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DOMINATING PROPERTIES

OF STAR COMPLEMENTS

Bolian Liu and Peter Rowlinson

Communicated by Slobodan Simi�c

Abstract. Let G be a �nite graph with an eigenvalue � of multiplicity m.
A set X of m vertices in G is called a star set for � in G if � is not an
eigenvalue of the star complement G � X. Various dominating properties of
the vertices in G�X are established and discussed in the context of memoryless
communication networks.

1. Introduction

Let G be a �nite simple graph with vertex set V = f1; 2; : : : ; ng and (0; 1)-
adjacency matrix A. Let � be an eigenvalue of G, and let P be the orthogonal
projection of Rn onto E(�), the corresponding eigenspace of A. Then E(�) is
spanned by Pe1, Pe2; : : : , Pen, where fe1, e2; : : : , eng is the standard orthonormal
basis of Rn . The subset X of V is called a star set for � in G if the vectors Pej
(j 2 X) form a basis for E(�), equivalently [5, Theorem 7.2.9] if jX j = dim E(�)
and � is not an eigenvalue of G�X . In this situation the graph G�X is called a
star complement for �; it is the subgraph of G induced byX, whereX = V rX , and
this note is concerned with dominating properties of such a set X. It is shown in [5,
Chapter 7] that if � 6= 0 then X is a dominating set in G; moreover if � 62 f�1; 0g
thenX is a location-dominating set, meaning that theX-neighbourhoods in vertices
in X are distinct and non-empty. Here we generalize these results and note the
consequences for memoryless communication networks of the type discussed in [1].
We suppose throughout that G has no isolated vertices and (for v 2 V ) we write
Wk(v) for the set of vertices reachable from v by a walk of length k. We write
Gk for the graph with vertex set V in which distinct vertices u; v are adjacent if
and only if there exists a u-v walk of length k in G. We say that the subset D
of V is a k-dominating set if Wk(v) \ D 6= ; for all v 2 D, equivalently if D is a
dominating set in Gk; and we de�ne �k(G) to be the least size of a k-dominating
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Figure 1. The graph of Example 1.

set in G. Note that �k+2(G) � �k(G) for all k 2 N because Wk(v) � Wk+2(v) for
all v 2 V . Now a smallest dominating set in Gk has size at most 1

2n provided Gk

has no isolated vertices (cf. [6, Section 2]). Accordingly �k(G) � 1
2n if k is odd,

and the same bound holds for even k provided G has no component which is a star.
In order to describe sharper bounds implicit in [1], suppose that G represents a
communication network where (i) initially each vertex in D holds the same bit of
information, and (ii) at each increment of time any bit of information at a vertex
v is transmitted to each neighbour of v (but not retained at v). If G is primitive
(i.e. connected and non-bipartite) then (cf. [1]) we may de�ne f�(G; r) (r � 1) as
the shortest time in which the information can be disseminated from a set D of r
vertices to all vertices of G. If k = f�(G; r) then G has a k-dominating set of size
r, and so �k(G) � r. By [1, Theorem 6.7] we have f�(G; r) < 1+ 2(n� r)=(r+1).
It follows that r(k + 1) < 2n� k + 1 and hence that �k(G) � b(2n� k)=(k + 1)c,
where k = f�(G; r) � n.

We shall see that if X is a star set (in any graph G without isolated vertices)
thenX is a k-dominating set if k is odd or if k is even andG has no component which
is a star. We point out two consequences of this result. First, such a k-dominating
set X can be found in polynomial time with respect to n [4], whereas the problem of
�nding �k(G) is NP-complete [3, p. 190]. Secondly, the foregoing bounds for �k(G)
can be improved when G has an eigenvalue of relatively high multiplicity. An
improvement to roughly

p
2n is the best that can be achieved in this way; for it is

known that if E(�) has codimension t > 1 then n � 1
2 (t

2+5t�4) and that an upper

bound of order 1
2 t
2 is asymptotically best possible [7, Section 2]. The corresponding

lower bound of order
p
2n for jXj is asymptotically best possible and attained in

the strongly regular graph L(Kt), with n = 1
2 t(t� 1) and jX j = codim E(�2) = t.

