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Abstract. We introduce cylindric probability algebras. These algebras
are designed to provide an apparatus for an algebraic study of graded
probability logic. We prove the Boolean representation theorem for locally
�nite-dimensional cylindric probability algebras.

A cylindric probability algebra can be considered as a common algebraic ab-
straction from the geometry associated with basic set{theoretic notions on the one
hand, and the theory of deductive systems of probability logic on the other hand.
These two sources are connected because models of deductive systems of probabil-
ity logic give rise in a natural way to probability structures within set{theoretical
algebras. As is well known, the theory of Boolean algebras is related to sentential
calculus, and the theory of cylindric algebras is related to �rst{order predicate log-
ic. The theory of cylindric probability algebras designed to provide an apparatus
for an algebraic study of the graded probability logic will be presented analogously
to the treatment of Boolean algebras and cylindric algebras.

First we shall describe cylindric probability set algebras.
Let hA; �nin<! be a graded probability space (see [4]) and let �! be the com-

pletion of the measure on A! determined by the �n's. Let hKi be a tuple of distinct
integers corresponding to a �nite subset K = f k1; . . . ; kn g of !. For each hKi and
r 2 [0; 1], we de�ne a unary operation CrhKi on the subsets of A! by setting, for

any X � A! ,

CrhKi(X) =
�
y 2 A! : �nf (xk1 ; . . . ; xkn) : x 2 X & (j =2 K ! xj = yj) g � r

	
:

It follows from the Fubini property that for any �!{measurable set X , the section
f (xk1 ; . . . ; xkn) : x 2 X & (j =2 K ! xj = yj) g is �n{measurable for each
y 2 A!, and also that CrhKi(X) is �!{measurable. By means of CrhKi we obtain

the cylinder generated by translating along the (k1; . . . ; kn){axis of A
! only the

section of X whose measure is no less than r. So, these operations will be called
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probability cylindri�cations . Further, for each permutation � of ! such that � = id
almost surely (a.s.), i.e. � �xes all but �nitely many elements of !, we de�ne a
unary operation S� on subsets of A! by setting, for any X � A! ,

S�X = f (x�(1); x�(2); . . . ) : x 2 X g:

For any �!{measurable set X , the set S�X is �!{measurable. These operations
will be called permutations . We do not need the full class of permutations, because
the number of free variables is �nite even in in�nite formulas of our canonical LAP
logic (see [4]).

Let A be a countable admissible set and ! 2 A. We suppose in advance that
a �xed indexation by hereditarily countable sets (from A � HC) is given. So, let
A = fAi : i 2 I g and I � A. We say that a Boolean set algebra hA ;[;\;�; ;; Ai,
where A � P(A), is A{complete if for any fAj : j 2 J g � A , where J � I and
J 2 A, we have

S
j2J Aj 2 A . The notion of an A{complete Boolean algebra

hA;+; �;�; 0; 1i is introduced in the obvious way.

Definition 1. A cylindric probability set algebra (CPS� for short) is a struc-
ture of the form

hA ;[;\;�; ;; A!; CrhKi; S� ; DpqiK;�;r2[0;1];p;q<!

in which A is a collection of subsets of A! closed under all operations of an A{
complete Boolean algebra, under all probability cylindri�cations and under all per-
mutations, having all diagonal hyperplanes Dpq = fx 2 A! : xp = xq g as distin-
guished members.

To show that the theory of cylindric probability algebras is rooted in probability
logic, we shall now describe the relationship between the graded probability logic
LAP (see [4]) and cylindric probability algebras.

The set FormL of all formulas of LAP is closed under countable disjunctions
W
,

countable conjunctions
V
, negation :, probability quanti�ers (P~v � r), where ~v is

a �nite sequence vk1 ; . . . ; vkn of variables and r 2 [0; 1], and under the substitutions
s� of variables, for each permutation � of ! such that � = id a.s. This set contains
as distinguished elements the expressions F (false), T (true) and vp = vq for any
p; q < !. The structure FormL =



FormL;

W
;
V
;:; F; T; (P~v � r); s� ; vp = vq

�
is

the algebra of formulas of LAP .
Let � be any set of sentences of LAP and let �� be the relation on FormL

de�ned by
' ��  i� � ` '$  :

If � ` ' $  , then � ` (P~v � r)' $ (P~v � r) and � ` s�' $ s� ; hence the
relation �� is a congruence relation on FormL. Let '� be the set of all formulas
��{equivalent to '. Let

FormL
Æ
��=



FormL

Æ
��;

_�
;
^�

;:�; F�; T�; (P~v > r)�; s�� ; (vp = vq)
�
�
;
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be called a cylindric probability algebra of formulas of LAP associated to �. Here
FormL

Æ
�� is the set of all equivalence classes '�, and for � � FormL, � 2 A,

_�

'2�
'� =

�_
�
��

;

^�

'2�
'� =

�^
�
��

;

:� '� = (:')�;

(P~v > r)�'� =
�
(P~v > r)'

��
;

s��'
� = (s�')

�:

In this way, basic metalogical problems are interpreted as algebraic problems con-
cerning the associated algebra of formulas.

