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BEST �-APPROXIMATIONS FOR

ANALYTIC FUNCTIONS OF RAPID

GROWTH ON THE UNIT DISC
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Communicated by Miroljub Jevti�c

Abstract. We give a solution of the best �-approximation for analytic
functions of rapid growth such as, for example, the Hardy-Ramanujan gen-
erating partition function. Using Ingham Tauberian Theorem we give some
interesting applications of our results. An essential role here is played by
Karamata's class of regularly varying functions.

Introduction

Let f(z) :=
P1

i=0 aiz
i, jzj < 1 be an analytic function and Sn(z) :=

P
i�n aiz

i

its partial sums.
De�ne also the maximum modulus Mf (r) := max jf(z)jjzj=r = jf(rei�0 j =

jf(z0)j; it increases with r and we suppose that Mf (r) !1 (r ! 1�).
The omparison between f(z) and its partial sums is a subject of many classical

theorems. We are going to �nd the \shortest" partial sum which is well approxi-
mating f(z) at the point(s) of maximal growth, for r suÆciently close to 1.

We use the notion of best �-approximation introduced in [6] in the following
way. For � > 0 we determine an integer-valued function n := n(r; �)!1 (r ! 1�)
in such a way that for � > 1 the partial sums Sn(r;�)(z0) are well approximating
f(z0), but for 0 < � < 1 it is not the case.

More precisely, we have the following condition for n(r; �):

(I)
Sn(r;�)(z0)

f(z0)
=

�
o(1); 0 < � < 1;

1 + o(1); � > 1:
(r ! 1�)

We call such partial sums Sn(r;�)(z0) the best �-approximating sums (BLAS).
Note that it follows from (I) that an analogous relation holds for the modulus of
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BLAS and Mf (r). We solve the problem of BLAS for a class of analytic functions
of rapid growth inside the unit disc.

Of particular importance here is the class of Karamata's regularly varying
functions K�(x) i.e., which can be written in the form K�(x) := x�L(x), � 2 R.

Here � is the index of regular variation and L(x) is the so-called slowly varying
function i.e., positive, measurable and satisfying L(�x) � L(x), 8� > 0 (x !1).
Some examples of slowly varying functions are:

loga x; logb(logx); e
log x

log log x ; elog
c x; a; b 2 R; 0 < c < 1:

For further theory of regular variation we recommend [2] and [5]. We quote some
facts for latter use:

K�(�x) � ��K�(x); � > 0; logL(x) = o(log x) (x!1):

If a(x) � b(x)!1 (x!1), then K�(a(x)) � K�(b(x)) (x!1).
Analogously to Valiron's proximate order (cf. [2]) in the theory of entire func-

tions, we are using here Karamata's class for measuring the growth of a given
analytic function on the unit disc.

Results

Let f(z), Sn(z), Mf (r), n(r; �), K�(x), z0 be de�ned as above. Throughout
the paper we suppose that � is a �xed positive number 6= 1 and r is suÆciently
close to 1�.

Theorem 1. If logMf (r) � K�(
1

1�r ), � > 0 (r ! 1�) and

n(r; �) � C�(�)

1� r
logMf (r) (r ! 1�);

where

(1) C�(�) :=

8><>:
���; � > 1;

�2; � = 1;

��; 0 < � < 1;

then (I) holds; i.e., Sn(r;�)(z0) is the best �-approximating partial sum.

Proof. A simple implementation of Cauchy Integral formula gives:

(2)
1

2�i

Z
D

f(w)
(z0=w)

n+1

w � z0
dw =

� �Sn(z0); z0 =2 intD;

f(z0)� Sn(z0); z0 2 intD:

Let the contour D be a circle w = Rei�, where R = R(r; �) := 1� 1

�
(1� r). Since

jz0j = r > R for 0 < � < 1; r < R for � > 1; from (2) follows

(3) I :=
1

2�

Z �

��

f(Rei�)

f(rei�0)

( rRe
i(�0��))n

R
r e

i(���0) � 1
d� =

( �Sn(z0)
f(z0)

; 0 < � < 1;

1� Sn(z0)
f(z0)

; � > 1:
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Since jf(z0)j =Mf (r), estimating integral on the left side of (3), we get

I � Mf (R)

Mf (r)

en log(r=R)

jR=r � 1j : (4)

But, when r ! 1� we have

logMf (R) � K�

� 1

1�R

�
= K�

� �

1� r

�
� ��K�

� 1

1� r

�
� �� logMf (r)���R

r
� 1
��� > (1� r)

���1� 1

�

���; log
r

R
� (1� r)

� 1
�
� 1
�
; log

1

1� r
= o(logMf (r)):

Putting this in (4) with n = n(r; �) =
C�(�)
1�r logMf (r)(1 + o(1)), we obtain for

r ! 1�

jI j � �

j�� 1j exp(logMf (r)(�
� � 1 + C�(�)(

1

�
� 1) + o(1)) =

�

j�� 1jMf (r)
�B�(�):

It is easy to check that B�(�) := 1���+
C�(�)
� (��1)+ o(1) is strictly positive

for each �xed positive � 6= 1 and r suÆciently close to 1.