We shall see that most strongly regular graphs have an eigenvalue (of mul-
tiplicity > 1

2n) for which X has a stronger dominating property. To de�ne this
property, suppose that D is a k-dominating set in G with vertices 1; 2; : : : ; s, and

write Ak =
�
a
(k)
ij

�
. We say that D is a k-location dominating set in G if for any
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pair u; v of vertices in D we have�
a
(k)
u1 ; a

(k)
u2 ; : : : ; a

(k)
us

�
6=
�
a
(k)
v1 ; a

(k)
v2 ; : : : ; a

(k)
vs

�
:

Note that (i) if k = 1, D is just a location dominating set, (ii) for k > 1 the notion
of a k-location dominating set in G di�ers from that of a location-dominating set
in Gk. We can now extend an idea of Slater [8] to the model of a communication
network. Suppose that at time t = 0 one vertex of D holds one bit of information.
If D is a k-location dominating set it is possible by measuring signal strengths at
the vertices in D at time t = k to identify the vertex in D at which the information
originated. In particular, if D is a k-location dominating set for all k 2 N then the
capability to distinguish vertices in D persists.

We conclude this section with an example.

Example 1.1. In the Petersen graph of Fig. 1, let D1 = fu2; u5; v1g, D2 =
fu5; v1; v3g. Then D1 is a minimal dominating set, but not a 2-dominating set
becauseW2(u1)\D1 = ;. On the other hand D2 is a 2-dominating set which is not
a 1-dominating set because W1(v2) \ D2 = ;. Also, fu5g is both a 3-dominating
set and a 4-dominating set. Finally, it is a consequence of Proposition 2.5 that
fu1; u2; u3; u4; u5g is a k-location dominating set for all k 2 N.

2. Star sets and their complements

Proposition 2.1. Let G be a graph without isolated vertices, let X be a star
set in G, and let k 2 N.
(i) If k is odd then X is a k-dominating set.
(ii) If k is even and no component of G is a star then X is a k-dominating set.

Proof. (i) Since G has no isolated vertices. it follows from [5, Theorem 7.3.1]
that X is a 1-dominating set, and hence a (2h+ 1)-dominating set for all h 2 N.

(ii) Let X be a star set for the eigenvalue �, and let P be the orthogonal
projection of Rn onto E(�). It suÆces to show that X is a 2-dominating set. Since
�kPeu = AkPeu, we have

�2Peu �
X

fa(2)uj Pej : j 2 W2(u)g = 0(2.1)

for each vertex u. If now u 2 X and W2(u) \ X = ; then (1) is a relation on
the linearly independent vectors Peh (h 2 X). Accordingly either (a) � = 0
and W2(u) = ;, or (b) � 6= 0 and Wk(u) = fug. Now (a) cannot hold because
W2(u) � fug; and (b) cannot hold for if W2(u) = fug then G has as a component
a star with centre u. It follows that W2(u) \X 6= ; for all u 2 X . �

Proposition 2.2. Let X be a star set for the eigenvalue � of G. If �k 62 Z,
then X is a k-location dominating set.

Proof. For u 2 X we have

�kPeu �
X

fa(k)uj Pej : j 2Wk(u)g = 0:(2.2)

Since �k 62 Z and the vectors Pej (j 2 X) are linearly independent, we have
Wk(u) 6� X . It follows that X is a k-location dominating set. Now suppose, by
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Figure 2. The graphs of Examples 2 and 3.

way of contradiction, that for some distinct u; v 2 X we have a
(k)
uj = a

(k)
vj for all

j 2 X . If we subtract from equation (2) the corresponding equation with v in place
of u we obtain

�kPeu �
X
j2X

a
(k)
uj Pej = �kPev �

X
j2X

a
(k)
vj Pej :

On equating coeÆcients of Peu we �nd that

�k = a(k)uu � a(k)vu :(2.3)

In particular, �k is an integer, contrary to assumption. �

We may use equation (3) to establish further suÆcient conditions for X to be
a k-location dominating set for particular values of k.

Proposition 2.3. Let G be a graph in which no component is trivial or a star,
and let X be a star set for � in G.
(i) If G is bipartite, k is odd and � > 0 then X is a k-location dominating set.

(ii) If �2 6= d�a(2)uv whenever u; v are vertices in X of degree d then X is a 2-location
dominating set.

Proof. By Proposition 2.1, the hypotheses ensure that in each case X is a
k-dominating set for all k 2 N. In case (i), if X is not a k-location dominating set

then by equation (3), �k = �a(k)vu for some u; v 2 X , a contradiction. In case (ii), if

X is not a 2-location dominating set then by equation (3), �2 � deg(u) = �a(k)vu =

�a(k)uv = �2 � deg(v) for some u; v 2 X , a contradiction. �

The two following examples demonstrate that the restriction on � in Proposi-
tion 2.3(ii) is essential.

Example 2.1. For the graph in Fig. 2(a), take � = 0 and X = f1; 3; 6g.
Then X is not a 2-location dominating set because a

(2)
1j = a

(2)
6j (j = 2; 4; 5). Also,

X is not a 1-location dominating set because vertices 1 and 6 have the same X-
neighbourhoods.

