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ABSTRACT. We introduce cylindric probability algebras. These algebras
are designed to provide an apparatus for an algebraic study of graded
probability logic. We prove the Boolean representation theorem for locally
finite-dimensional cylindric probability algebras.

A cylindric probability algebra can be considered as a common algebraic ab-
straction from the geometry associated with basic set—theoretic notions on the one
hand, and the theory of deductive systems of probability logic on the other hand.
These two sources are connected because models of deductive systems of probabil-
ity logic give rise in a natural way to probability structures within set—theoretical
algebras. As is well known, the theory of Boolean algebras is related to sentential
calculus, and the theory of cylindric algebras is related to first—order predicate log-
ic. The theory of cylindric probability algebras designed to provide an apparatus
for an algebraic study of the graded probability logic will be presented analogously
to the treatment of Boolean algebras and cylindric algebras.

First we shall describe cylindric probability set algebras.

Let (A, pin)n<w be a graded probability space (see [4]) and let u,, be the com-
pletion of the measure on A% determined by the u,,’s. Let (K) be a tuple of distinct
integers corresponding to a finite subset K = { ky,...,k, } of w. For each (K) and
r € [0,1], we define a unary operation C€K> on the subsets of A“ by setting, for
any X C A%,

Cliy(X) ={y € A% s pu{ (@hy,- - 20,) 10 €X & (JEK 2 aj=y;)} 27}

It follows from the Fubini property that for any u,—measurable set X, the section
{(@ky,. yzr,) ce € X & (j ¢ K = x; =y;)} is pp—measurable for each
y € A¥, and also that Clry (X) is p,—measurable. By means of Clyy we obtain
the cylinder generated by translating along the (ki,...,k,)—axis of A only the
section of X whose measure is no less than r. So, these operations will be called
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probability cylindrifications. Further, for each permutation ¢ of w such that ¢ = id
almost surely (a.s.), i.e. o fixes all but finitely many elements of w, we define a
unary operation S, on subsets of A¥ by setting, for any X C A%,

Se X ={(Tr01),To(2),---) T € X }.

For any p,—measurable set X, the set S, X is u,—measurable. These operations
will be called permutations. We do not need the full class of permutations, because
the number of free variables is finite even in infinite formulas of our canonical L 4p
logic (see [4]).

Let A be a countable admissible set and w € A. We suppose in advance that
a fixed indexation by hereditarily countable sets (from A C HC) is given. So, let
A={A;:iel}and I C A We say that a Boolean set algebra (A, U,N,~, 0, A),
where A C P(A), is A-complete if for any {A; : j € J} C A, where J C I and
J € A, we have UjEJ Aj; € A The notion of an A-complete Boolean algebra
(A,+,-,—,0,1) is introduced in the obvious way.

DEFINITION 1. A cylindric probability set algebra (CPS,, for short) is a struc-
ture of the form

<A7 U: m: ~, @> Aw) C(K) ) SO’: qu>K,a',rE[0,1]7P7‘1<w

in which A is a collection of subsets of A“ closed under all operations of an A-—
complete Boolean algebra, under all probability cylindrifications and under all per-
mutations, having all diagonal hyperplanes D,, = {z € A : ), = z, } as distin-
guished members.

To show that the theory of cylindric probability algebras is rooted in probability
logic, we shall now describe the relationship between the graded probability logic
L ap (see [4]) and cylindric probability algebras.

The set Formy, of all formulas of L 4p is closed under countable disjunctions \/,
countable conjunctions A, negation —, probability quantifiers (P7 > r), where ¥ is
a finite sequence vy, , . .., v, of variables and r € [0, 1], and under the substitutions
s, of variables, for each permutation o of w such that o = id a.s. This set contains
as distinguished elements the expressions F' (false), T' (true) and v, = v, for any
p,q < w. The structure Formy = <FormL,\/,/\,—l,F, T,(PY >r1),8,vp = Uq> is
the algebra of formulas of L 4p.

Let X be any set of sentences of L4p and let =5 be the relation on Formp,
defined by

p=x¢ iff Yk pe .

Xk @<+ ¢, then X F (P> r)p < (PY>r)Y and ¥ F s, ¢ s,1; hence the
relation =y, is a congruence relation on Form;. Let p* be the set of all formulas
=y—equivalent to . Let

gotmL/EE: <FOI'H1L /EE,\/Z’/\Z’_‘Z’FZ,TZ’ (PU> T)Zas§7 (Up = ’Ul])2>7
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be called a cylindric probability algebra of formulas of L ap associated to .. Here
Formjp, / =y, is the set of all equivalence classes ¢*, and for ® C Formp, ® € A,

> s >
/\we<1><‘0 - (/\ (I)) ’
-7 ¥ = (mp)”
(PF> 1) = (P7>1)p)”,
sop” = (sop)”.

