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Abstract. If u(z) > 0 (jzj < 1) is a subharmonic function of class C2 such
that �u is subharmonic and if

R
u(reit) dt (q > 1) is bounded when 0 < r < 1,

then ZZ
(1� jzj)2q�1

�
�u(z)

�q
dx dy <1:

In the case u = h2 and q = p=2 < 1; where h is harmonic, this reduces to the
Littlewood{Paley theorem. In the case 0 < q < 1 we prove a theorem in the
oposite direction.

1. Introduction

Let D denote the open unit disk in the complex plane. For a function u de�ned
on D we write

I(r; u) =
1

2�

Z 2�

0

u(reit) dt

provided the integral is de�ned for all r < 1; and

I(u) = sup
0<r<1

I(r; u);

where the value 1 is permitted. In this paper we prove the following theorem.

Theorem 1.1. Let u � 0 be a subharmonic function of class C2(D) such that

its Laplacian, �u, is subharmonic as well. If q � 1 and I(uq) <1, thenZ
D

(1� jzj)2q�1
�
�u(z)

�q
dm(z) � Cq

�
I(uq)� u(0)q

�
;(1.1)

where Cq is a constant depending only on q.
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Here dm denotes the area measure in the plane.
An important special case of (1.1) is the Littlewood{Paley inequality [3]; name-

ly, if p � 2 and I(jhjp) <1, where h is a real-valued function harmonic in D, thenZ
D

(1� jzj)p�1 jrujp dm < Cp
�
I(jhjp � jh(0)jp)

�
:(1.2)

To obtain (1.2) from (1.1) we take u = h2 and q = p=2. The function u satis�es
the hypotheses of Theorem 1.1 because �u = 2jrhj2.

Inequality (1.2) is usually stated in the weaker formZ
D

(1� jzj)p�1 jrhjp dm � Cp I(jhj
p) (p > 2):(1.3)

The usual method of proving (1.3) is to use the Riesz{Thorin theorem. A quick
elementary proof is given in [6]; it is based on the Hardy{Stein identity and the
inequality jrh(z)j � 2h(z)=(1�jzj) which holds when h > 0. An earlier proof based
on the Hardy{Stein inequality and some local estimates is due to Luecking [5]. Our
proof of Theorem 1.1 is similar to Luecking's proof of (1.3) (see Lemma 2.2 and
3.1). However, some simpli�cations are made so that we can treat the case q < 1
as well (see Theorem 4.1). This provides, in particular, a new proof of the reverse
Littlewood{Paley inequality which holds for harmonic functions when 1 < p < 2
and for analytic functions when 0 < p < 2. Moreover, a special case of Theorems
1.1 and 4.1 is the Littlewood{Paley inequality for vector valued functions. More
precisely, inequality (1.3) remains true for p � 2 if we assume that h is a harmonic
function with values in `2, jh(z)j2 =

P
hn(z)

2 and jrh(z)j2 =
P
jrhn(z)j

2. The
reverse inequality holds for 1 < p < 2.

2. Local estimates for Riesz' measure

From now on we shall assume that u is an arbitrary nonnegative subharmonic
function de�ned on D. Then there exists a positive measure d� on D, called the
Riesz measure of u, such that �u = d� in the sense of distribution theory. (If u is
of class C2, then d�(z) = �u(z) dm(z).) There holds the formula

I(r; u)� u(0) =
1

2�

Z
rD

log
r

jzj
d�(z) (0 < r < 1);(2.1)

which can be deduced, for example, from the Riesz representation formula (see [4],
Theorem 3.3.6.)

Lemma 2.1. We have

I(u)� u(0) =
1

2�

Z
D

log
1

jzj
d�(z):

Proof. Write (2.1) in the form

I(r; u)� u(0) =
1

2�

Z
D

Kr(z) log
r

jzj
d�(z);
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where Kr(z) is the characteristic function of the disk rD. Since Kr(z) log(r=jzj)
increases with r we have

lim
r!1

(r; u)� u(0) =
1

2�

Z
D

lim
r!1

Kr(z) log
r

jzj
d�(z):

And since I(r; u) increases with r we have I(u) = lim
r!1

I(r; u). The result follows. �

Lemma 2.2. Let q � 1 and let � and �q be the Riesz measures of u and uq

respectively. Then

�(E)q � Cq �q(5E)(2.2)

for any disk E such that 6E � D. The constant Cq depends only on q.

If E is a disk of radius R, then rE denotes the concetric disk of radius Rr.

Proof. By translation the proof is reduced to the case where E is centered
at 0. Then since �(E) = �((1=r)E), where � is the Riesz measure of the function
u(rz), we can assume that the radius of E is �xed. e.g., E = "D with " = 1=6.
Assuming this we use the simple inequalities�

I(r; u)� u(0)
�q
�
�
I(r; u)

�q
� u(0)q

and
�
I(r; u)

�q
� I(r; uq), which hold because q > 1, to deduce from (2.1) (applied

to u and uq) that�
1

2�

Z
rD

log
r

jzj
d�(z)

�q
�

1

2�

Z
rD

log
r

jzj
d�q(z):(2.3)

Putting r = 4" we get

�(2"D)q � C

Z
4"D

jzj�1 d�q(z);(2.4)

where we have used the estimates log(4"=jzj) � log 2 for jzj < 2" and log(4"=jzj) �
1=jzj. Thus to prove (2.2) we have to eliminate jzj�1 in the integral. To do this we
change the `center' of (2.4) and we get

�(2"Da)
q � C

Z
4"Da

jz � aj�1 d�q(z)

for a 2 "D, where Da = fz : jz � aj < 1g. Since "D � 2"Da and 4"Da � 5"D we
have

�("D)q � C

Z
4"Da

jz � aj�1 d�q(z):

Now we integrate this inequality over "D with respect to dm(a) and use Fubini's
theorem. This concludes the proof because

sup
z2D

Z
"D

jz � aj�1 dm(a) <1:

�
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3. Proof of Theorem 1.1

Theorem 1.1 is a consequence of the following.