Example 2.2. For the graph in Fig. 2(b), take � = �1 and X = f1; 2; 3g.
Here X is a 1-location dominating set, but not a 2-location dominating set because

a
(2)
1j = a

(2)
3j (j = 4; 5; 6). We have deg(1)=deg(3)=3 and �2 = 3� a

(2)
13 .
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Figure 3. The graph of Example 4.

Proposition 2.4. Let G be a regular graph of degree r � 1, and let X be a
star set for � in G.
(i) If G has no 4-cycles and �2 62 fr � 1; rg then X is a 2-location dominating set.

(ii) If G has girth > 6 and if �3 62 f1�2r;�1; 0g then X is a 3-location dominating
set.

Proof. (i) Deny. Then by equation (3), �2 � r = �a(2)vu for some u; v 2 X .

This is a contradiction because a
(2)
vu 2 f0; 1g.

(ii) Deny. Then by equation (3), �2 = �a(3)vu for some u; v 2 X . This is a contra-
diction because

a(3)vu =

8>><
>>:

2r � 1 if d(u; v) = 1;
0 if d(u; v) = 2;
1 if d(u; v) = 3;
0 if d(u; v) > 3:

�

Example 2.3. The Heawood graph illustrated in Fig. 3 demonstrates that
the condition �2 6= r � 1 of Proposition 2.4(i) is essential. Here r = 3 and the

eigenvalues are �3, of multiplicity 1, and �p2, of multiplicity 6. The circled
vertices constitute a star set X for �p2, but X is not a 2-location dominating set

because a
(2)
uj = a

(2)
vj (1 � j � 8).

In the application to a communication network described in Section 1, a k-
location dominating set is usually required to be relatively small. The next result
shows that with minor exceptions this requirement is ful�lled by the complements
of star sets in strongly regular graphs, since such graphs have an eigenvalue of
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relatively large multiplicity. Explicitly, if G is a strongly regular graph with pa-
rameters (n; r; e; f) such that (n� 1)(f � e) 6= 2r then G has an integer eigenvalue
of multiplicity greater than 1

2n (see [2, Chapter 2]).

Proposition 2.5. LetG be a strongly regular graph with parameters (n; r; e; f)
such that (n � 1)(f � e) 6= 2r and e 6= f 6= r. If X is a star set for an eigenvalue

6= r then X is a k-location dominating set for each k 2 N.
Proof. By Proposition 2.1, X is a k-dominating set for each k 2 N. Our

hypotheses here ensure that the distinct eigenvalues of G are r, �1, �2, where �1,
�2 are non-zero integers such that �1 + �2 6= 0. Also, by de�nition, G is not
complete and so �1 is not an eigenvalue. In particular, X is a location-dominating
set, and so we may assume that k > 1. We know (by distance-regularity) that if

d(u; v) = d(i; j) then a
(k)
uv = a

(k)
ij . To prove that the converse holds as well, we make

use of the fact that (A��1I)(A��2I) is a multiple of the all-1 matrix J [2, Chapter
2]. Since AJ = rJ , we know that for each k 2 N, Ak is a linear combination of A,
I and J , say Ak = �kA + �kI + 
kJ . Since A, I and J are linearly independent,
we have�

�k+1
�k+1

�
=M

�
�k
�k

�
; where M =

�
�2 1
�2 0

�
and

�
�1
�1

�
=

�
1
0

�
:

Since M has eigenvalues �1, �2, we have�
�k
�k

�
=

1

�1 � �2

�
�k1

�
1
��2

�
+ �k2

� �1
�1

��
:

In particular, for k > 1 we have �k = ��1�2�k�1 6= 0. Moreover �k 6= �k for
otherwise �k1(1 + �2) = �k2(1 + �1), which yields the contradiction �1 = �2. Since
Ak has (u; v)-entry

a(k)uv =

8<
:

�k + 
k if d(u; v) = 0
�k + 
k if d(u; v) = 1


k if d(u; v) = 2
;

we deduce that a
(k)
uv = a

(k)
ij if and only if d(u; v) = d(i; j).

Now suppose that u; v are vertices in X such that a
(k)
uj = a

(k)
vj for all j 2 X .

Then d(u; j) = d(v; j) for all j 2 X. But since X is a location-dominating set,
there exists j 2 X such that j is adjacent to precisely one of u; v, a contradiction.
It follows that X is a k-location dominating set for each k 2 N. �

Acknowledgement. The authors are indebted to the Referee for some helpful
comments.
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