Let A = hA;RA; cA; �ni be a graded probability model for � and let ' be any
formula of LAP . Then, for '

A = f a 2 A! : A j= '[a] g, we have:

CrhKi('
A) =

�
a 2 A! : �nf (bk1 ; . . . ; bkn) : A j= '[b] & (j =2 K ! bj = aj) g � r

	
=
�
a 2 A! : A j= (P~v � r)'[a]

	
=
�
(P~v � r)'

�A
;

where ~v is vk1 ; . . . ; vkn , K = f k1; . . . ; kn g, and

S�('
A) =

�
(a�(1); a�(2); . . . ) : A j= '[a]

	
=
�
(a�(1); a�(2); . . . ) : A j= s�'[a�(1); a�(2); . . . ]

	
= (s�')

A:

We conclude that the collection A of all subsets of the form 'A is closed under
all operations of the A-complete Boolean set algebra, under all probability cylin-
dri�cations and under all permutations. Also, all diagonal hyperplanes Dpq belong
to A . We obtain the mapping f from the set FormL

Æ
�� of all equivalence classes

'� onto the collection A of all sets 'A, having the following properties:

(1) f
�W�

'2� '
�
�
=
S
'2� '

A;

(2) f
�V�

'2� '
�
�
=
T
'2� '

A;

(3) f(:�'�) = �'A;
(4) f(F�) = ;;
(5) f(T�) = A!;
(6) f

�
(P~v � r)�'�

�
= CrhKi('

A);

(7) f(s��'
�) = S�('

A);
(8) f

�
(vp = vq)

�
�
= Dpq .

Therefore, we get a cylindric probability set algebra by a homomorphic transfor-
mation of a cylindric probability algebra of formulas.
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The abstract notion of a cylindric probability algebra (CPA for short) is de�ned
by equations which hold in all cylindric probability set algebras and cylindric prob-
ability algebra of formulas, where the stress is on the axioms of graded probability
logic. Changing the notation introduced for cylindric probability set algebras and
cylindric probability algebras of formulas, we shall consider the algebraic struc-
ture A = hA;+; �;�; 0; 1; CrhKi; S�; dpqi, where hA;+; �;�; 0; 1i is an A{complete

Boolean algebra, CrhKi is a unary operation on A called probability cylindri�cation,

S� is a unary operation on A called permutation and dpq is a distinguished element
of A, for any p; q < !. We suggest the following axiomatization of any cylindric
probability algebra A:

(CP1) (i) Crh;ix = x,

(ii) CrhKi0 = 0, where r > 0;

(CP2) C0
hKix = 1;

(CP3) CrhKix � CshKix, where r � s;

(CP4) CrhKi(x+
P
j2J C

s
hLiC

t
hMiyj) = CrhKix+

P
j2J C

s
hLiC

t
hMiyj , where J 2 A

and K � L [M ;

(CP5) (i) CrhKix � C
s
hKiy � C

maxf 0;r+s�1 g
hKi (x � y),

(ii) CrhKix � C
s
hKiy � C

1
hKi � (x � y) � C

minf r+s;1 g
hKi (x+ y);

(CP6) CrhKi � x = �
P
m>0 C

1�r+1=m
hKi x;

(CP7)
Q
J2�J1

CrhKi

Q
j2J2

xj � CrhKi

Q
j2J1

xj ,

where J2 ranges over the �nite subsets of J1 and J1 2 A;
(CP8) CrhKix = Crh�(K)ix, where � is a permutation of f 1; . . . ; n g and h�(K)i

is k�1; . . . ; k�n;
(CP9) CrhKiC

s
hLix � Cr�shKi;hLix, where K \ L = ;;

(CP10) (i) Sidx = x,
(ii) S�S�x = S�Æ�x,
(iii) S�

P
j2J xj =

P
j2J S�xj , where J 2 A,

(iv) S� � x = �S�x;
(CP11) (i) S�C

r
hKiC

s
hLix = S�C

r
hKiC

s
hLix, where � � (K [ L)c = � � (K [ L)c,

(ii) CrhKiS�x = S�C
r
h��1(K)ix, where h��1(K)i is ��1(k1); . . . ; ��1(kn);

(CP12) (i) dpp = 1,
(ii) x � dpq � S�x, where �(p) = q,
(iii) S�dpq = d�(p)�(q),

(iv) C1
hKidpq = dpq , where p; q =2 K.

The axioms CP2, CP3, CP5{CP9 respectively express non{negativity, mono-
tonicity, �nite additivity, the Archimedean property, countable additivity, symme-
try and product independence of probability measures f�n : n < ! g (see [4]).

Theorem 1. Every cylindric probability set algebra is a cylindric probability
algebra.

Proof. Axioms CP1; CP2 and CP3 follow immediately from the de�nition of
probability cylindri�cations and from the non{negativity and monotonicity of prob-
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ability measures, respectively.
Any set Z of the form Z =

S
j2J C

s
hLiC

t
hMiYj is a hLi; hMi{cylinder, so CP4

follows from CrhKiZ = Z, for r > 0 and K � L [M .

