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Abstract. The following assertions are proved: (1) in simple noncommuta-

tive associative and alternative algebras only linear functions y = ax + b and
y = xa+b have left and right derivatives, and (2) in the spaces over all commu-
tative associative algebras smooth m-surfaces (lines for m = 1) have tangent
m-planes depending on the same number of parameters as points in surfaces.
In the spaces over simple noncommutative associative and alternative algebras
only m-planes (straight lines for m = 1) are smooth m-surfaces. In the spaces
over nonsemisimple noncommutative algebras smoothm-surfaces have tangent
m-planes depending on the number of parameters less than points in surfaces.

1. Commutative associative algebras

It is well known that in commutative associative algebras there are many dif-
ferentiable functions. Sche�ers [1] has found the conditions for di�erentiability of
functions in commutative associative algebras with basic elements ei and structure
formulas eiej =

P
k Cij

kek. These conditions have the form

X

h

@yi

@xh
Cjk

h =
X

h

@yh

@xk
Cjh

i(1)

For the �eld C of complex numbers the conditions (1) coincide with the classical
Cauchy{Riemann conditions
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for the algebra C 0 of split complex numbers a+ be, e2 = +1, a and b real numbers,
the condition (1) has the form
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for the algebra C 0 of dual numbers a + b", "2 = 0, a and b real numbers, the
condition (1) has the form
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Theorem 1. In the spaces over all commutative associative algebras smooth
m-surfaces (lines for m = 1) have tangent m-planes depending on the same number
of parameters as points in surfaces.

The theorem follows from the di�erentiability of the functions in commutative
associative algebras.

Cartan [2] proved that simple commutative real algebras are the �elds R of real
numbers and C of complex numbers. Semisimple commutative algebras are direct
sums of �elds R and C .

In real and complex projective spaces Pn and CPn there are smoothm-surfaces

xi = xi(u1; u2; : : : ; um); i = 1; 2; : : : ; n(2)

where xi and u� are elements of the �elds R and C , for m = 1, lines xi = xi(u),
and tangent m-planes to these m-surfaces depend, respectively, on m and 2m real
parameters. The assertion of the theorem follows from the fact that semisimple
commutative algebras are direct sums of the �elds R and C .

Akivis [3] proved that smooth lines in a projective 2-plane over the algebra C 0

of split complex numbers have tangent straight lines depending on two parameters.
Since the algebra C 0 is isomorphic to the direct sum R � R, the algebra C 0 is
semisimple commutative and this theorem is a particular case of Theorem 1.

In using the method of the paper [3] to the algebra C 0 , we obtain that smooth
lines in a projective 2-plane over the algebra C 0 of dual numbers have tangent
straight lines depending on two parameters.

2. Noncommutative associative algebras

Akivis [3] proved that in 2-planes over algebras H of quaternions and R2 of real
(2� 2)-matrices only straight lines (2) for m = 1 are smooth lines.

Krylov [4] and Meylikhzon [5] proved that in the algebra H only linear functions

y = ax+ b and y = xa+ b(3)

have right and left derivatives (see also [6, p. 501]).
Cartan [2] proved that simple noncommutative associative real algebras are

the algebra H and the algebras Rn , C n , and H n of real, complex and quaternionic
(n� n)-matrices. The results of papers [4]{[5] just mentioned are particular cases
of the following general theorem.
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Theorem 2. In simple noncommutative associative algebras among the func-
tions y = f(x) only the linear functions (3) have right and left derivatives

dy(dx)�1 and (dx)�1dy:(4)

Proof for the algebra H . This algebra can be regarded as the Euclidean 4-spa-
ce R4 , where the distance d between quaternions x and y is de�ned by the formula

d2 = (y � x)(�y � �x):(5)

Since multiplication by a quaternion in this 4-space is interpreted as a simili-
tude, function y = f(x) determines a conformal transformation in this space.