In this way, basic metalogical problems are interpreted as algebraic problems con-
cerning the associated algebra of formulas.

Let 2 = (A, R* c*, u,) be a graded probability model for ¥ and let ¢ be any
formula of L 4p. Then, for p* = {a € A¥ : A |= p[a] }, we have:

Cliy(0™) = {a € A% s pn{ by, b)) A E @[] & (GEK > b;=a;)} >}
={a€AY :AE (PT>r)pla] }

= ((PT>1)9)",

where ¥ is vg,, ..., vk, , K = {ki,...,k, }, and
So (™) = { (@o(1), Ao (2),---) : A = [a] }
= {(ar(1), o(2), - - -) (A so@lan(1), Ar2),- -] }
= (Sa‘p)m-

We conclude that the collection A of all subsets of the form ¢ is closed under
all operations of the A-complete Boolean set algebra, under all probability cylin-
drifications and under all permutations. Also, all diagonal hyperplanes D, belong
to A. We obtain the mapping f from the set Formp, / =y, of all equivalence classes
> onto the collection A of all sets p*, having the following properties:

(1) f(Viep ‘PE) = UanCP ‘PQlQ

2) f(A wp@ ) = Nyea ™

(3) f(=7¢%) = ~p%;

(4) f(F*)=0;

(5) f(T%) = A¥;

(6) f((PT>1)"p") = Cly (¢™);
(7) F(sE0%) = S, (so%

(8) f(vp =v9)*) =

Therefore, we get a cyhndrlc probability set algebra by a homomorphic transfor-
mation of a cylindric probability algebra of formulas.
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The abstract notion of a cylindric probability algebra (C P A for short) is defined
by equations which hold in all cylindric probability set algebras and cylindric prob-
ability algebra of formulas, where the stress is on the axioms of graded probability
logic. Changing the notation introduced for cylindric probability set algebras and
cylindric probability algebras of formulas, we shall consider the algebraic struc-
ture A = (A,+,-,—,0,1,C’Z‘K>,Sg,dpq>, where (4,+,-,—,0,1) is an A-complete
Boolean algebra, C(TK> is a unary operation on A called probability cylindrification,
S, is a unary operation on A called permutation and d,, is a distinguished element
of A, for any p,q < w. We suggest the following axiomatization of any cylindric
probability algebra A:

(CP) (i) Clpyz =z,
(i1) Cly0 =0, wherer >0;
(C.Pz) C?K>£L‘ = ].;
(CPs) Cliyr < Clgyx,  wherer > s;
(CPy) Cliey(+ 2 5c5 Oy Clan¥i) = Claey + 2055 CipyClapyys,  where J € A
and K C LU M;
(CPs) (i) Clay- Cipeyy < Ca Ot (@ oy,
) C’ VL Oy - C<K> (x-y) < C’?};)‘{Hs’l}(a:—ky);
(CPs) Clyy ==~ Em>o Clrey "
(crr) szng C(K) Hje]z Tj < C(TK) HjeJ1 Lj
where J; ranges over the finite subsets of J; and J; € A,
(CFs) Clgyx = Ol g%,  where mis a permutation of {1,...,n} and (7(K))

18 Rrly -« Rang
(CPhy) Clx >C<SL>:U < Oy )@, where KN L= 0;
(CPwo) (i) Siar ==,
(i) SySrx = Spore,
(i7i) So Y jesTj =D ey Soj, where J € A,
(iv) S —z=-5,1;
(CPu) (i) SeClgyCipye = S:Cl Cipyz, whereo [ (KUL)* =7 | (KUL),
(i7) C’Z“ S & = S;Cl, 1)y, where (07 Y (K))is 07 (ky),...,0  (ky);

(CPiz) (i) dpp =1,
it) x-dpg < Sex, where o(p) =g,
(i) Sodpg = dy(p)o(q)>
(iv) C<K> pg = dpg, Where p,q ¢ K.
The axioms C'P,, C'P3;, C' Ps—C Py respectively express non—negativity, mono-
tonicity, finite additivity, the Archimedean property, countable additivity, symme-
try and product independence of probability measures { p, : n < w} (see [4]).

THEOREM 1. Every cylindric probability set algebra is a cylindric probability
algebra.