In order to check the axiom CP5, let

U = f (xk1 ; . . . ; xkn) : x 2 X & (j =2 K ! zj = xj) g;

V = f (yk1 ; . . . ; ykn) : y 2 Y & (j =2 K ! zj = yj) g

W = f (qk1 ; . . . ; qkn) : q 2� (X \ Y ) & (j =2 K ! zj = qj) g

be subsets of An, where z 2 A! and X;Y � A!. We obtain

z 2 CrhKiX \ CshKiY () �n(U) � r; �n(V ) � s

() �n(� U) � 1� r; �n(� V ) � 1� s

=) �n(� U[ � V ) � 1� (r + s� 1)

() �n(U \ V ) � r + s� 1

() z 2 C
maxf 0;r+s�1 g
hKi (X \ Y );

and

z 2 CrhKiX \ CshKiY \ C1
hKi � (X \ Y ) () �n(U) � r; �n(V ) � s; �n(W ) � 1

=) �n(U [ V ) � r + s

() z 2 C
minf r+s;1 g
hKi (X [ Y )

from the �nite additivity of measures.
The Archimedean axiom CP6 follows from

z 2 � CrhKi � X () �n(U) > 1� r

() �n(U) � 1� r + 1=m for some m > 0

() z 2
[

m>0
C
1�r+1=m
hKi X;

where U is as before.
For J1 2 A and J2 ranging over the �nite subsets of J1, we have

y 2
\

J2�J1
CrhKi

\
j2J2

Xj () �n

�Y
J2

�
� r for each J2 � J1

=) �n

�Y
J1

�
� r (countable additivity)

() y 2 CrhKi

\
j2J1

Xj ;

where
Q
J1

and
Q
J2

have obvious meaning. So CP7 holds.
The axioms CP8 and CP9 follow immediately from the symmetry and the

product independence of probability measures, respectively.
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The axioms CP10 and CP11 follow from the de�nition of S�. We remark only
that CrhKiC

s
hLiX is a hKi; hLi{cylinder; hence, S�C

r
hKiC

s
hLiX = S�C

r
hKiC

s
hLiX for

� � (K [ L)c = � � (K [ L)c.
Finally, we check CP12 (iv). If y 2 C1

hKiDpq, and p; q =2 K, then

�n
�
(xk1 ; . . . ; xkn) : xp = xq & (j =2 K ! yj = xj)

	
� 1:

Thus, yp = xp = xq = yq; i.e., y 2 Dpq. The converse follows from�
(xk1 ; . . . ; xkn) : xp = xq & (j =2 K ! yj = xj)

	
= An;

since y 2 Dpq and p; q =2 K. �

Similarly, by routine checking, we obtain the following

Theorem 2. Every cylindric probability algebra of formulas is a cylindric
probability algebra.

Now we shall prove several properties of probability cylindri�cation operations.

Theorem 3. (1) CrhKi1 = 1.

(2) CrhKiC
s
hLix = CshLix, where (r > 0 or r = s = 0) and K � L.

(3) CrhKix = x i� CshKi � x = �x, where r > 0 and s > 0.

(4) CrhKi(x+�CshLiy) = CrhKix+�CshLiy, where K � L.

(5) CrhKi(x � C
s
hLiy) = CrhKix � C

s
hLiy, where (r > 0 or r = s = 0) and K � L.

(6) CrhKix � �C
r
hKiy �

P
m>0 C

1=m
hKi (x � �y).

(7) If x � y, then CrhKix � CrhKiy.

(8) CrhKix+ CrhKiy � CrhKi(x+ y).

(9) CrhKix � C
r
hKiy � CrhKi(x � y).

(10) If CrhKixj = xj for r > 0, j 2 J and J 2 A, then CrhKi

P
j2J xj =

P
j2J xj .

(11) �CrhKix � C1�r
hKi � x.

(12) C1
hKix � C

1
hKiy = C1

hKi(x � y).

(13) C1
hKiC

1
hLix = C1

hKi;hLix, where K \ L = ;.

(14) Cr+s�r�shKi;hLi x � CrhKiC
s
hLix, where K \ L = ;.

Proof. (1): Putting x = 0 in CP6 we obtain C
r
hKi1 = �

P
m>0 C

1�r+1=m
hKi 0 = 1,

from CP1.
(2): Immediate by CP2 and CP4 (putting x = 0, J is a singleton and M = ;).
(3): If CrhKix = x, then for any s > 0, we obtain

CshKi � x = �
X

m>0
C
1�s+1=m
hKi x = �

X
m>0

C
1�s+1=m
hKi CrhKix = �x

from (2) and CP6. The converse follows by symmetry.
(4): Immediate by (3) and CP4.
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(5): For r > 0 we have:

CrhKi(x � C
s
hLiy) = CrhKi � (�x+�CshLiy)

= �
X

p>0
C
1�r+1=p
hKi (�x+�CshLiy) by CP6

= �
�X

p>0
C
1�r+1=p
hKi � x+�CshLiy

�
by (4)

=
�
�
X

p>0
C
1�r+1=p
hKi � x

�
� CshLiy

= CrhKix � C
s
hLiy by CP6:

(6): For any r 2 [0; 1] we have:

CrhKix � � CrhKiy = CrhKix �
X

m>0
C
1�r+1=m
hKi � y by CP6

=
X

m>0
CrhKix � C

1�r+1=m
hKi � y

�
X

m>0
C
1=m
hKi (x � �y) by CP5 (i):

(7): If x � y, then x � �y = 0. Hence,

CrhKix � �C
r
hKiy �

X
m>0

C
1=m
hKi (x � �y) = 0

from (6) and CP1; i.e., C
r
hKix � CrhKiy.