Liouville's theorem [7] implies that this transformation is a conformal trans-
formation in the conformal 4-space C4, that is this transformation is generated by
inversions in hypersferes. The group of these transformations is isomorphic to the
group of motions in the hyperbolic space H5 and the dimension of this group is
equal to 5 � 6=2 = 15. Therefore, these transformations can be expressed by the
formula

y = (ax+ b)(cx+ d)�1;(6)

where a, b, c, d, x, y are quaternions [8, p. 511], [9, p. 212]. The dimension of the
group of transformations (6) is equal to 4 � 4� 1 = 15.

For the function (6) dy can be expressed in the form a dx or (dx)a only if this
function has the form (3). �

Proof for the algebras Rn , C n , and H n for n > 1. Elements of these algebras,
that is real, complex, and quaternionic (n� n)-matrices, can be regarded as aÆne
matrix coordinates of (n � 1)-planes in projective spaces P 2n�1, CP 2n�1 , and
HP 2n�1 [8, p. 387], [9, p. 134]. Continuous functions y = f(x) in the algebras
Rn , C n , and H n determine transformations in the manifolds of (n � 1)-planes in
these projective (2n� 1)-spaces.

These transformations are also transformations in manifolds of intersections of
(n� 1)-planes, that is in manifolds of (n� 2)-planes, (n� 3)-planes,: : : , 2-planes,
straight lines, and points. But transformations in manifolds of points and straight
lines in real and quaternionic projective spaces and continuous transformations in
these manifolds in complex projective spaces are collineations in projective spaces.
The dimensions of these groups of collineations are equal, respectively, to 4n2 � 1,
8n2 � 2, and 16n2 � 1.

Collineations in spaces P 2n�1 and HP 2n�1 in aÆne matrix coordinates have
the form (6), collineations in the spaces CP 2n�1 in these coordinates have the form
(6) and

y = (a�x+ b)(c�x+ d)�1(7)

where a, b, c, d, x, y are, respectively, real, complex, and quaternionic (n � n)-
matrices [6, p. 582], [8, p. 351], [9, p. 176]. �

For the functions (6){(7) dy can be expressed in the form a dx or (dx)a only if
these functions have the form (3).
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Theorem 3. In the spaces over simple noncommutative associative algebras
only m-planes, straight lines for m = 1, are smooth m-surfaces.

This theorem follows from Theorem 2 and from the fact that equations of the
m-planes have the form

xi = ai0u
0 + ai1u

1 + � � �+ aimu
m:(8)

Since semisimple noncommutative algebras are direct sums of simple algebras
Theorem 2 and Theorem 3 are valid for semisimple noncommutative associative
algebras and for spaces over these algebras.

Akivis [3] considered also the projective 2-plane over algebra T2 of ternions of
B�ock [10]: � = a+ be+ c�; e2 = 1; �2 = 0; e� = ��e = �.

The algebra T2 is isomorphic to the algebra of real triangular (2� 2)-matrices;
this algebra is nonsemisimple, noncommutative, associative.

Akivis proved that smooth lines in the plane T2P
2 have tangent straight lines

depending on one real parameter.
This example shows that in projective spaces over nonsemisimple noncommu-

tative associative algebras, for instance algebras H 0 of semiquaternions and H
0 0 of

split semiquaternions, smooth m-surfaces have tangent m-planes depending on a
number of real parameters les than the points in these m-surfaces.

Nonsemisimple noncommutative associative algebras A have radicals J , that is
ideals such that quotient algebras A =J are semisimple algebras. The numbers of
parameters of tangent m-planes to smooth m-surfaces in spaces over these algebras
are determined by the structure of radicals in these algebras.

3. Alternative algebras

Simple alternative real or complex algebras are the algebras O of octonions, O 0

of split octonions, and C � O of bioctonions [6, pp. 534{535, 683], [9, pp. 54{55,
60].

Theorem 4. In simple alternative algebras among the functions y = f(x) only
linear functions (3) have right and left derivatives (4).

Proof for the algebra O. This algebra can be regarded as the Euclidean 8-
space R8, where the distance d between octonions x and y is de�ned by the formula
(5).

