A LITTLEWOOD-PALEY THEOREM FOR SUBHARMONIC FUNCTIONS

Miroslav Pavlović

Communicated by Miroljub Jevtić

Abstract. If $u(z)>0(|z|<1)$ is a subharmonic function of class C^{2} such that Δu is subharmonic and if $\int u\left(r e^{i t}\right) d t(q>1)$ is bounded when $0<r<1$, then

$$
\iint(1-|z|)^{2 q-1}(\Delta u(z))^{q} d x d y<\infty
$$

In the case $u=h^{2}$ and $q=p / 2<1$, where h is harmonic, this reduces to the Littlewood-Paley theorem. In the case $0<q<1$ we prove a theorem in the oposite direction.

1. Introduction

Let \mathbf{D} denote the open unit disk in the complex plane. For a function u defined on \mathbf{D} we write

$$
I(r, u)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i t}\right) d t
$$

provided the integral is defined for all $r<1$, and

$$
I(u)=\sup _{0<r<1} I(r, u)
$$

where the value ∞ is permitted. In this paper we prove the following theorem.
THEOREM 1.1. Let $u \geq 0$ be a subharmonic function of class $C^{2}(\mathbf{D})$ such that its Laplacian, Δu, is subharmonic as well. If $q \geq 1$ and $I\left(u^{q}\right)<\infty$, then

$$
\begin{equation*}
\int_{\mathbf{D}}(1-|z|)^{2 q-1}(\Delta u(z))^{q} d m(z) \leq C_{q}\left(I\left(u^{q}\right)-u(0)^{q}\right) \tag{1.1}
\end{equation*}
$$

where C_{q} is a constant depending only on q.

[^0]Here $d m$ denotes the area measure in the plane.
An important special case of (1.1) is the Littlewood-Paley inequality [3]; namely, if $p \geq 2$ and $I\left(|h|^{p}\right)<\infty$, where h is a real-valued function harmonic in \mathbf{D}, then

$$
\begin{equation*}
\int_{\mathbf{D}}(1-|z|)^{p-1}|\nabla u|^{p} d m<C_{p}\left(I\left(|h|^{p}-|h(0)|^{p}\right)\right) \tag{1.2}
\end{equation*}
$$

To obtain (1.2) from (1.1) we take $u=h^{2}$ and $q=p / 2$. The function u satisfies the hypotheses of Theorem 1.1 because $\Delta u=2|\nabla h|^{2}$.

Inequality (1.2) is usually stated in the weaker form

$$
\begin{equation*}
\int_{\mathbf{D}}(1-|z|)^{p-1}|\nabla h|^{p} d m \leq C_{p} I\left(|h|^{p}\right) \quad(p>2) \tag{1.3}
\end{equation*}
$$

The usual method of proving (1.3) is to use the Riesz-Thorin theorem. A quick elementary proof is given in [6]; it is based on the Hardy-Stein identity and the inequality $|\nabla h(z)| \leq 2 h(z) /(1-|z|)$ which holds when $h>0$. An earlier proof based on the Hardy-Stein inequality and some local estimates is due to Luecking [5]. Our proof of Theorem 1.1 is similar to Luecking's proof of (1.3) (see Lemma 2.2 and 3.1). However, some simplifications are made so that we can treat the case $q<1$ as well (see Theorem 4.1). This provides, in particular, a new proof of the reverse Littlewood-Paley inequality which holds for harmonic functions when $1<p<2$ and for analytic functions when $0<p<2$. Moreover, a special case of Theorems 1.1 and 4.1 is the Littlewood-Paley inequality for vector valued functions. More precisely, inequality (1.3) remains true for $p \geq 2$ if we assume that h is a harmonic function with values in $\ell^{2},|h(z)|^{2}=\sum h_{n}(z)^{2}$ and $|\nabla h(z)|^{2}=\sum\left|\nabla h_{n}(z)\right|^{2}$. The reverse inequality holds for $1<p<2$.