Proof. Axioms CP;, CP, and C'P; follow immediately from the definition of
probability cylindrifications and from the non—negativity and monotonicity of prob-
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ability measures, respectively.
Any set Z of the form Z = {J;c; CfpyClypY; is a (L), (M)—cylinder, so CPy
follows from C(K>Z =Z,forr>0and K CLUM.
In order to check the axiom CPs, let
U=A{(zk,....21,):2€X & (j ¢ K=z =215},
V={(Wkis- Y)Yy €Y & (¢ K =z =y;)}
W={(qk, - ) g€~ (XNY) & GEK =z =¢;)}
be subsets of A", where z € A and X,Y C A¥. We obtain

= pp(~U)<1—=7r, pp(~V)<1-s
= pn(~UU~V) <1 (r+s-1)
= pu,UNV)>r+s-1
max{ 0,r+s—1
= zeC’<,f>{ Tl X ny),
and
= un(UUV)>r+s
min{ r+s,1 }
= z € C<K> (XUY)

from the finite additivity of measures.
The Archimedean axiom C Py follows from

2€~Ciy~X = p(U)>1-r
<~ pp(U)>1—r+1/m for some m >0
1—r+1/m
= zeUm>OC<K> X,

where U is as before.
For J; € A and J, ranging over the finite subsets of J;, we have

ye ﬂJ2gJ1 C(K> ﬂjEJZ Xj —= Hn(HJZ) >r foreach Jo C.J;

= Un ( l_IJ1 ) >r (countable additivity)

.

X,

= y el ﬂjeh i
where [[; and [];, have obvious meaning. So C'Pr holds.

The axioms C'Py and CPy follow immediately from the symmetry and the

product independence of probability measures, respectively.
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The axioms C'Pyg and C'Pj; follow from the definition of S,. We remark only
that CpC7py X is a (K), {L)-cylinder; hence, SeClgyClpy X = S:Cly Clpy X for

ol (KUL) =71 (KUL)".
Finally, we check CPy» (iv). If y € C’<1K>qu, and p,q ¢ K, then

pnd (@ -wn) tap =2 & GEK 2 yj=x5) > 1.
Thus, y, =z, =z, = yg; i.e., y € Dyy. The converse follows from
{@kyyoosop,)ixp=2, & (jEK —y; =x;)} = A",

since y € Dpy and p,g ¢ K. O

Similarly, by routine checking, we obtain the following

THEOREM 2. Every cylindric probability algebra of formulas is a cylindric

probability algebra.

Now we shall prove several properties of probability cylindrification operations.

THEOREM 3. (1) Cliyl=1.

(2) ClgeyCipyr = Cipyz,  where (r >0 orr=s=0) and K C L.
(3) C"’ =z iff Cfpy—x=—x, wherer>0ands>0.

(4) C”“ (@ +—=Cipyy) = Clyz + —Cfyy, where K C L.

(5) Cly,

(6) C<K> Oy < zm>0 <,4> (- ).

(7) If © <y, then Cliyr < Ol

(8) Clgyr + Cliyy < < C<K>(:v+y)

(9) Clgy - CF y>0 y(@ - y).

(a:-Cfmy):C' z - CfY, where (r >0 orr=s=0)and K C L.

(IO)IfC' a:] =z forr > 0,j € JandJ € A, then Clpy 3 e, =2 5c; %

(11) C”“ x<C<1K>" x.

(12) C<K>a: C’ y—C<K>(a: Y).
(13) C<K>C’ a:—C<K>’<L>a: where KN L = 0.

(14) C@'; T < Ol Clpyr, where KN L =0.

Proof. (1): Putting x = 0 in C'Ps we obtain C7py1= =3, crorttimg

(K)
from CP;.

(2): Immediate by CP, and C'Py (putting z = 0, J is a singleton and M = 0).

(3): If C&Qx =z, then for any s > 0, we obtain

_ 1— s+1/m _ 1 s+1/m _
Cloy—z==3_ _ Cixy == oo Cirey iy =

from (2) and C'Ps. The converse follows by symmetry.
(4): Immediate by (3) and CPy.
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(5): For r > 0 we have:
Cliy(@ - Clryy) = Cliey — (—2z + —ClLyy)
= =2, Cir) M(=w+ =Cluyy) by ORy

= = (3,.,Cu " =t ~Cluyy) by (@)

= (=X, Gl ™" =) Clu
=Clyz - Clnyy by CPs.
(6): For any r € [0, 1] we have:
Cliye - = Cliow = Cliye 3, Cuey ™™ =y by OPs
=Y Gl Cuy ™™ —y
< Zm>0 (1[/(7; T —y) by CPs (i).
(7): If © <y, then - —y = 0. Hence,
Cliyw =Claoyy <32, o Cliy @ =) =0
from (6) and CPy; i.e., C(K>:v < C(K>y.