Since multiplication by an octonion in this 8-space is interpreted as an simili-
tude, the function y = f(x) determines a conformal transformation in this 8-space.

Liouville's theorem implies that this transformation is a conformal transforma-
tion in the conformal 8-space C8. The group of these transformations is isomorphic
to the group of motions in the hyperbolic space H9. The dimension of this group
is equal to 9 � 10=2 = 45.

Therefore these transformations can be expressed by the formula

y = (af(x) + b)(cf(x) + d)�1(9)

where a, b, c, d, x, y are octonions, f(x) is the result of action of an automorphism
of the algebra O [9, pp. 334{335]. Since the group of automorphisms of the algebra
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O is a 14-dimensional compact simple Lie group of the class G2, the dimension of
the group of transformations (9) is equal to 4 � 8� 1 + 14 = 45. �

For the function (9) dy can be expressed in the form adx or (dx)a only if this
function has the form (3).

The proofs for the algebras O 0 and C � O are analogous. Note that these
algebras can be regarded as 8-spaces R8

4 and CR8 with distances (5). Conformal
transformations in 8-spaces C8

4 and CC8 can be expressed, respectively, in the form
(9), where a, b, c, d, x, y are split octonions and in the same form, where a, b, c, d,
x, y are bioctonions and as products of these transformations by the transformation
x0 = ~x, where ~x is the complex conjugate bioctonion of the bioctonion x.

Theorem 5. In the 2-planes over simple alternative algebras only straight lines
are smooth lines (2) for m = 1.

The theorem follows from Theorem 4 and from the fact that the equation of
the line has the form

a0x
0 + a1x

1 + a2x
2 = 0(10)

where a0, a1, a2 are elements in an associative subalgebra in the algebra. The
equation (10) is equivalent to the equations (8) for m = 1.

In the projective 2-planes over nonsimple alternative algebras, for instance the
algebras O0 of semioctonions and O

0 0 of split semioctonions, there are smooth lines
with tangent straight lines depending on the number of real parameters less than
the points in these lines.

References

[1] G. Sche�ers, Verallgemeinerung der Grundlagen der gew�ohnlichen komplexen Funktionen,
Sitzungsber. S�ach. Gesellsch. Wiss. Math.-Phys. Kl. 45 (1893), 328{342.

[2] �E. Cartan, Les groupes bilin�eaires et les syst�emes se nombres complexes, Oeuvres compl�etes,

Partie II, CNRS, Paris, 1984, pp. 7{105.
[3] M.A. Akivis, On smooth lines on projective planes over certain associative algebras, Mat.

Zametki 41:2 (1987), 227{237 (in Russian).
[4] N.M. Krylov, On quaternions of Rowan Hamilton and on the notion of monogenity, Doklady

AN SSSR 55 (1947), 799{800 (in Russian).
[5] A.S. Meylikhzon, About monogenity of quaternions, Doklady AN SSSR 69 (1948), 431{434

(in Russian).
[6] B.A. Rosenfeld, Non-Euclidean Geometries, Gostehizdat, Moscow, 1955 (in Russian).
[7] J. Liouville, Note VI. Extensions aux cas de troix dimensions de la question du trace

g�eographique, G. Monge, Application de l'analyse �a la g�eom�etrie, cinqi�eme �edition, revue,

corrig�ee et annot�ee par M. Liouville, Bachelier, Paris, 1850, pp. 608{616
[8] B.A. Rosenfeld, Multidimensional Spaces, Nauka, Moscow, 1966 (in Russian).
[9] B.A. Rosenfeld, Geometry of Lie Groups, Kluwer, Dordreht{Boston{London, 1977.

[10] H. B�ock, �Uber Ternionen in Geometrie, Math. Zeitschrift 40:4 (1935), 509{520.

Department of Mathematics (Received 10 04 2000)
Pennsylvania State University (Revised 30 10 2000)
University Park, PA 16802
USA