(8),(9): Immediate by x � x+ y; y � x+ y; x � y � x; x � y � y and (7).
(10): Putting x = 0 in CP4, we obtain

CrhKi

X
j2J

xj = CrhKi

X
j2J

CrhKixj =
X

j2J
CrhKixj =

X
j2J

xj :

(11): By CP6 and CP3, we obtain

�CrhKix =
X

m>0
C
1�r+1=m
hKi � x �

X
m>0

C1�r
hKi � x = C1�r

hKi � x:

(12): By CP5 (i) we have C
1
hKix � C

1
hKiy � C1

hKi(x � y). The reverse inequality

is an instance of (9).
(13): It follows from CP9 and CP3 that for each m;n > 0 there is p > 0

such that: C
1=m
hKi C

1=n
hLi � x � C

1=(mn)
hKi;hLi � x � C

1=p
hKi;hLi � x. Further, we obtain

C1
hKi;hLix = �

P
q>0 C

1=q
hKi;hLi � x � �C

1=m
hKi C

1=n
hLi � x, for each m > 0. Hence,

C1
hKihLix �

Q
m>0�C

1=m
hKi C

1=n
hLi � x = C1

hKi �C
1=n
hLi � x, for each n > 0. Finally, for

M ranging over the �nite subsets of N , we have

C1
hKi;hLix �

Y
n>0

C1
hKi � C

1=n
hLi � x

=
Y

M�N

Y
n2M

C1
hKi � C

1=n
hLi � x

=
Y

M�N
C1
hKi

Y
n2M

�C
1=n
hLi � x by (12)

� C1
hKi

Y
n>0

�C
1=n
hLi � x by CP7

= C1
hKiC

1
hLix by CP6:
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The reverse inequality is an instance of CP9.
(14): For s = 1 we have C1

hKi;hLix � C1
hKiC

1
hLix � CrhKiC

1
hLix by CP3. Suppose

s 6= 1. It follows from CP9 and CP3 that for each m > 0 there is p > 0 such that

C
1�r+1=m
hKi C1�s

hLi � x � C
(1�r)(1�s)+(1�s)=m
hKi;hLi � x � C

(1�r)(1�s)+1=p
hKi;hLi � x. Hence,

Cr+s�r�shKi;hLi x �
Y

m>0
�C

1�r+1=m
hKi C1�s

hLi � x

= CrhKi � C1�s
hLi � x by CP6

� CrhKiC
s
hLix by (11). �

Now we list several necessary properties of permutation operations and diagonal
elements.

Theorem 4. (1)
P
m>0 C

1=m
hKi dpq = dpq , where p; q =2 K.

(2) CrhKi(dpq � x) = dpq � CrhKix, where r > 0 and p; q =2 K.

(3) S�C
r
hKiC

s
hLix = CrhKiC

s
hLix, where � � (K [ L)c = id.

(4) S�0 = 0 and S�1 = 1.
(5) dpq = dqp.
(6) dpq � dqr � dpr.
(7) x � dpq = S�x � dpq , where �(p) = q and � � f p; q gc = id.

Proof. (1): By CP12 (iv) and (2) of Theorem 3, we get:

C
1=m
hKi dpq = C

1=m
hKi C

1
hKidpq = C1

hKidpq = dpq

for each m < !. Hence,
P
m>0 C

1=m
hKi dpq = dpq .

(2): Immediate by CP12 (iv) and (5) of Theorem 3.
(3): We have

S�C
r
hKiC

s
hLix = SidC

r
hKiC

s
hLix by CP11 (i)

= CrhKiC
s
hLix by CP10 (i):

(4): For a permutation � and K = f k1; . . . ; kn g � ! such that � � Kc = id,
we have:

S�0 = S�C
1
hKi0 = C1

hKi0 = 0

by CP1 and (3). Also, S�1 = S� � 0 = �S�0 = 1 by CP10 (iv).
(5): Let � be a permutation such that �(p) = q and � � f p; q gc = id for p 6= q.

Then
dpq = dpq � dpq � S�dpq = d�(p)�(q) = dqp

by CP12. The converse follows by symmetry.
(6): Let � be a permutation such that �(q) = r and � � f q; r gc = id. For

pairwise di�erent p; q; r, we have:

dpq � dqr � S�dpq = d�(p)�(q) = dpr
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by CP12.
(7): Let � be a permutation such that �(p) = q and � � f p; q gc = id. By

x � dpq � S�x we obtain x � dpq � S�x � dpq . The reverse inequality is a consequence
of the previous inequality and the axiom CP10 as follows:

S�x � dpq � S�S�x � dpq = S�Æ�x � dpq = Sidx � dpq = x � dpq : �

Such algebraic notions such as subalgebras, homomorphisms, ideals and free
algebras, can be modi�ed using speci�c properties of cylindric probability algebras.
We shall mention two of them.

Definition 2. A homomorphism from A = hA;+; �;�; 0; 1; CrhKi; S� ; dpqi into

B = hB;+0; �0;�0; 00; 10; CrhKi
0; S�

0; d0pqi is a function f mapping A into B such that

(for all x 2 A, fxj : j 2 J g � A and J 2 A):

(1) f
�P

j2J xj
�
=
P0
j2J f(xj);

(2) f
�Q

j2J xj
�
=
Q0
j2J f(xj);

(3) f(�x) = �0 f(x);
(4) f(0) = 00;
(5) f(1) = 10;
(6) f

�
CrhKix

�
= CrhKi

0f(x);

(7) f
�
S�x

�
= S�

0f(x);
(8) f(dpq) = d0pq .