2. Local estimates for Riesz' measure

From now on we shall assume that u is an arbitrary nonnegative subharmonic function defined on \mathbf{D}. Then there exists a positive measure $d \mu$ on \mathbf{D}, called the Riesz measure of u, such that $\Delta u=d \mu$ in the sense of distribution theory. (If u is of class C^{2}, then $d \mu(z)=\Delta u(z) d m(z)$.) There holds the formula

$$
\begin{equation*}
I(r, u)-u(0)=\frac{1}{2 \pi} \int_{r \mathbf{D}} \log \frac{r}{|z|} d \mu(z) \quad(0<r<1) \tag{2.1}
\end{equation*}
$$

which can be deduced, for example, from the Riesz representation formula (see [4], Theorem 3.3.6.)

Lemma 2.1. We have

$$
I(u)-u(0)=\frac{1}{2 \pi} \int_{\mathbf{D}} \log \frac{1}{|z|} d \mu(z)
$$

Proof. Write (2.1) in the form

$$
I(r, u)-u(0)=\frac{1}{2 \pi} \int_{\mathbf{D}} K_{r}(z) \log \frac{r}{|z|} d \mu(z)
$$

where $K_{r}(z)$ is the characteristic function of the disk $r \mathbf{D}$. Since $K_{r}(z) \log (r /|z|)$ increases with r we have

$$
\lim _{r \rightarrow 1}(r, u)-u(0)=\frac{1}{2 \pi} \int_{\mathbf{D}} \lim _{r \rightarrow 1} K_{r}(z) \log \frac{r}{|z|} d \mu(z)
$$

And since $I(r, u)$ increases with r we have $I(u)=\lim _{r \rightarrow 1} I(r, u)$. The result follows.
Lemma 2.2. Let $q \geq 1$ and let μ and μ_{q} be the Riesz measures of u and u^{q} respectively. Then

$$
\begin{equation*}
\mu(E)^{q} \leq C_{q} \mu_{q}(5 E) \tag{2.2}
\end{equation*}
$$

for any disk E such that $6 E \subset \mathbf{D}$. The constant C_{q} depends only on q.
If E is a disk of radius R, then $r E$ denotes the concetric disk of radius $R r$.
Proof. By translation the proof is reduced to the case where E is centered at 0 . Then since $\mu(E)=\nu((1 / r) E)$, where ν is the Riesz measure of the function $u(r z)$, we can assume that the radius of E is fixed. e.g., $E=\varepsilon \mathbf{D}$ with $\varepsilon=1 / 6$. Assuming this we use the simple inequalities

$$
(I(r, u)-u(0))^{q} \leq(I(r, u))^{q}-u(0)^{q}
$$

and $(I(r, u))^{q} \leq I\left(r, u^{q}\right)$, which hold because $q>1$, to deduce from (2.1) (applied to u and u^{q}) that

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{r \mathbf{D}} \log \frac{r}{|z|} d \mu(z)\right)^{q} \leq \frac{1}{2 \pi} \int_{r \mathbf{D}} \log \frac{r}{|z|} d \mu_{q}(z) \tag{2.3}
\end{equation*}
$$

Putting $r=4 \varepsilon$ we get

$$
\begin{equation*}
\mu(2 \varepsilon \mathbf{D})^{q} \leq C \int_{4 \varepsilon \mathbf{D}}|z|^{-1} d \mu_{q}(z) \tag{2.4}
\end{equation*}
$$

where we have used the estimates $\log (4 \varepsilon /|z|) \geq \log 2$ for $|z|<2 \varepsilon$ and $\log (4 \varepsilon /|z|) \leq$ $1 /|z|$. Thus to prove (2.2) we have to eliminate $|z|^{-1}$ in the integral. To do this we change the 'center' of (2.4) and we get

$$
\mu\left(2 \varepsilon D_{a}\right)^{q} \leq C \int_{4 \varepsilon D_{a}}|z-a|^{-1} d \mu_{q}(z)
$$

for $a \in \varepsilon \mathbf{D}$, where $D_{a}=\{z:|z-a|<1\}$. Since $\varepsilon \mathbf{D} \subset 2 \varepsilon D_{a}$ and $4 \varepsilon D_{a} \subset 5 \varepsilon \mathbf{D}$ we have

$$
\mu(\varepsilon \mathbf{D})^{q} \leq C \int_{4 \varepsilon D_{a}}|z-a|^{-1} d \mu_{q}(z)
$$