Theorem 3.1. Let u � 0 be a subharmonic function in D and let � be the

Riesz measure of u. If q � 1 and I(uq) <1, then there holds the inequalityZ
D

(1� jzj)�1
�
�(E"(z))

�q
dm � Cq

�
I(uq)� u(0)q

�
;(3.1)

where " = 1=6 and

E"(z) = fw : jw � zj < "(1� jzj)g:

If in addition u is C2 and �u is subharmonic, then

�(E"(z)) =

Z
E"(z)

�u dm � �"2(1� jzj)2�u(z)

because of the sub-mean-value property of �u, and this shows that (3.1) implies
(1.2).

Proof. It follows from (2.2) thatZ
D

(1� jzj)�1
�
�(E"(z))

�q
dmC

Z
D

(1� jzj)�1 �q(E5"(z)) dm(z):(3.2)

Next we write

�q(E5"(z)) =

Z
E5"(z)

d�q(w)

and use Fubini's theorem to conclude that the right hand side of (3.2) is equal toZ
D

d�q(w)

Z
G(w)

(1� jzj)�1 dm(z);

where G(w) = fz : jz � wj < 5"(1 � jzj)g. Since z 2 G(w) implies jzj � jwj <
5"(1� jzj), whence 1jzj < (1 + 5")(1� jzj), we haveZ

G(w)

(1� jzj)�1 dm(z) � (1 + 5")m(G(w)) (1� jwj)�1:

And since (1+5")(1�jzj) < 1�jwj for z 2 G(w), we have m(G(w)) � C 0(1�jwj)2,
where C 0 = �(5"=(1� 5"))2. Combining the previous results we see thatZ

D

(1� jzj)�1
�
�(E"(z))

�q
dm � Cq

Z
D

(1� jwj) d�q(w):

This �nishes the proof of (3.1) because of Lemma 2.1 and the inequality 1� jwj �
log(1=jwj). �
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4. The case q < 1

Theorem 4.1. Let 0 < q < 1 and let u � 0 be a C2�function such that uq

and �u are subharmonic. If
R
bD(1� jzj)2q�1(�u)q dm <1, then I(uq) <1 and

there holds the inequality

I(uq)� u(0)q � Cq

Z
D

(1� jzj)2q�1(�u)q dm:(4.1)

Observe that, in contrast to the case q > 1, the function uq need not be smooth.

Proof. Fix " < 1=6. Applying Lemma 2.2 to the pair uq; (uq)1=q we get,
because 1=q > 1,

�q(E"(z)) � Cq
�
�(E5"(z))

�q
;

where �q and � are the Riesz measure of uq and u. On the other hand

�
�(E5"(z))

�q
=

 Z
E5"(z)

�u dm

!q

� C 0(1� jzj)2q supf(�u(w))q : w 2 E5"(z)g:

(4.2)

The function (�u)q need not be subharmonic. Nevertheless, by a result of Hardy
and Littlewood [2] and Fe�erman and Stein [1], it possesses a weak form of the
sub-mean-value property, namely

(�u(z))q �
C

m(E)

Z
E

(�u)q dm;(4.3)

where E � D is any disk centered at z, and C depends only on q. Using (4.3) one
shows that

sup
E5"(z)

(�u)q � C"(1� jzj)�2
Z
E6"(z)

(�u)q dm:

It follows thatZ
D

(1� jzj)�1�q(E"(z)) dm(z) � C

Z
D

(1� jzj)2q�3 dm(z)

Z
E6"(z)

(�u)q dm;

where C depends only on q. Hence, as in the proof of Theorem 3.1,Z
D

(1� jzj) d�q(z) � Cq

Z
D

(1� jzj)2q�1(�u)q dm:(4.4)

This implies that I(uq) <1 because of Lemma 2.1 applied to uq.
In order to prove (4.1) additional work is needed. We rewrite (2.3) as�

1

2�

Z
rD

log
r

jzj
d�q(z)

�q
�

1

2�

Z
rD

log
r

jzj
d�(z):

Hence Z
"D

log "jzj d�q(z) � C sup
"D

(�u)q � C 0

Z
2"D

(�u)q dm;
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where we have used (4.3). Now it is easy to show that (4.4) remains true if we
replace the left integral by

1

2�

Z
D

log
1

jzj
d�q(z) = I(uq)� u(0)q:

�

References

[1] C. Fe�erman and E.M. Stein, Hp-spaces of several variables, Acta Math. 129 (1972), 137{193.
[2] G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. Reine Angew.

Math. 167 (1931), 405{423.
[3] J.E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series.II, Proc.

London Math. Soc. 42 (1936), 52{89.
[4] L. H�ormander, Notions of Convexity, Progress in Mathematics, vol. 127, Birkh�auser, 1994.
[5] D.H. Luecking, A new proof of an inequality of Littlewood ana Paley, Proc. Amer. Math. Soc.

102 (1988), 887{893.
[6] M. Pavlovi�c, A short proof of the Littlewood{Paley inequality, (to appear).

Matemati�cki fakultet (Received 25 02 1999)
Studentski trg 16
11001 Beograd, p.p. 550
Yugoslavia

pavlovic@matf.bg.ac.yu


