� %�(t)

p(t)

a(t)

x0(t)

f(x(t))

�
%�(t)

a(t)

jr(t)j

M
� %�(t)

q(t)

a(t)
� %�(t)

p(t)

a(t)

x0(t)

f(x(t))
:

Consequently,Z t

T

H(t; s)%�(s)
q(s)

a(s)
ds � �

Z t

T

H(t; s)w00(s) ds

+
1

M

Z t

T

H(t; s) %�(s)
jr(s)j

a(s)
ds�

Z t

T

H(t; s)%�(s)
p(s)

a(s)

x0(s)

f(x(s))
ds:

Following the procedure of the proof of Theorem 1, we getZ t

T

H(t; s)%�(s)
q(s)

a(s)
ds �

�
w0(T ) + %�(T )

p(T )

a(T )
F1[x(T )]

�
H(t; T )

�
@H

@s
(t; T )w(T ) +

1

M

Z t

T

H(t; s) %�(s)
jr(s)j

a(s)
ds;

which implies

lim sup
t!1

1

H(t; T )

Z t

T

H(t; s)%�(s)
q(s)

a(s)
ds � w0(T ) + %�(T )

p(T )

a(T )
F1[x(T )]

� w(T ) lim inf
t!1

@H

@s
(t; T )

H(t; T )
+

1

M
lim sup
t!1

1

H(t; T )

Z t

T

H(t; s) %�(s)
jr(s)j

a(s)
ds:

In view od conditions (C2), (H4) and (C5), we obtain the desired contradiction. �
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Corollary 2. Let conditions (C2) and (C5) in Theorem 4 be replaced by

(C6) lim sup
t!1

1

H(t; T )

Z t

T

H(t; s)
%�(s)

a(s)

�
q(s)� P jr(s)j

�
ds =1;

for any T � t0 and P > 0; then the conclusion of Theorem 5 holds.

By a similar argument, from Theorems 2 and 3 we can derive the following
results.

Theorem 5. Every solution x(t) of (E1) satis�es lim inft!1 jx(t)j = 0 if the

hypotheses of Theorem 2 hold and the condition (C5) is satis�ed.

Corollary 3. Let conditions (C2) and (C5) in Theorem 5 be replaced by

(C6); then the conclusion of Theorem 5 holds.

Theorem 6. Every solution x(t) of (E1) satis�es lim inft!1 jx(t)j = 0 if the

hypotheses of Theorem 3 hold and the condition (C5) is satis�ed.

Corollary 4. Let conditions (C2) and (C5) in Theorem 6 be replaced by

(C6); then the conclusion of Theorem 6 holds.

References

[1] S. R. Grace, B. S. Lalli, C. C. Yeh, Oscillation theorems for nonlinear second order di�erential

equations with a nonlinear damping term, SIAM J. Math. Anal. 15 (1984), no. 6, 1082{1093.

[2] S. R. Grace, B. S. Lalli, On the second order nonlinear oscillations, Bull. Inst. Math. Acad.
Sinica 15 (1987), no. 3, 297{309.

[3] S. R. Grace, B. S. Lalli, C. C. Yeh, Addendum: Oscillation theorems for nonlinear second

order di�erential equations with a nonlinear damping term, SIAM J. Math. Anal. 19 (1988),
no. 5, 1252{1253.

[4] S. R. Grace, Oscillation theorems for second order nonlinear di�erential equations with

damping, Math. Nachr. 141 (1989), 117{127.

[5] S. R. Grace, B. S. Lalli, Oscillation theorems for nonlinear second order di�erential equations

with a damping term, Comment. Math. Univ. Carolinae 30 (1989), no. 4, 691{697.

[6] S. R. Grace, Oscillation criteria for second order di�erential equations with damping, J.
Austral. Math. Soc. (Series A) 49 (1990), 43{54.

[7] S. R. Grace, B. S. Lalli, Integral averaging techniques for the oscillation of second order

nonlinear di�erential equations, J. Math. Anal. and Appl. 149 (1990), 277{311.

[8] S. R. Grace, Oscillation theorems for nonlinear di�erential equations of second order, J.
Math. Anal. and Appl. 171 (1992), 220{241.

[9] H. J. Li, Oscillation criteria for second order linear di�erential equations, J. Math. Anal.
and Appl. 194 (1995), 217{234.

[10] H. J. Li, C. C. Yeh, Oscillation of second order sublinear di�erential equations, Dynamic
Systems Appl. 6 (1997), 529{534.

[11] Ch. G. Philos, Oscillation of sublinear di�erential equations of second order, Nonlinear Anal.
7 (1983), no. 10, 1071{1080.

[12] Ch. G. Philos, On second order sublinear oscillation, Aequationes Math. 27 (1984), 242{254.

[13] Ch. G. Philos, Integral averages and second order superlinear oscillation, Math. Nachr. 120
(1985), 127{138.

[14] Ch. G. Philos, Integral averaging techniques for the oscillation of second order sublinear

ordinary di�erential equations, J. Austral. Math. Soc. (Series A) 40 (1986), 111{130.



104 MANOJLOVI�C

[15] Ch. G. Philos, Oscillation theorems for linear di�erential equations of second order, Arch.
Math. (Basel) 53 (1989), 482{492.

[16] Ch. G. Philos, On oscillation of second order sublinear ordinary di�erential equations with

alternating coeÆcients, Math. Nachr. 146 (1990), 105{116.
[17] Ch. G. Philos, Integral averages and oscillation of second order sublinear di�erential equa-

tions, Di�. Integ. Equat. 4 (1991), no. 1, 205{213.
[18] J. Yan, A note on an oscillation criterion for an equation with damped term, Proc. Amer.

Math. Soc. 90 (1984), no. 2, 277{280.
[19] J. Yan, Oscillation theorems for second order linear di�erential equations with damping,

Proc. Amer. Math. Soc. 98 (1986), no. 2, 276{282.
[20] C. C. Yeh, Oscillation theorems for nonlinear second order di�erential equations with damped

term, Proc. Amer. Math. Soc. 84 (1982), no. 3, 397{402.

Prirodno-matemati�cki fakultet (Received 10 12 1998)
18000 Ni�s (Revised 08 05 2000)
Yugoslavia

jelenam@archimed.filfak.ni.ac.yu