We shall write A �= B for short if there is an isomorphism of A and B, where
the term isomorphism has the obvious meaning.

Definition 3. An ideal in a cylindric probability algebra A is a non{empty
set I � A such that the following conditions hold:

(1) I is a Boolean ideal of A; i. e.
(a) 0 2 I,
(b) If f aj : j 2 J g � I and J 2 A, then

P
j2J aj 2 I,

(c) If x 2 I and y � x, then y 2 I;
(2) For any �nite K � ! and r 2 (0; 1], if x 2 I, then CrhKix 2 I.

(3) For any permutation � of ! such that � = id a.s., if x 2 I, then S�x 2 I.

An ideal I of a cylindric probability algebra A determines the congruence
relation �= f (x; y) : x � �y+ y � �x 2 I g. Indeed, for r > 0 and x; y 2 A, we have

CrhKix � �C
r
hKiy + CrhKiy � �C

r
hKix �

X
m>0

C
1=m
hKi (x � �y) +

X
m>0

C
1=m
hKi (y � �x)

by (6) of Theorem 3. So, if x � y, then CrhKix � CrhKiy. Also,

S�x � �S�y + S�y � �S�x = S�(x � �y + y � �x)

by CP10. Hence, if x � y, then S�x � S�y.
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So, we de�ne a new quotient algebra A
Æ
I = hA

Æ
I; b+;b�; b�;b0;b1; bCrhKi;

bS�; bdpqi
by hA

Æ
I; b+;b�; b�;b0;b1i = hA;+; �;�; 0; 1i

Æ
I, bCrhKi[x] = [CrhKix],

bS�[x] = [S�x] for

an equivalence class [x] 2 A
Æ
I, and bdpq = [dpq ]. It is not di�cult to see that A

Æ
I

is a CPA and that there is a natural homomorphism from A onto A
Æ
I.

As in the case of arbitrary algebras, there is a natural correspondence between
homomorphisms and ideals in cylindric probability algebras.

Theorem 5. If f is a homomorphism fromA ontoB and I = fx 2 A : f(x) =
00 g, then I is an ideal of A, and B �= A

Æ
I.

Proof. First, by routine checking, we obtain that I is a Boolean ideal of A.
For any �nite K � ! and r > 0, if x 2 I, then

f
�
CrhKix

�
= CrhKi

0f(x) = CrhKi
000 = 00

from CP1; i.e. C
r
hKix 2 I. Also, for any permutation � of ! such that � = id a.s.,

if x 2 I, then
f
�
S�x

�
= S�

0f(x) = S�
000 = 00

from (4) of Theorem 4; i.e. S�x 2 I. Hence, I is an ideal of A.
It is easy to see that the function g:A

Æ
I ! B de�ned by g[a] = f(a) for

a 2 A, is desired isomorphism. �

The following theorem gives a connection between cylindric probability algebras
of formulas and ideals.

Theorem 6. Let I be an ideal in FormL
Æ
�� and let � be the set of all

sentences ' of a graded probability logic LAP such that (:')� 2 I. Then � � �
and (FormL

Æ
��)

Æ
I is isomorphic to FormL

Æ
��.

Proof. If ' 2 �, then (:')� = F� 2 I; i.e. ' 2 �. Hence � � �. It is routine

to check that f : (FormL
Æ
��)

Æ
I ! FormL

Æ
�� de�ned by f

�c'�� = '� is the
desired isomorphism. �

Cylindric probability algebras of formulas have some special properties that
other CPA's might not have. We shall mention one of them which is important for
our purposes.

Definition 4. The dimension set �x of an element x of a cylindric probability
algebra A is the set of all indices k < ! such that C1

kx 6= x (we write C1
k instead

of C1
hf k gi). A cylindric probability algebra A is locally �nite-dimensional if �x is

�nite for all x 2 A.

It is easy to see that k 2 �x if and only if Crkx 6= x for any r > 0. Every formula
' of LAP has only �nitely many free variables. If vk is a variable not occurring in ',
then j= (Pvk > 0)'$ '. As a consequence, for any given set � of sentences there
are at most �nitely many indices k < ! such that ' is not equivalent to (Pvk > 0)'
under �. Thus, any cylindric probability algebra of formulas FormL

Æ
�� is locally

�nite-dimensional.
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If f is a homomorphism from A to B and x 2 A, then �f(x) � �x because

for each k < !, if k =2 �x, then C1
kx = x, and hence C1

k
0
f(x) = f(C1

kx) = f(x),
i. e. k =2 �f(x).

Now we shall prove several necessary properties of �.

Theorem 7. (1) �0 = �1 = ;.
(2) �

�P
j2J xj

�
�
S
j2J �xj , J 2 A.

(3) �
�Q

j2J xj
�
�
S
j2J �xj , J 2 A.

(4) �� x = �x.
(5) �CrhKix � �x nK.

(6) �S�x � �(�x).
(7) �dpq � f p; q g.

Proof. (1): Immediate by CP1 (ii) and (1) of Theorem 3.
(2): If k =2

S
j2J �xj , then

C1
k

X
j2J

xj = C1
k

X
j2J

C1
kxj =

X
j2J

C1
kxj =

X
j2J

xj

by (10) of Theorem 3. Thus k =2 �
�P

j2J xj
�
.

