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Abstract. In [3] and [4], for some class of nonlinear �rst order ordinary
di�erential equations which contain delta distribution limits of solutions are
computed when delta distribution is substituted by a delta net. We �nd a solu-

tion to the systems and equations of the above form in the sense of Colombeau
generalized function spaces. Beside of the globally Lipschitz case in Theorem
2.1 whish is already solved in [1], the cases when a nonlinearity is not globally
Lipschitz but with \proper" sign are covered by Theorem 3.2.

1. Introduction

We consider a class of systems of nonlinear ordinary di�erential equations per-
turbed by some singular element, which will be represented by some generalized
function. The considered system is of the form

y0(t) = f(t; y(t)) +G(t); y(�1) = y0;(1)

where f : Rn+1 ! R is a smooth function, polynomially bounded together with all
its derivatives and G is a generalized function. The main example will be G = Æ(�).
In order to give a sense to operations on such elements, which are impossible in
the Schwartz distribution space, one can try to solve this equation in some speci�c
generalized function space. We will use the algebra of global Colombeau generalized
functions, Gg , which will be de�ned below. Elements of this algebra are some
equivalence classes for nets of smooth functions. Solutions to the given system will
also belong to the space of global Colombeau generalized functions.

The question whether there exists a limit of this net in some space of classical
functions is always interesting, but we will not discus it here. We shall only describe
two cases when the system reduces to a single equation in the last section of the
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paper. These results are obtained in [3] and [4]. In the �rst paper f is globally
Lipschitz with respect to y, and the equation is perturbed with Æ, its derivatives
or Æ multiplied by some additional nonlinearity. In [4], a limit of the generalized
solutions is found for some cases when f is not globally Lipschitz function with
respect to dependent variable. All of these equations are perturbed by derivatives
of the delta function.

In both papers the limits are found by substituting the delta function with
some molli�er, without considering them as elements of some generalized function
space.

In this paper we consider equations in so-called global Colombeau algebra Gg
de�ned in the following way.

Let 
 be an open or closed interval in R. EM;g(
) is the space of all smooth
functions G" : 
 ! R, " 2 (0; 1), such that for every � 2 N0 there exist N 2 N0 ,
� > 0 and c > 0 such that

kG(�)
" kL1(
) � c"�N ; " < �:(2)

Ng(
) is the space of all functions G" 2 EM;g(
) such that for every � 2 N0 and
a 2 R there exist � > 0 and c > 0 such that

kG(�)
" kL1(
) � c"a; " < �:(3)

Then, global Colombeau algebra is de�ned as the factor algebra

Gg(
) = EM;g(
)=Ng(
):

When G"; " 2 (0; 1) are real constants then we obtain the spaces RM , R0 and
�R that correspond to EM;g(
), Ng(
) and Gg(
), respectively.

We shall �x a function � 2 C1(R) such that
R
�(x) dx = 1, supp� = [�a; b],

a; b > 0, and �(x) � 0, x 2 R. Let us denote �"(x) = "�1�(x"�1), x 2 R.
For the sake of the embedding space of distributions in Gg(
) we shall use a

function �" 2 C1(R) such that supp�" � 
�max(a";b"), and �" equals one on the
set 
�2max(a";b") (where 
� = fx 2 
 : dist(x; @(
)) � �g). Now, the image of a
distribution g 2 D0(int(
)) is de�ned by its representative G" = (g � �") � �". Let

us remark that the delta function is represented by �"(x) =
1

"
�
�x
"

�
.

2. Globally Lipschitz nonlinearity

Assume (without loss of generality) that 
 = [�1; T ]. We will use the norm
kyk = maxfjy1j; : : : ; jynjg in Rn .

The following theorem is a special case of the one from [1], but we are giving
a proof of it because the similar idea is used in the further assertions.

Theorem 2.1. Let f be a globally Lipschitz function with respect to y uniformly
on compact intervals of 
. Then there exists a unique generalized solution to the
system (1).

Proof. For every " > 0 equation (1) is of the form

y0"(t) = f(t; y"(t)) +G"(t); y"(�1) = y0:(4)
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The i-th component of the solution to (4) is given by

yi"(t) = yi0 +

Z t

�1

�
f i(s; y"(s)) +Gi

"(s)
�
ds:

Then

jyi"(t)j � jyi0j+

Z t

�1

jf i(s; y"(s))� f i(s; 0) + f i(s; 0) +Gi
"(s)j ds

� ky0k+

Z t

�1

nLfky"(s)k ds

+ (t+ 1)

�
sup

s2[�1;T ]

kf(s)k+ sup
s2[�1;T ]

kG"(s)k

�
;

where kf(t)k = sup1�i�n jf
i(t)j and Lf is Lipschitz's constant.