Therefore, Theorem 1 is proved and moreover we have a good estimation for
the o terms in (I), i.e.,

Theorem 2. Under the conditions of Theorem 1 we have

(5)
Sn(r;�)(z0)

f(z0)
=

�
A� elogMf (r)(�B�(�)); 0 < � < 1;

1 +A�e
logMf (r)(�B�(�)); � > 1:

(r ! 1�)

with jA�j � �
j��1j .

Supplementaries

Functions of rapid growth on the unit disc naturally arise from Laplace-Stieltjes
transforms of the so-called partition functions (cf. [1], [3], [4]). The main tool in
dealing with the partition problem is the now classical Ingham Tauberian Theorem
(cf. [3]):

Let bA(x) := Z 1

0

e�uxdA(u); x = s+ it; s > 0;

and A(u) satisfy
1) A(0) = 0; 2) A(u) is non-decreasing for suÆciently large u;

3) bA(x) � C(M=x)m��1=2e(M=x)�=�, (C;M; � 2 R+, m 2 R), uniformly for
x! 0 in each angle of the form t � �s, 0 < � <1.

Then

A(u) � C

r
1� �

2�
(uM)m��1=2e(uM)�=�; � =

�

1 + �
; (u!1):



BEST �-APPROXIMATIONS FOR ANALYTIC FUNCTIONS OF RAPID GROWTH 75

We use this Theorem in the following way: let, as before, f(z) :=
P

anz
n,

jzj < 1, and suppose that the coeÆcients an are non-negative, a0 := 0. Then,
denoting by A(u) :=

P
n�u an, we obtain A(0) = 0, A(u) non-decreasing and its

LS transform bA(x) := R1
0

e�uxdA(u) = f(e�x), Rex > 0.
On the other hand, for x = s+ it,

jf(e�x)j =
���Xane

�nx
��� �X ane

�ns = f(e�s); s > 0;

i.e., for z = e�x, z0 = e�s, Mf (e
�s) = f(e�s).

Since 1� e�s � s, s ! 0+, the condition from the Theorem 1 turns out to be

logMf (e
�s) � K�(

1
s ) = ( 1s )

�L( 1s ) and n(e�s; �) � C�(�)
s logMf (e

�s) s! 0+.
By the assumption 3) of Ingham's Theorem we have that

logMf (e
�s) = log bA(s) � 1

�

�M
s

��
:

It is easy to derive from Ingham's Theorem that, for nondecreasing an (cf. [3]),

an � CM

r
1� �

2�
(Mn)(m+1)��3=2e

1
�
(Mn)� ; n!1:

This, along with the Theorem 1 (with L(1=s) := M�=�), gives the next BLAS
proposition for Ingham's class of functions:

Proposition 1. For any M;� 2 R+, m 2 R, � = �=(1 + �), n(e�s; �) :=
C�(�)

1
�s (M=s)�,

1

f(e�s)

X
n�n(e�s;�)

ane
�ns := sm��1=2e�

1
�
(M=s)�

X
n�n(e�s;�)

n(m+1)��3=2e
1
�
(Mn)��ns

�
�
0; 0 < � < 1;p
2�(1 + �)M�(m��1); � > 1:

s! 0+

The famous Hardy{Ramanujan partition problem is connected with functions
of rapid growth, too. Namely, let p(n), n 2 N , denote the number of solutions of
the Diophantine equation n = 1x1+2x2+ � � �+mxm+ � � � in non-negative integers
xi.

A very interesting story about e�orts to �nd an exact asymptotic formula for
p(n) is given in [4].

Let q(s) be the generating function for p(n) i.e., q(s) :=
P

n p(n)e
�ns.

Since q(s) � p s
2�e

�2

6
1
s , s ! 0 (cf. [1], [3]), by applying the Theorem 2 with

logMq(s) � �2

6s , � = 1, B1(�) = (� � 1)2 + o(1), we obtain a BLAS formula for
partitions p(n):

Proposition 2.

e�
�2

6sp
s

X
n�� �2

6s2

p(n)e�ns =

(
A� e�

�2

6s
((1�p�)2+o(1))); 0 < � < 1;

1p
2�

+A� e�
�2

6s
((
p
��1)2+o(1))); � > 1:

s! 0+

with A� �
p
�

j
p
��1j .
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