(3): Similar to (2).
(4): If k =2 �x, then C1

kx = x, so C1
k � x = � x from (3) of Theorem 3; i. e.

k =2 �� x. The converse follows by symmetry.
(5): Let k be any integer such that k =2 �x nK. If k 2 K, then C1

kC
r
hKix =

CrhKix by (2) of Theorem 3. If k =2 �x [K, then

C1
kC

r
hKix = C1

kC
r
hKiC

1
kx = CrhKiC

1
kx = CrhKix

by CP4. So k =2 �CrhKix.

(6): If k =2 �(�x), then ��1(k) =2 �x and hence, C1
kS�x = S�C

1
��1(k)x = S�x

by CP11 (ii). So k =2 �S�x.
(7): Immediate by CP12 (iv). �

The following result shows that algebras of the form FormL
Æ
�; (the set � is

empty) have a certain freeness property.

Theorem 8. Let L = fRi : i 2 I0 g be a set of �nitary relation symbols and let
A be a cylindric probability algebra. Let f be a function from fRi : i 2 I0 g into A
such that �f(Ri) � ni for each ni{ary relation Ri. Then there is a homomorphism
g:FormL

Æ
�;! A such that g

�
Ri(v1; . . . ; vni)

;
�
= f(Ri) for each i 2 I0.

Proof. By induction on the complexity of formulas of the graded probability
logic we de�ne a function h: FormL ! A satisfying ` ' implies h(') = 1 as
follows:

(1) Let ' be an atomic formula Ri(vk1 ; . . . ; vkni ). Let j1; . . . ; jni be the �rst

ni integers in !r f 1; . . . ; ni; k1; . . . ; kni g and let �; � be permutations of !
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such that � =
�
1 ;...;ni
j1;...;jni

�
, � =

�j1;...;jni
k1;...;kni

�
, � � f 1; . . . ; ni; j1; . . . ; jni g

c = id

and � � f k1; . . . ; kni ; j1; . . . ; jni g
c = id. We de�ne

h(') = S�S�f(Ri);

(2) h(vp = vq) = dpq ;
(3) h(:') = �h(');
(4) h(

W
�) =

P
'2� h('); � 2 A;

(5) h(
V
�) =

Q
'2� h('); � 2 A;

(6) h
�
(P~v � r)'

�
= CrhKih(').

First, by induction on the complexity of formulas of the graded probability
logic, we shall prove the substitution property :

(S) h(s�') = S�h('):

If ' is an atomic formula Ri(vk1 ; . . . ; vkni ), then s�' is Ri(v�(k1); . . . ; v�(kni )).

So, for any j1; . . . ; jni 2 ! n f 1; . . . ; ni; k1; . . . ; kni ; �(k1); . . . ; �(kni ) g and permu-

tations � and � such that � =
�
1 ;...;ni
j1;...;jni

�
and � =

�j1;...;jni
k1;...;kni

�
, we obtain

h(s�') = S�Æ�S�f(Ri) = S�S�S�f(Ri) = S�h(')

from CP10.
If ' is vp = vq , then s�' is v�(p) = v�(q). So,

h(s�') = d�(p)�(q) = S�dpq = S�h(')

by CP12.
If ' is : , then

h(s�') = h(:s� ) = �h(s� ) = �S�h( ) = S� � h( ) = S�h(')

by CP10.
If ' is

W
�, � 2 A, then

h(s�') = h
�_

 2�
s� 

�
=
X

 2�
h(s� )

=
X

 2�
S�h( ) = S�

X
 2�

h( ) = S�h(')

by CP10.
The case when ' is

V
�, � 2 A is similar.

If ' is (Pvl1 ; . . . ; vlm � r) (vk1 ; . . . ; vkn ; vl1 ; . . . ; vlm) and � is a permutation
such that L \

�
K [ �(K)

�
= ;, then s�' is

(Pvl1 ; . . . ; vlm � r) (v�(k1); . . . ; v�(kn); vl1 ; . . . ; vlm):
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So,
h(s�') = CrhLih(s� ) = CrhLiS�h( ) = S�C

r
hLih( ) = S�h(')

by CP11 (ii), because � � L = id.
Second, by induction on the complexity of formulas, we shall prove the dimen-

sion property :

(D) if vk does not occur free in '; then k =2 �h('):

If ' is an atomic formula Ri(vk1 ; . . . ; vkni ) and k =2 f k1; . . . ; kn g, then

C1
kh(') = C1

kS�S�f(Ri) = S�C
1
��1(k)S�f(Ri)

= S�S�C
1
��1(��1(k))f(Ri) = S�S�f(Ri) = h(');

by CP11, since (� Æ �)�1(k) =2 f 1; . . . ; ni g and �f(Ri) � f 1; . . . ; ni g. So k =2
�h(').

If ' is vp = vq and k 6= p, k 6= q, then h(') = dpq ; so k =2 �h(') by (7) of
Theorem 7.

If ' is : and vk does not occur in  , then �h(') = � � h( ) = �h( ) by
(4) of Theorem 7; so, by induction hypothesis, k =2 �h(').