By using Gronwall's type inequality we obtain

ky"(t)k �

�
ky0k+(t+1) sup

s2[�1;T ]

�
kf(s)k+ kG"(s)k

��
� en(t+1)Lf = o("�N ); "! 0;

for some N 2 N0 .
One can similarly show that all derivatives of y"(t) have the same property,

which means that y"(t) 2 EM;g([�1; T ]).
In order to show that the solution to equation (4) is unique and that it does

not depend on chosen representatives, we consider equation

y01"(t) = f(t; y1"(t)) +G"(t) +N1"(t); y1"(�1) = y01;

and equation

y02"(t) = f(t; y2"(t)) +G"(t) +N2"(t); y2"(�1) = y02;

where N1"(t); N2"(t) 2 Ng([�1; T ]) and y01 � y02 2 R0 . In other words,

y01"(t)� y02"(t) = f(t; y1"(t))� f(t; y2"(t)) +N"(t); y1" � y2"(�1) = y01 � y02;

(5)

where N"(t) = N1"(t)�N2"(t).
The i-th component of a solution to equation (5) is

yi1"(t)� yi2"(t) = yi01 � yi02 +

Z t

�1

�
f i(s; y1"(s))� f i(s; y2"(s))

�
ds+

Z t

�1

N i
"(s) ds;

which implies

jyi1"(t)� yi2"(t)j � jyi01 � yi02j+

Z t

�1

jN i
"(s)j ds

+

Z t

�1

�����
nX
j=1

@f i

@yj
(s; �j")

�
yj1"(s)� yj2"(s)

������ ds:
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Gronwall's type inequality gives

k(yi1" � yi2")(t)k �

�
ky01 � y02k+

Z t

�1

kN"(s)k ds

�
� en(t+1)Lf :

Since ky01�y02k; kN"(t)k � "p, as "! 0, for every p it follows that k(yi1"�yi2")(t)k
has the same property.

Further on, we have�
yi1"(t)

�0
�
�
yi2"(t)

�0
= f i(t; y1"(t))� f i(t; y2"(t));

which means that

k
�
yi1"(t)

�0
�
�
yi2"(t)

�0
k �

����
nX

j=1

@f i

@yj
(t; �j")

�
yj1"(t)� yj2"(t)

�����:
Since supt2[�1;T ]

i=1;:::;n

���yi1" � yi2"
�
(t)
�� = o("p) as " ! 0, for every p, it follows that

k
�
yi1"
�0
�
�
yi2"
�0
(t)k has the same property. All the other derivatives can be esti-

mated in a similar manner. �

3. Some locally Lipschitz nonlinearities

Condition that f is a globally Lipschitz function is not necessary for existence
of limit of generalized solution. This is illustrated by the following results.

Lemma 3.1. Let Æh" denote generalized function which obtained by the regular-
isation of Æ-distribution in the following way

Æh" = [�h" ]; h" =
1

p
p
log "�1

:

There exists a unique solution to equation

y0(t) = �Cy(t)jy(t)jp + �Æ0h"(t); y(�1) = y0;(6)

where p > 1; C = const > 0 and � > 0.

Proof. In the terms of the representatives, equation (6) is of the form

y0"(t) = �Cy"jy"j
p + ��0"(t); y(�1) = y0:(7)

Its solution can be written in the following way

y"(t) = y1"(t) + ��"(t);

where

y01"(t) = �C(y1"(t) + ��"(t)) � jy1"(t) + ��"(t)j
p;(8)

y0" = �y(�a");

and �y(t), t 2 [�1; T ] is the classical solution to

y0(t) = �Cy(t)jy(t)jp; y(�1) = y0:
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Suppose that y0" > 0. Using the comparison theorem it follows that solution to
equation (8) with initial data y1"(�ah") = y0" is less or equal to the solution to

v0"(t) = �C (v"(t) + g"(t)) jv"(t) + g"(t)j
p
; v" (�ah") = y0";(9)

where g"(t) � ��h"(t) and

g"(t) =

8><
>:
0; t < ��a"
��"; t 2

�
��a";�b"

�
0; t > �b"

for some �a" � ah", �b" � bh", ��" � h�1" and ��" !1, as "! 0.
This means that y1"(t) � v"(t) where

v0"(t) =

8><
>:
�Cv" jv"j

p
; v"(�a") = y0"; t 2 [�a";��a"]

�C
�
v" + ��"

� ��v" + ��"
��p ; v" (��a") = �y0"; t 2

�
��a";�b"

�
�Cv" jv"j

p
; v"

�
�b"
�
= ~y0"; t 2

�
�b"; b"

�(10)

and �y0" = y1"(��a") and ~y0" = y1"(�b").
Solution to the second equation in (10) is given by

v"(t) =
�y0" + ��"

p

q
(�1)p + Cp

�
�y0" + ��"

�p
(t+ �a")

� ��":

One can see that

��" � �a" � C� < 1;

where C� is a constant which depend on �. Then

��p" � �a" = ��" � �a" � ��
p�1
" � C� � ��

p�1
" ;

and

v"(t) �
��"

const � ��
(p�1)=p
"

� ��";

for " small enough. The term from the right hand side tends to �1 as " tends to
zero (since p > 1). We see that v"(�b") is not bounded when "! 0.