(8),(9): Immediate by x <z +y, y<z+y, v-y<z z-y<yand (7).
(10): Putting x = 0 in C' Py, we obtain

Cliey D, % =Cliy 220, Cliomi = D Clieyws = 32 %

(11): By CPs and CPs, we obtain

_ 1—r41/m lmr o ier
~Cliyr =) Cly "—x<y O —w=Cy —a
(12): By C'Ps (i) we have Cyyz - Clyeyy < Cley (- ). The reverse inequality
is an instance of (9).
(13): It follows from CPy and CP; that for each m,n > 0 there is p > 0
such that: C’l/mCa;l z < C<II/((>WE’Z> z < Cgl/(‘; (y — - Further, we obtain
1/ 1/m ~1/n
Cly iy = — Xg0 C<Kq> ay — T < C'/ C<£> z, for each mm > 0. Hence,
Clryry® < mso —C’gl/(Tbe;L z = Clgy CU{) x, for each n > 0. Finally, for
M ranging over the finite subsets of N, we have

1 1/n
Clopye <I1,.,Cley = Cay — =
— 1/n
- HMCN HneM C(K> - C(L> -
1/n
=Len Cio I, e,y —Ciay == by (12)

l/n
< C<K> Hn>0 iy T by CP;
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The reverse inequality is an instance of C'Py.
(14): For s = 1 we have C<1K>7<L>CE < C’<1K>C<1L>:v < C’(K>C<1L>:v by CP;. Suppose
s # 1. Tt follows from C'Py and C'P; that for each m > 0 there is p > 0 such that

1—r+1/m — 1—7r)(1—s)4+(1—s)/m 1—r)(1—s)+1
Ol Imalzs — g < Qo= ionim o g n0-041/p  pence,

(L)
= Clxy — C<1L_>S -z by CPs

r4+s—r-s _ 1—r+1/m 1—s
Conare<Il, ., ~Cuw '"C z

Now we list several necessary properties of permutation operations and diagonal
elements.

THEOREM 4. (1) Y, o C(II/(r)nqu =dpy, wherep,q¢ K.
(2) Clky (dpg -x) = dpq - Clxyz, wherer >0 and p,q ¢ K.
(3) SoCliyClryt = Clgy Clpyz,  where o | (KU L)" = id.
(4) S0 =0 and S,1 =1.

(5) dpg = dgp.

(6) dpq * dgr < dipr-

(7) ¢ -dpg = Sex - dpg, whereo(p) =q and o [ {p,q}° =1id.

Proof. (1): By CPy2 (iv) and (2) of Theorem 3, we get:
1/m 1/m
CU/() dpg = CU/() C<1K>dp‘1 = C<1K>dpq = dyq

for each m < w. Hence, 3, Cgl/(’;ldpq = dpy.

(2): Immediate by C P2 (iv) and (5) of Theorem 3.
(3): We have

SJC’(K>C<SL>Q: = SidC(mC’(SL)x by CPyy (i)
= C€K>CfL>CE by C'Pyg (’L)

(4): For a permutation o and K = {ki,...,k, } C w such that o | K¢ = id,
we have:
_ 1 el o —
S50 =5:C 4,0 =Cry,0 =0
by CP; and (3). Also, S;1 =S5, —0=-S5,0=1 by CPyq (iv).

(5): Let o be a permutation such that o(p) = ¢ and o [ {p,q}° = id for p # q.
Then

dpg = dpq - dpg < Sedpg = da(p)a(q) =dgp

by CPi5. The converse follows by symmetry.
(6): Let o be a permutation such that o(¢) = r and o | {¢,r}° = id. For
pairwise different p, ¢, r, we have:

dpg * dgr < Sedpg = do(p)o(q) = dpr
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by Cplg.

(7): Let o be a permutation such that o(p) = ¢ and o [ {p,q}° = id. By
x - dpy < Sex we obtain - d,y < S;x - dpy. The reverse inequality is a consequence
of the previous inequality and the axiom CPjg as follows:

Sox - dpg < S:55% - dpg = SoooT - dpg = Sia® - dpg = T - dpg. O

Such algebraic notions such as subalgebras, homomorphisms, ideals and free
algebras, can be modified using specific properties of cylindric probability algebras.
We shall mention two of them.

DEFINITION 2. A homomorphism from A = (A, +,-,—,0,1, CZKW Se,dpg) into
B=(B,+,,-,0,1, CZK>I’ Sy',d;,,) is a function f mapping A into B such that

(forallz € A, {z;:jeJ} CAand J € A):
1) f(zjejxj) = Z;‘EJ flzj);

[Ties zj) = H;'EJ flz5);

=" f(@);

We shall write A = B for short if there is an isomorphism of A and B, where
the term isomorphism has the obvious meaning.