If ' is
W
�, � 2 A and vk does not occur in  , for all  2 �, then

�h(') = �
�X

 2�
h( )

�
�
[

 2�
�h( )

by (2) of Theorem 7; so, by induction hypothesis, k =2 �h(').
If ' is (Pvl1 ; . . . ; vlm � r) (vk1 ; . . . ; vkn ; vl1 ; . . . ; vlm) and k =2 f k1; . . . ; kn g,

then

�h(') = CrhLih( )

� �h( ) n L by (5) of Theorem 7

� f k1; . . . ; kn g by induction hypothesis.

Hence, k =2 �h(').
Now we shall prove that each logical axiom of a graded probability logic LAP

is in the set
� = f' 2 FormL : h(') = 1 g:

as follows:
(A1) All axioms of LA without quanti�ers.
First suppose that ' is a tautology of LA and h(') 6= 1. Let I be a maximal

ideal of the Boolean algebra A = hA;+; �;�; 0; 1i such that h(') 2 I, and let p
be the natural homomorphism of A onto A

Æ
I. Then p Æ h can be considered

as a truth valuation of FormL onto the two element Boolean algebra A
Æ
I. So,

p Æ h(') = 0; i. e., ' is not a tautology.



CYLINDRIC PROBABILITY ALGEBRAS 33

Next, suppose that ' is an identity axiom.
If ' is vp = vp, then h(') = dpp = 1 from CP12 (i).
Let ' be vp = vq ! ( ! �), where � is a formula obtained from an atomic

formula  by replacing each occurrence of vp in  by vq . We may assume that
p 6= q. We have two cases. If  is vp = vr, then � is vq = vr. Hence,

h(') = �dpq +�dpr + dqr = �(dpq � dpr) + dqr � �dqr + dqr = 1

by (6) of Theorem 4. If  has the form Ri(vk1 ; . . . ; vkj�1 ; vp; vkj+1 ; . . . ; vkni ) and

q =2 f k1; . . . ; kj�1; p; kj+1; . . . ; kni g, then � is Ri(vk1 ; . . . ; vkj�1 ; vq; vkj+1 ; . . . ; vkni ).

Let �1; . . . ; �ni be the �rst ni integers in ! nf 1; . . . ; ni; k1; . . . ; kni ; p; q g. Let �; �; �
and � be a permutations such that:

� =

�
1 ; . . . ; ni
�1; . . . ; �ni

�
and � � f 1; . . . ; ni; �1; . . . ; �ni g

c = id;

� =

�
�1; . . . ; �j ; . . . ; �ni
k1; . . . ; p; . . . ; kni

�
and � � f k1; . . . ; p; . . . ; kni ; �1; . . . ; �ni g

c = id;

� =

�
�1; . . . ; �j ; . . . ; �ni
k1; . . . ; q; . . . ; kni

�
and � � f k1; . . . ; q; . . . ; kni ; �1; . . . ; �ni g

c = id;

and �(p) = q and � � f p; q gc = id. Then �Æ� Æ� � f 1; . . . ; ni g = �Æ� � f 1; . . . ; ni g
and S�Æ�Æ�f(Ri) = S�Æ�f(Ri) by CP11 (i), since �f(Ri) � f 1; . . . ; ni g. Thus,

h(') = �dpq +�S�S�f(Ri) + S�S�f(Ri)

= �
�
dpq � S�S�f(Ri)

�
+ S�S�f(Ri)

� �S�S�S�f(Ri) + S�S�f(Ri) by CP12 (ii)

= �S�S�f(Ri) + S�S�f(Ri) by CP11 (i)

= 1:

If ' is
V
	!  ,  2 	, then

h(') = �
Y

�2	
h(�) + h( ) � � h( ) + h( ) = 1:

(A2) Monotonicity: If ' is (P~v � r) ! (P~v � s) , where r � s, then

h(') = �CrhKih( ) + CshKih( ) = 1

by CP3.
(A3) If ' is

(Pvk1 ; . . . ; vkn � r) (vk1 ; . . . ; vkn)! (Pvl1 ; . . . ; vln � r) (vl1 ; . . . ; vln)
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and K = f k1; . . . ; kn g ; L = f l1; . . . ; ln g, then

h(') = �CrhKih(s� ) + CrhLih( ) where � =

�
l1; . . . ; ln
k1; . . . ; kn

�
= �CrhKiS�h( ) + CrhLih( ) by (S)

= �S�C
r
hLih( ) + CrhLih( ) by CP11 (ii)

= �S�C
r
hLiC

1
hKnLih( ) + CrhLiC

1
hKnLih( ) by (D)

= �CrhLiC
1
hKnLih( ) + CrhLiC

1
hKnLih( ) by (3) of Theorem 4

= 1:

(A4) Non{negativity: If ' is (P~v � 0) , then

h(') = C0
hKih( ) = 1

by CP2.
(A5) Finite additivity:
If ' is (P~v � r) ^ (P~v � s)� ! (P~v � r + s)( _ �), then

h(') = �
�
C1�r
hKi � h( ) � C1�s

hKi � h(�)
�
+ C1�r�s

hKi �
�
h( ) + h(�)

�
� �C1�r�s

hKi

�
� h( ) � �h(�)

�
+ C1�r�s

hKi �
�
h( ) + h(�)

�
by CP5 (i)

= 1:

If ' is (P~v � r) ^ (P~v � s)� ^ (P~v � 0)( ^ �)! (P~v � r + s)( _ �), then

h(') = �CrhKih( ) � C
s
hKih(�) � C

1
hKi �

�
h( ) � h(�)