Solutions of the �rst and third equation in (10) do not change point v"(b")
signi�cantly.

Since jy1"(t)j � jv"(t)j it follows that y1"(t) satis�es relation (2), which implies
that y"(t) also satis�es relation (2).

From (7) it follows that

jy0"(t)j � Cjy"j
p+1 + ��0h"(t);(11)

which implies that y0"(t) satis�es relation (2).
One can show that all the derivatives satisfy relation (2), which means that

function y"(t) is in EM;g([�1; T ]). Thus, solution of equation (7) exists.
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Let y1"(t) and y2"(t) be two solutions of equation (7), with initial data y01 and
y02 respectively and y01 � y02 2 R0 . Denote y12"(t) = y1"(t)� y2"(t). Then

y012"(t) = �Cy1"(t)jy1"(t)j
p � Cy2"(t)jy2"(t)j

p +N"(t)

= �Cy1"(t)jy1"(t)j
p � Cy2"(t)jy2"(t)j

p

+ y1"(t)jy2"(t)j
p � y1"(t)jy2"(t)j

p +N"(t)

= �Cy1"(t) [jy1"(t)j
p � jy2"(t)j

p]� Cjy2"(t)j
p [y1"(t)� y2"(t)] +N"(t)

= �C [y1"(t)� y2"(t)] [y1"(t)(y1"; y2")� jy2"(t)j] +N"(t)

= �Cy12"(t) [y1"(t)(y1"; y2")� jy2"(t)j] +N"(t);

where (y1"; y2") is function homogeneous of the degree p�1 with respect to y1"; y2"
and N"(t) 2 Ng([�1; T ]). This implies that

jy12"(t)j � jy01 � y02j+

Z t

�1

jN"(u)j du

+ C

Z t

�1

jy1"(u)(y1"; y2")� jy2"(u)jj � jy12"(u)j du:

Since j(x; y)j � jmax(x; y)j and y1"(t); y2"(t) � C1
p
p
log "�1 Gronwall's type in-

equality gives

jy12"(t)j �

�
jy01 � y02j+

Z t

�1

jN"(u)j du

�

� exp

�
C

Z t

�1

jy1"(u)(y1"; y2")� jy2"(u)jj du

�
;

which implies that y12"(t) satis�es relation (3).
Further, we have

jy012"(t)j � Cjy12"(t)j � jy1"(t)(y1"; y2")� jy2"(t)jj+N"(t);

and y12"(t) satis�es relation (3), which implies that y012"(t) satis�es the same rela-
tion.

One can similarly show that all derivatives of y12"(t) satisfy relation (3), and
the uniqueness result follows. �

One can analyse the case y0" < 0 in the same way.

Theorem 3.2. Let f be monotone and polynomially bounded together with all
its derivatives with respect to y such that the following hold

(1) f(t; 0) = 0 for every t 2 [0;1).
(2) If y > 0

f(t; y) � �C1yjyj
p1 ; t 2 [�t0; t0]; for some C1 > 0; and p1 > 1;(12)

and if y < 0

f(t; y) � �C2yjyj
p2 ; t > 0; for some C2 > 0; and p2 > 1:(13)

(3) kf 0(t; y)kL1([0;1]) � C(1 + jyjm); y 2 R.
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Then there exists a unique solution to

y0(t) = f(t; y(t)) + �Æ0(t); y(�1) = y0;(14)

where representative of Æ-distribution is of form �h" ; h" =
1

m
p
log "�1

.

Proof. For every " > 0 equation (14) is of form

y0"(t) = f(t; y"(t)) + ��0h"(t); y"(�1) = y0:(15)

Denote by �y1 the classical solution to equation

y0(t) = f(t; y(t)); y(�1) = y0:

The solution y1" to the equation

y01"(t) = f (t; y1"(t) + ��h"(t)) ; y0" = �y1 (�ah") > 0

(one can similarly analyse the case y0" < 0)

is less or equal to the solution v" to

v0"(t) = f (t; v"(t) + g"(t)) ; v" (�ah") = yo";

where g"(t) � ��h"(t) and g"(t) is function de�ned in the proof of Lemma 3.1. This
means that y1"(t) � v"(t) where

v0"(t) =

8><
>:
f (t; v") ; v"(�a") = y0"; t 2 [�a";��a"]

f
�
t; v" + ��"