DEFINITION 3. An ideal in a cylindric probability algebra A is a non—-empty
set Z C A such that the following conditions hold:

(1) Z is a Boolean ideal of A; i.e.
(a) 0€Z,
(b) If{a;:j€J} CTand J€ A, then } ; ;a; €T,
(c) f z €7 and y < z, then y € T;
(2) For any finite K C w and r € (0,1], if # € Z, then Cfpx € 1.
(3) For any permutation o of w such that o =id a.s., if z € Z, then S,z € T.

An ideal Z of a cylindric probability algebra 2 determines the congruence
relation ~={ (z,y) :z- —y+y-—x € Z}. Indeed, for r > 0 and z,y € A, we have

r r r r 1/m 1/m
Clicya - =Clryy + Clicyy - ~Clige <> Ol a-=y) + > Cif(y - —a)
by (6) of Theorem 3. So, if z ~ y, then C(K>x ~ C’(K>y. Also,
Sex+ —=Sey + Sey - =S,z =Sy(x-—y+y —x)

by CPyg. Hence, if x ~ y, then S,x ~ S,y.
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So, we define a new quotient algebra A /T = (A /T, +,7, 0,1, 6(1{)’ S, dqu)

~
~ O~

by (A/Z) +7 Ty Ty 07 1> = (A) +) K _)07 1> /Z) 6(]{) [Z’] = [Can)x]v S\O'[m] = [SO—Z’] fOI‘
an equivalence class [2] € A /T, and dp, = [dp,]. Tt is not dificult to see that A /T
is a CPA and that there is a natural homomorphism from A onto A /Z.

As in the case of arbitrary algebras, there is a natural correspondence between
homomorphisms and ideals in cylindric probability algebras.

THEOREM 5. If f is a homomorphism from A onto B andZ = {z € A: f(z) =
0"}, then T is an ideal of A, and B~ A /T.

Proof. First, by routine checking, we obtain that Z is a Boolean ideal of A.
For any finite K Cw and r > 0, if z € Z, then

f(CZnK)'T) = C(K),f(x) = C(K),OI =0

from CPy; i.e. CZ"K>:L“ € Z. Also, for any permutation o of w such that o = id a.s.,
if x € Z, then

f(Soz) =S, f(z) = 5,0 =0
from (4) of Theorem 4; i.e. Sy € Z. Hence, Z is an ideal of A.

It is easy to see that the function g: A /T — B defined by gla] = f(a) for
a € A, is desired isomorphism. [

The following theorem gives a connection between cylindric probability algebras
of formulas and ideals.

THEOREM 6. Let 7 be an ideal in Formy, /EZ and let A be the set of all
sentences ¢ of a graded probability logic L 4p such that (—p)* € T. Then ¥ C A
and (Formp, /Eg) /I is isomorphic to Formy, /EA.

Proof. If ¢ € ¥, then (—p)* = F* € T; i.e. p € A. Hence ¥ C A. It is routine

to check that f:(Formy /=5) /T — Formy /=a defined by f(;i) = p® is the
desired isomorphism. [

Cylindric probability algebras of formulas have some special properties that
other C'P A’s might not have. We shall mention one of them which is important for
our purposes.

DEFINITION 4. The dimension set Ax of an element z of a cylindric probability
algebra A is the set of all indices k < w such that Ciz # z (we write C}. instead
of C’<1{ k }>). A cylindric probability algebra A is locally finite-dimensional if Az is
finite for all x € A.

It is easy to see that k € Az if and only if Cfx # « for any r > 0. Every formula
p of L 4p has only finitely many free variables. If vy is a variable not occurring in ¢,
then = (Pu, > 0)p <> ¢. As a consequence, for any given set ¥ of sentences there
are at most finitely many indices k < w such that ¢ is not equivalent to (Pvg > 0)¢
under Y. Thus, any cylindric probability algebra of formulas Fotmp, /EZ is locally
finite-dimensional.
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If f is a homomorphism from A to B and z € A, then Af(x) C Az because
for each k < w, if k ¢ Az, then Ciz = z, and hence C}'f(z) = f(Clz) = f(z),
ie. k¢ Af(z).

Now we shall prove several necessary properties of A.

THEOREM 7. (1) A0 = Al = 0.

(2) A(Zjej a:]-) C U]-EJ Az;, JeA

(3) A(HjeJ .77]') - UjeJ Amj, Je A

(4) A —z = Az.

(5) ACTw C Az \ K.

(6) AS,z C o(Ax).

(7) Adyy C{p,q}.

Proof. (1): Immediate by CP; (ii) and (1) of Theorem 3.