Now we integrate this inequality over $\varepsilon \mathbf{D}$ with respect to $d m(a)$ and use Fubini's theorem. This concludes the proof because

$$
\sup _{z \in \mathbf{D}} \int_{\varepsilon \mathbf{D}}|z-a|^{-1} d m(a)<\infty
$$

3. Proof of Theorem 1.1

Theorem 1.1 is a consequence of the following.
Theorem 3.1. Let $u \geq 0$ be a subharmonic function in \mathbf{D} and let μ be the Riesz measure of u. If $q \geq 1$ and $I\left(u^{q}\right)<\infty$, then there holds the inequality

$$
\begin{equation*}
\int_{\mathbf{D}}(1-|z|)^{-1}\left(\mu\left(E_{\varepsilon}(z)\right)\right)^{q} d m \leq C_{q}\left(I\left(u^{q}\right)-u(0)^{q}\right) \tag{3.1}
\end{equation*}
$$

where $\varepsilon=1 / 6$ and

$$
E_{\varepsilon}(z)=\{w:|w-z|<\varepsilon(1-|z|)\} .
$$

If in addition u is C^{2} and Δu is subharmonic, then

$$
\mu\left(E_{\varepsilon}(z)\right)=\int_{E_{\varepsilon}(z)} \Delta u d m \geq \pi \varepsilon^{2}(1-|z|)^{2} \Delta u(z)
$$

because of the sub-mean-value property of Δu, and this shows that (3.1) implies (1.2).

Proof. It follows from (2.2) that

$$
\begin{equation*}
\int_{\mathbf{D}}(1-|z|)^{-1}\left(\mu\left(E_{\varepsilon}(z)\right)\right)^{q} d m C \int_{\mathbf{D}}(1-|z|)^{-1} \mu_{q}\left(E_{5 \varepsilon}(z)\right) d m(z) \tag{3.2}
\end{equation*}
$$

Next we write

$$
\mu_{q}\left(E_{5 \varepsilon}(z)\right)=\int_{E_{5 \varepsilon}(z)} d \mu_{q}(w)
$$

and use Fubini's theorem to conclude that the right hand side of (3.2) is equal to

$$
\int_{\mathbf{D}} d \mu_{q}(w) \int_{G(w)}(1-|z|)^{-1} d m(z)
$$

where $G(w)=\{z:|z-w|<5 \varepsilon(1-|z|)\}$. Since $z \in G(w)$ implies $|z|-|w|<$ $5 \varepsilon(1-|z|)$, whence $1_{\mid} z \mid<(1+5 \varepsilon)(1-|z|)$, we have

$$
\int_{G(w)}(1-|z|)^{-1} d m(z) \leq(1+5 \varepsilon) m(G(w))(1-|w|)^{-1}
$$

And since $(1+5 \varepsilon)(1-|z|)<1-|w|$ for $z \in G(w)$, we have $m(G(w)) \leq C^{\prime}(1-|w|)^{2}$, where $C^{\prime}=\pi(5 \varepsilon /(1-5 \varepsilon))^{2}$. Combining the previous results we see that

$$
\int_{\mathbf{D}}(1-|z|)^{-1}\left(\mu\left(E_{\varepsilon}(z)\right)\right)^{q} d m \leq C_{q} \int_{\mathbf{D}}(1-|w|) d \mu_{q}(w) .
$$

This finishes the proof of (3.1) because of Lemma 2.1 and the inequality $1-|w| \leq$ $\log (1 /|w|)$.

4. The case $q<1$

THEOREM 4.1. Let $0<q<1$ and let $u \geq 0$ be a C^{2}-function such that u^{q} and Δu are subharmonic. If $\int_{b} D(1-|z|)^{2 q-1}(\Delta u)^{q} d m<\infty$, then $I\left(u^{q}\right)<\infty$ and there holds the inequality

$$
\begin{equation*}
I\left(u^{q}\right)-u(0)^{q} \leq C_{q} \int_{\mathbf{D}}(1-|z|)^{2 q-1}(\Delta u)^{q} d m \tag{4.1}
\end{equation*}
$$