�
+ Cr+shKi

�
h( ) + h(�)

�
� �Cr+shKi

�
h( ) + h(�)

�
+ Cr+shKi

�
h( ) + h(�)

�
by CP5 (ii)

= 1:

(A6) The Archimedean property: If ' is �1 $ �2, where �1 is (P~v > r) and
�2 is

W
m>0(P~v � r + 1=m) , then

h(�1 ! �2) = �� C1�r
hKi � h( ) +

X
m>0

C
r+1=m
hKi h( ) = 1

by CP6, and

h(�2 ! �1) = �
X

m>0
C
r+1=m
hKi h( ) +�C1�r

hKi � h( ) = 1

by CP6. Hence, h(') = h(�1 ! �2) � h(�2 ! �1) = 1.
(B1) Countable additivity: If ' is

V
	��(P~v � r)

V
	 ! (P~v � r)

V
�,

where 	 ranges over the �nite subsets of �, then

h(') = �
Y

	��
CrhKi

Y
 2	

h( ) + CrhKi

Y
 2�

h( )

� �CrhKi

Y
 2�

h( ) + CrhKi

Y
 2�

h( ) by CP7

= 1:



CYLINDRIC PROBABILITY ALGEBRAS 35

(B2) Symmetry: If ' is �1 $ �2, where �1 is (Pvk1 ; . . . ; vkn � r) and �2 is
(Pvk�(1) ; . . . ; vk�(n) � r) , then

h(�1 ! �2) = �CrhKih( ) + Crh�(K)ih( ) = 1

by CP8, and
h(�2 ! �1) = �Crh�(K)ih( ) + CrhKih( ) = 1

by CP8. Hence, h(') = h(�1 ! �2) � h(�2 ! �1) = 1.
(B3) Product independence: If ' is (P~v � r)(P ~w � s) ! (P~v; ~w � r � s) ,

where K \L = ; for K = f k1; . . . ; kn g and L = f l1; . . . ; lm g, ~v = vk1 ; . . . ; vkn and
~w = vl1 ; . . . ; vlm , then

h(') = �CrhKiC
s
hLih( ) + Cr�shKi;hLih( )

� �Cr�shKi;hLih( ) + Cr�shKi;hLih( ) by CP9

= 1:

Finally, we shall prove that each logical theorem of a graded probability logic
LAP is in �.

(R1) Modus Ponens: If ' 2 � and '!  2 �, then

1 = h('!  ) = �h(') + h( ) = �1 + h( ) = h( );

i.e.  2 �.
(R2) Conjunction: If '!  2 � for each  2 	, then

h
�
'!

^
	
�
= �h(') +

Y
 2	

h( ) =
Y

 2	

�
� h(') + h( )

�
= 1;

i.e. '!
V
	 2 �.

(R3) Generalization: If '!  (vk1 ; . . . ; vkn) 2 �, provided vk1 ; . . . ; vkn is not
free in ', then

h
�
'! (P~v � 1) 

�
= �h(') + C1

hKih( )

= �C1
hKih(') + C1

hKih( ) by (D) and (13) of Theorem 3

= C1
hKi

�
� C1

hKih(') + h( )
�

by (3),(4) of Theorem 3

= C1
hKi

�
� h(') + h( )

�
by (D)

= 1 by (1) of Theorem 3.

Thus, '! (P~v � 1) 2 �.
It follows that ` ' $  implies h(') = h( ). It is easily checked that the

function g:FormL
Æ
�;! A de�ned by g(';) = h(') for any ' 2 FormL, is the

desired homomorphism. �

Finally, we prove the Boolean Representation Theorem for locally �nite dimen-
sional cylindric probability algebras.
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Boolean Representation Theorem. If A is a locally �nite{dimensional
cylindric probability algebra and jAj > 1, then there is a homomorphism of A

onto a cylindric probability set algebra.

Proof. First, we prove that any locally �nite{dimensional cylindric probability
algebra A is isomorphic to a cylindric probability algebra of formulas FormL

Æ
��

for some L and �. For each a 2 A, the set �a is �nite, i.e. �a � f 1; . . . ; n g,
n < !. Let Ra be an n{ary relation symbol for each a 2 A, and let f be a function
from L = fRa : a 2 A g into A de�ned by f(Ra) = a. Thus, �f(Ra) � f 1; . . . ; n g.
By Theorem 8 there exists a homomorphism g from FormL

Æ
�; onto A such that

g(R;
a) = f(Ra) = a. By Theorem 5 the set I = f'; : g(';) = 0 g is an ideal of

FormL
Æ
�;. Let � be a set of all sentences ' of LAP such that (:'); 2 I. Then,

� is consistent, since jAj > 1. We obtain (FormL
Æ
�;)

Æ
I �= FormL

Æ
�� from

Theorem 6, and A �= (FormL
Æ
�;)

Æ
I from Theorem 5. If A is a model of �,

then we have a homomorphism from FormL
Æ
�� onto the cylindric probability set

algebra 

f'A : ' 2 FormL g;[;\;�; ;; A

!; CrhKi; S� ; Dpq

�
: �

Remark. Many other problems of the classical theory of cylindric algebras such
as representation and decision problems, have natural counterparts also for cylindric
probability algebras.
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