(2): If k ¢ U cs Az, then

C]i E Tj :C,% E C,%l‘] = E Cél’.] = E ZTj
JjeJ JjeJ JjeJ jeJ

by (10) of Theorem 3. Thus k ¢ A(Z]EJ ;).

(3): Similar to (2).

(4): If k ¢ Az, then Clz =z, s0 C} —2 = — z from (3) of Theorem 3; i.e.
k ¢ A — x. The converse follows by symmetry.

(5): Let k be any integer such that k ¢ Az \ K. If k € K, then C’,icz"ma: =
Cliyz by (2) of Theorem 3. If k ¢ Az U K, then

by CPy. So k ¢ ACT .

(6): If k ¢ o(Ax), then 0! (k) ¢ Az and hence, C}So2=8,C)_1 7 =S,
by CPH (H) So k ¢ ASUZIZ.

(7): Immediate by CPy» (iv). O

The following result shows that algebras of the form Fotmp, /E@ (the set ¥ is
empty) have a certain freeness property.

THEOREM 8. Let L = { R; : i € Iy } be a set of finitary relation symbols and let
A be a cylindric probability algebra. Let f be a function from { R; : i € Iy } into A
such that Af(R;) C n; for each n;—ary relation R;. Then there is a homomorphism
g: Formy, /E@—) A such that g(Ri(Ul, . ,Um)m) = f(R;) for each i € I.

Proof. By induction on the complexity of formulas of the graded probability
logic we define a function h:Formj; — A satisfying F ¢ implies h(p) = 1 as
follows:

(1) Let ¢ be an atomic formula R;(vk,,..., vk, ). Let ji,...,jn, be the first

n; integers in w~ {1,...,n;,k1,...,kn, } and let 0,7 be permutations of w
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such that o = (35 ), 7= (o), o Lm0 = id

and 7 [ {k1,. .., kn,sjis- -, jn, }¢ = id. We define

h((p) = STSUf(Ri);

)
) A
) MV @) =3 cq hlw), @ €A
) MA®) = [T,ea h(@), @€ A

6) h((PT>r)p) = C€K>h(<p).

First, by induction on the complexity of formulas of the graded probability
logic, we shall prove the substitution property:

(S) h(SgQO) = Sah((p)'

If ¢ is an atomic formula R;(vk,, ..., vk, ), then s;¢ is Ri(Vg(k,), - - - :”a(kni))-
So, for any ji,...,jn; € W\ {1,...,n5,k1,... . kn;,0(k1),...,0(kn,) } and permu-

tations 7 and p such that 7 = (; ]”n) and p = (,ﬁfc’;), we obtain

h(ssp) = SaOpSTf(Ri) = SUSPSTf(Ri) = Soh(p)

from CPg.
If p is vy = vy, then s, is Vs (p) = Vg(q)- SO,

h(szﬂp) = do’(p)o’(q) = Sadpq = Sah(so)

by Cplg.
If ¢ is =), then

h(stﬂp) = h(_'sa'@b) = _h(sa¢) = _Sah(¢) =8, — h("/J) = Sah(SO)

by CPlo.
If pis V@, ® € A, then

h(saga) = h( \/UJE(I) Sa'dj) = ZI//G‘P h(50-1/))
= Z¢6<I> Sah(/(/}) = So’ Zzpeb h(¢) = So'h((p)

by CPlo.
The case when ¢ is A ®, & € A is similar.
If ¢ is (Pupy,-..,vr, > 70Uk, Uk, 0l,---,0;,) and o is a permutation

such that LN (K Uo(K)) =0, then s,¢ is

(P’Ull,...,’l)lm Z ’r')l/)(’l}a(kl),...,Uo.(kn),’l}ll,...,’l)lm).
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So,
h(sep) = Clryh(sov) = ClrySeh(th) = SeCipyh(¥) = Soh(e)

by CPy; (ii), because o [ L = id.
Second, by induction on the complexity of formulas, we shall prove the dimen-
ston property:

(D) if vy does not occur free in ¢, then k ¢ Ah(p).

If ¢ is an atomic formula R;(vg,,...,vk,, ) and k & {k1,...,k, }, then

n

C]ih(@) = C]iSTSa'f(Ri) = STCi,l(k)ng(Ri)
= STSO'C;—l(T—l(k))f(Ri) = S-,—So—f(Rl) = h((p),

by CPyq, since (0 o7) 1 (k) ¢ {1,...,n;} and Af(R;) C {1,...,n;}. So k ¢
Ah(p).

If pis v, = v, and k # p, k # q, then h(p) = dpy; so k & Ah(p) by (7) of
Theorem 7.