Observe that, in contrast to the case $q>1$, the function u^{q} need not be smooth.
Proof. Fix $\varepsilon<1 / 6$. Applying Lemma 2.2 to the pair $u^{q},\left(u^{q}\right)^{1 / q}$ we get, because $1 / q>1$,

$$
\mu_{q}\left(E_{\varepsilon}(z)\right) \leq C_{q}\left(\mu\left(E_{5 \varepsilon}(z)\right)\right)^{q}
$$

where μ_{q} and μ are the Riesz measure of u^{q} and u. On the other hand

$$
\begin{align*}
\left(\mu\left(E_{5 \varepsilon}(z)\right)\right)^{q} & =\left(\int_{E_{5 \varepsilon}(z)} \Delta u d m\right)^{q} \tag{4.2}\\
& \leq C^{\prime}(1-|z|)^{2 q} \sup \left\{(\Delta u(w))^{q}: w \in E_{5 \varepsilon}(z)\right\}
\end{align*}
$$

The function $(\Delta u)^{q}$ need not be subharmonic. Nevertheless, by a result of Hardy and Littlewood [2] and Fefferman and Stein [1], it possesses a weak form of the sub-mean-value property, namely

$$
\begin{equation*}
(\Delta u(z))^{q} \leq \frac{C}{m(E)} \int_{E}(\Delta u)^{q} d m \tag{4.3}
\end{equation*}
$$

where $E \subset \mathbf{D}$ is any disk centered at z, and C depends only on q. Using (4.3) one shows that

$$
\sup _{E_{5 \varepsilon}(z)}(\Delta u)^{q} \leq C^{\prime \prime}(1-|z|)^{-2} \int_{E_{6 \varepsilon}(z)}(\Delta u)^{q} d m
$$

It follows that

$$
\int_{\mathbf{D}}(1-|z|)^{-1} \mu_{q}\left(E_{\varepsilon}(z)\right) d m(z) \leq C \int_{\mathbf{D}}(1-|z|)^{2 q-3} d m(z) \int_{E_{6 \varepsilon}(z)}(\Delta u)^{q} d m
$$

where C depends only on q. Hence, as in the proof of Theorem 3.1,

$$
\begin{equation*}
\int_{\mathbf{D}}(1-|z|) d \mu_{q}(z) \leq C_{q} \int_{\mathbf{D}}(1-|z|)^{2 q-1}(\Delta u)^{q} d m \tag{4.4}
\end{equation*}
$$

This implies that $I\left(u^{q}\right)<\infty$ because of Lemma 2.1 applied to u^{q}.
In order to prove (4.1) additional work is needed. We rewrite (2.3) as

$$
\left(\frac{1}{2 \pi} \int_{r \mathbf{D}} \log \frac{r}{|z|} d \mu_{q}(z)\right)^{q} \leq \frac{1}{2 \pi} \int_{r \mathbf{D}} \log \frac{r}{|z|} d \mu(z)
$$

Hence

$$
\int_{\varepsilon \mathbf{D}} \log \varepsilon|z| d \mu_{q}(z) \leq C \sup _{\varepsilon \mathbf{D}}(\Delta u)^{q} \leq C^{\prime} \int_{2 \varepsilon \mathbf{D}}(\Delta u)^{q} d m
$$

where we have used (4.3). Now it is easy to show that (4.4) remains true if we replace the left integral by

$$
\frac{1}{2 \pi} \int_{\mathbf{D}} \log \frac{1}{|z|} d \mu_{q}(z)=I\left(u^{q}\right)-u(0)^{q}
$$

References

[1] C. Fefferman and E.M. Stein, H^{p}-spaces of several variables, Acta Math. 129 (1972), 137-193.
[2] G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1931), 405-423.
[3] J.E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series.II, Proc. London Math. Soc. 42 (1936), 52-89.
[4] L. Hörmander, Notions of Convexity, Progress in Mathematics, vol. 127, Birkhäuser, 1994.
[5] D.H. Luecking, A new proof of an inequality of Littlewood ana Paley, Proc. Amer. Math. Soc. 102 (1988), 887-893.
[6] M. Pavlović, A short proof of the Littlewood-Paley inequality, (to appear).

Matematički fakultet

(Received 2502 1999)
Studentski $\operatorname{trg} 16$
11001 Beograd, p.p. 550
Yugoslavia
pavlovic@matf.bg.ac.yu

[^0]: 1991 Mathematics Subject Classification. Primary 30D55.
 Key words and phrases. Riesz' measure of a subharmonic function.