�
; v" (��a") = �y0"; t 2

�
��a";�b"

�
f (t; v") ; v"

�
�b"
�
= ~y0"; t 2

�
�b"; b"

�(16)

where �y0" = y1"(��a") and ~y0" = y1"(�b"). For " small enough, v0 + ��" is positive.
This means that function v" starts to decrease. It will be decreasing function until
v" = ���". Suppose that t0 is the �rst point when v" (t0) = ���". Then, unique
solution to

v0"(t) = f
�
t; v" + ��"

�
= f(t; 0) = 0; v"(t0) = ���"

is
v"(t) = const = ���"

in some interval around t0. But, that contradicts the fact that v"(t) decreases for
t < t0.

Specially, v" + ��" > 0. Now we know that

f
�
t; v" + ��"

�
� �C1

�
v" + ��"

� ��v" + ��"
��p1 ; p1 > 1;

which means that the solution to equation

v0"(t) = f
�
t; v" + ��"

�
is less or equal to solution

v0"(t) = �C1

�
v" + ��"

� ��v" + ��"
��p1 ; p1 > 1:

Using Lemma 3.1, we obtain

y1"(�b") 2

�
���";

��"

const � ��(p�1)=p"

� ��"

�
:
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Solutions of the �rst and third equation in (16) do not change this point signi�-
cantly. For t > b", y1"(t) � y1"(b") (since f is positive for y < 0).

Immediately, by using comparison theorem, it follows that y1"(t) satis�es rela-
tion (2), which implies that y" satis�es the same relation.

Since

y0"(t) = f(t; y"(t)) + ��0h"(t);

it follows that

jy0"(t)j � jf(t; y"(t))j+ �j�0h"(t)j;

from where directly follows that y0"(t) satis�es relation (2). One can easily see that
all derivatives of y"(t) satisfy relation (2). Thus, y"(t) 2 EM;g([�1; T ]).

Let y1"(t) and y2"(t) be two solutions with initial data y01 i y02, respectively
and y01 � y02 2 R0 . Let y12"(t) = y1"(t) � y2"(t). The rest of the proof of the
uniqueness is the same as in the previous theorem. �

4. Limits

For some generalized functions G it is possible to �nd a limit of generalized
solution to system (1). We shall give some examples from the papers [3] and [4]
reformulated in the terms of Colombeau generalized functions. Here, (1) is one
equation and G is a derivative of the delta distribution. In all of these cases we
suppose that there exists a classical solution to the equation y0(t) = f(t; y(t)),
y(t0) = y0 for every pair (t0; y0) 2 [�1; T )� R.

Theorem 4.1. [3] Let f(t; y) be globally Lipschitz function with respect to y
and

lim
y!1
t!0

f(t; y)

y
= M:

Then, the unique generalized solution to the equation

y0(t) = f(t; y(t)) + Æ0(t); y(�1) = y0(17)

is associated to

y(t) = �y1(t) + �Æ(t);

as " ! 0, where �y1(t) = ~y(t), for t 2 [�1; 0] and �y1(t) = ~~y(t), for t 2 [0; T ),
function ~y is classical solution to

y0(t) = f(t; y(t)); y(�1) = y0; for t 2 [�1; 0];

and ~~y is a classical solution to

y0(t) = f(t; y(t)); y(0) = �y(0) + �M; for t 2 [0; T ):

Theorem 4.2. [3] Let f(t; y) be sub-linear of order r with respect to y uniformly
in compact intervals of [�1; T ].

If s < 1=r, or s is arbitrary if f is bounded, then solution to equation

y0(t) = f(t; y(t)) + Æ(s)(t); y(�1) = y0(18)

is associated to

y(t) = �y(t) + �Æ(s�1)(t);
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where �y(t), t 2 [�1; T ] is the classical solution to equation

y0(t) = f(t; y(t)); y(�1) = y0:

Theorem 4.3. [4] Let all the assumptions of Theorem 3.2 hold. Then the
unique solution to (14) is bounded by the line y = 0 and the solution to the equation
y0 = �C2yjyjp2 , for t > 0.

If f depends only on y and satis�es all the above assumptions then the solution
to

y0"(t) = f(y"(t)) + ��0h" (t); y(�1) = y0

is associated to �y(t) + �Æ(t), where �y(t) = ~y(t), for t 2 [�1; 0) and �y(t) = ~~y(t), for
t 2 (0; T ).

The function ~y is the solution to

y0(t) = f(y(t)); y(�1) = y0; t 2 [�1; 0);

given by Z �y

�1

dy

f(y)
= t; t > 0;

and ~~y is the unique solution to

y0(t) = f(y(t)); y(0) = �1; t 2 (0; T ):
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