If ¢ is ) and vy, does not occur in v, then Ah(p) = A — h(y)) = Ah(y)) by
(4) of Theorem T7; so, by induction hypothesis, k ¢ Ah(p).

If pis \/ ®, ® € A and v, does not occur in 9, for all ¢ € ®, then

Ahlg) = A(Y, b)) €U, _, AR()

by (2) of Theorem 7; so, by induction hypothesis, k ¢ Ah(p).

If pis (Pvy,... v, > M)Wk, Uk, V... 0;,) and k & {ki,..., kn},
then

Ah(p) = Clpyh(1))
C Ah(Y)\ L by (5) of Theorem 7
C{ky,...,k,} by induction hypothesis.

Hence, k ¢ Ah(yp).
Now we shall prove that each logical axiom of a graded probability logic L 4p
is in the set
I'={peFormg:h(p)=1}.

as follows:

(A1) All axioms of L4 without quantifiers.

First suppose that ¢ is a tautology of L4 and h(y) # 1. Let Z be a maximal
ideal of the Boolean algebra A = (A, +,-,—,0,1) such that h(p) € Z, and let p
be the natural homomorphism of A onto A /Z. Then p o h can be considered
as a truth valuation of Form; onto the two element Boolean algebra A / Z. So,
po h(p) =0;i.e., ¢ is not a tautology.
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Next, suppose that ¢ is an identity axiom.

If ¢ is v, = vp, then h(p) = dpp, =1 from CPyy (3).

Let ¢ be v, = vy = (¢ — ), where 6 is a formula obtained from an atomic
formula ¢ by replacing each occurrence of v, in ¢ by v,. We may assume that
p # q. We have two cases. If ¢ is v, = vy, then 6 is v, = v,. Hence,

h(p) = —dpg + —dpr + dgr = _(dpq 'dpr) +dgr 2 —dgr +dgr =1

by (6) of Theorem 4. If ¢ has the form R;(v,,- .-, Vk;_1,Vp;Vk;yy»-- -, Vk,,) and
q¢ {ki,....kj—1,p,kjt1,...,kn; }, then 0 is Ri(vkl,...,vkjfl,vq,vkjﬂ,...,vkni).
Let A1,...,Ap; be the first n; integers in w\ {1,...,n;,k1,...,kn;,p,q}. Let o,7,p
and y be a permutations such that:

1,...,n; .
7= <>\1:::nl> and o r{la"'ani;Aly-..,Ani }C:zd’

DYTUUIND VNN W .
T:<;1,...,;,...,kni> and T [ {ki,- - ,D s kni, ALy Ay }6 = id,

DYTUUNND VNN W .
P:(;l,”',q]’”.,knf> and p [ {ki,. . q - kn; s Ay A JC=1d,

and x(p) =qand x [ {p,¢}° =id. Then xoroo [ {1,...,n;} =poo [{1,...,n;}
and Sxoroaf(Ri) = Spogf(Ri) by CPq (l), since Af(Rl) - {1, B 173 } Thus,

h((p) = _dpq + _Srsaf(Ri) + Spsaf(Ri)
= _(dpq . STSO'f(RZ)) + SpSaf(Rt)
> _SXSTSaf(Ri) + Spsaf(Rl) by CPiy (”)
= _Spsaf(Ri) + Spsaf(Rl) by OPll (Z)
=1.

Ifpis AU — o, ¢ € ¥, then
W) = = ][, MO +h@) > = h() +h(y) =1.
(A2) Monotonicity: If ¢ is (P¥ > r)y — (P70 > s)i, where r > s, then

W) = —Clioyh() + Ciy h(w) = 1

(Pugy s -y 0k, > 1)Uy -0k, ) = (Pugy, .o, > r)(vg, .- 0,)
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and K = {ky,...,kn}, L={l1,...,1n}, then

Iy, l,
() = ~Clay hlsoté) + Ol h(w) where o = (1))
= ~CleySah() + Cyh(w) by (5)
= S, Clpyh(®h) + Clyyh(1) by CPy (i)

= =S, Cl1,Cir\pyh(¥) + C11y Claer yh(¥) - by (D)
=1.
(A4) Non-negativity: If ¢ is (P7 > 0)%, then
h(p) = Cliyh(¥) =1

by CP2
(As) Finite additivity:
If pis (PUL< )Y A(PU< )0 — (PU<r+s)(¢pV8), then

h() = = (Cly = h(¥) - Cliy = W) + Ciiy ™" = (h(¥) + h(9))
—Cly (= (@) - =h(8)) + C iy = = () + h(B)) by CPs (i)

s)0 A (P 0)(1/1/\0) (P7>r+s)(yV6), then

() 1(0) - Cliey — () - 1(B)) + Oy (h(¥) + ()
h(9)) +C’“+S( )+h(0)) by CPs (ii)

(A¢) The Archimedean property: If ¢ is 61 <> 62, where 6 is (P7 > r)y and
02 is \/,,5o(PU > 7+ 1/m)1p, then

(61 = 62) = — = Clicl — h(4) + Z g‘;;/m ¥) =1
by C'Fs, and
M = 60) = =3 Ciiy ") + ~Ced — h(w) =1

by CPG Hence, h((p) = h(01 — 92) . h(02 — 91) =1.
(By) Countable additivity: If ¢ is Aycep(PT > r)A¥ — (PT > r) A\ P,
where ¥ ranges over the finite subsets of ®, then

JOEES | e/ | IO Re/ | I

> =Cliy ][, PO + Cliy 1 e P By CPr
=1
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(B2) Symmetry If ¢ is 01 « 05, where 0; is (Pug,,...,v, > 7)1 and 65 is
(Puy, > 1)1, then

h(01 — 62) = —C(K>h(1/1) + C(’;T(K))h(‘/’) =1

2(1)7 " Vkn(ny

by C'Pg, and
W02 = 01) = =Cl (k) h(Y) + Cleyh(¥) = 1

by C’Pg. Hence, h((p) = h(01 — 92) . h(02 — 91) =1
(B3) Product independence: If ¢ is (P70 > r)(Pw > s)v — (P, W > r - s)y,
where KNL =0 for K ={ky,...,kn }and L ={1y,...,ln }, T=vg,,...,vp, and
w=wvy,...,0,,, then
h(p) = =CluyClryh(¥) + ClRy (pyh(¥)
=C(&y,yh(W) + Cliy (1yh(¥) by CPy
=1.

Finally, we shall prove that each logical theorem of a graded probability logic
LypisinT.
(R1) Modus Ponens: If p € I" and ¢ — ¢ € T, then
L= h(p =) = —h(p) + h(y) = =1+ h(y)) = h(¥);

ie. el
(R2) Conjunction: If ¢ — ¢ € T' for each ¢ € ¥, then

he = \N®) ==hp) + ], n0) =T, ., (= hle) +hw) =1;

ie.p > NPT el
(R3) Generalization: If ¢ — ¢ (vg,,...,vg,) € [, provided vg, , - .., vk, is not
free in ¢, then

h(e = (PT > 1)) = —h(p) + Clgy h(4h)
= —Clgyh(p) + Clgy ()
= C(lK) (- C<1K>h(80) + (1))

= Cliy (= hl(y) + h(¥))
=1

by (D) and (13) of Theorem 3
by (3),(4) of Theorem 3

by (D)

by (1) of Theorem 3.

Thus, ¢ = (PG> 1)y €T.

It follows that - ¢ < ¢ implies h(y) = h(¢)). It is easily checked that the
function g:Formy, /=p— A defined by g(©?) = h(p) for any ¢ € Formy, is the
desired homomorphism. [

Finally, we prove the Boolean Representation Theorem for locally finite dimen-
sional cylindric probability algebras.
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BOOLEAN REPRESENTATION THEOREM. If A is a locally finite-dimensional
cylindric probability algebra and |A| > 1, then there is a homomorphism of A
onto a cylindric probability set algebra.

Proof. First, we prove that any locally finite—dimensional cylindric probability
algebra A is isomorphic to a cylindric probability algebra of formulas Fotmy, /EE
for some L and ¥. For each a € A, the set Aa is finite, i.e. Aa C {1,...,n},
n < w. Let R, be an n—ary relation symbol for each a € A, and let f be a function
from L ={ R, :a € A} into A defined by f(R,) = a. Thus, Af(R,) C{1,...,n}.
By Theorem 8 there exists a homomorphism ¢ from Formy, /E@ onto A such that
g(RY) = f(R,) = a. By Theorem 5 the set Z = {©? : g(¢©?) = 0} is an ideal of
Formy, /=¢. Let I be a set of all sentences ¢ of L 4p such that (~p)? € Z. Then,
¥ is consistent, since |A| > 1. We obtain (Formy /=p) / T = Form; /=x from
Theorem 6, and A = (Formy, /=y) / Z from Theorem 5. If 2 is a model of ¥,
then we have a homomorphism from Form;, /Eg onto the cylindric probability set
algebra

<{ o : p € Formp, },U,N, ~,(Z),A“’,C’(K>,SU,DM>. O

Remark. Many other problems of the classical theory of cylindric algebras such
as representation and decision problems, have natural counterparts also for cylindric
probability algebras.
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