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Abstract. A family C of continua is said to be determined by a class M
of mappings if a continuum Y is in C if and only if each mapping from a
continuum onto Y is in M. The paper contains a study of this notion for

various families C of continua and various classes M of mappings between
them.

Let C be a family of continua and M be a class of mappings. We say that the
family C is determined by the class M provided that a continuum Y is in C if and
only if each mapping from a continuum onto Y is in M. As an example one can
consider the result of H. Cook, A. Lelek and D. R. Read (see [5, Theorem 4, p. 243]
and [17, 5.7, p. 111]) saying that a continuum Y is hereditarily indecomposable
if and only if each mapping from a continuum onto Y is conuent. Continua
determined by classes of semi-conuent, weakly conuent and pseudo-conuent
mappings were investigated by J. Grispolakis and E. D. Tymchatyn in [9], [10],
[11], [12] and [13]. We collect results of this kind dispersed in the literature, and
give a further study of the subject.

All spaces considered in this paper are assumed to be metric. A continuum
means a compact connected space. A mapping means a continuous function. Let
M be a class of mappings between continua. We say that a mapping f : X ! Y

between continua X and Y is hereditarily M provided that for each subcontinuum
A of X the restriction f jA : A! f(A) � Y is in M.

A mapping f : X ! Y between continua X and Y is said to be:
{ open provided that the image of an open subset of the domain is open in the
range;
{ light provided that point inverses are zero-dimensional;
{ monotone provided that point inverses are connected (equivalently, if inverse
images of subcontinua of Y are connected);
{ almost monotone provided that for each subcontinuum Q in Y with the nonempty
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interior the inverse image f�1(Q) is connected;
{ quasi-monotone provided that for each subcontinuum Q in Y with the nonempty
interior the inverse image f�1(Q) has a �nite number of components and f maps
each of them onto Q;
{ weakly monotone provided that for each subcontinuum Q in Y with the nonempty
interior each component of the inverse image f�1(Q) is mapped under f onto Q;
{ feebly monotone provided that if A and B are proper subcontinua of Y such that
Y = A [B, then their inverse images f�1(A) and f�1(B) are connected;
{ conuent provided that for each subcontinuum Q in Y each component of the
inverse image f�1(Q) is mapped under f onto Q;
{ semi-conuent provided that for each subcontinuum Q in Y and for every two
components C1 and C2 of the inverse image f�1(Q) at least one of the two inclusions
f(C1) � f(C2) and f(C2) � f(C1) holds;
{ weakly conuent provided that for each subcontinuumQ in Y there is a component
of the inverse image f�1(Q) which is mapped under f onto Q;
{ pseudo-conuent provided that for each irreducible subcontinuum Q in Y there
is a component of the inverse image f�1(Q) which is mapped under f onto Q;
{ joining provided that for each subcontinuum Q in Y and for every two components
C1 and C2 of the inverse image f�1(Q) the inequality f(C1) \ f(C2) 6= ; holds;
{ atriodic provided that for each subcontinuum Q in Y there are two components
C1 and C2 of the inverse image f�1(Q) such that f(C1) [ f(C2) = Q and for each
component C of f�1(Q) we have either f(C) � f(C1) or f(C) � f(C2);
{ universal provided that for each mapping g : X ! Y there exists a coincidence
point with f , i.e., a point x 2 X such that f(x) = g(x).

The reader is referred to [20, Table II, p. 28] for interrelations between these and
derived (or related) classes of mappings. Feebly monotone mappings and universal
ones are not studied in [20]. The reader can �nd some information about feebly
monotone mappings in [3], and on universal mappings in [23].

We start our discussion about continua determined by a class of mappings with
answering a question what family of continua is determined by two very importan-
t classes: of monotone and of open mappings. Obviously each mapping from a
continuum onto a singleton is monotone. On the other hand, if a continuum Y is
nondegenerate, then taking two copies Y � f0g and Y � f1g of Y , and identifying
one pair of corresponding points only we get a continuum X whose natural pro-
jection onto Y is not monotone. Similarly, each mapping from a continuum onto
a singleton is open. And if a continuum Y is nondegenerate, then it contains a
proper nondegenerate subcontinuum A. Take a point a 2 A and a point b 2 bdA.
In the union (Y � f0g) [ (A � f1g) we identify the points ha; 0i and ha; 1i only.
The natural projection of the resulting continuum onto Y is not open since it is
not interior at hb; 1i. Thus we have the following assertion.

1. Assertion. The following conditions are equivalent for a continuum Y :

(1.1) Y is a singleton;
(1.2) Y is determined by the class of monotone mappings;
(1.3) Y is determined by the class of open mappings.
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A continuum X is said to be decomposable if it contains two proper subcontinua
whose union is X . Otherwise it is said to be indecomposable. The next two results
have been shown in [3, Proposition 4.1 and Theorem 4.2]. Their proofs are repeated
here only for the reader's convenience.

2. Proposition. For each decomposable continuum Y there exist a continu-
um X and a surjective mapping f : X ! Y which is neither weakly monotone nor
feebly monotone.

Proof. Let A and B be proper subcontinua of Y whose union is Y , and let
a 2 A r B. In the Cartesian product Y � [0; 1] consider the continuum X =
(Y �f0g)[(fag� [0; 1])[(A�f1g). De�ne a projection f : X ! Y by f(hx; ti) = x

for each point hx; ti 2 X . Then f�1(B) is the union of two nonempty disjoint closed
sets: B � f0g and f�1(B) \ (A� f1g), so it is not connected. Each component of
the latter one is mapped into A \B under f , so f is neither weakly monotone nor
feebly monotone, as needed. The proof is complete.

3. Theorem. The following conditions are equivalent for a continuum Y :

(3.1) Y is indecomposable;
(3.2) Y is determined by the class of almost monotone mappings;
(3.3) Y is determined by the class of quasi-monotone mappings;
(3.4) Y is determined by the class of weakly monotone mappings;
(3.5) Y is determined by the class of feebly monotone mappings.

Proof. We will show two circles of implications: (3:1) =) (3:2) =) (3:3) =)
(3:4) =) (3:1) and (3:1) =) (3:2) =) (3:5) =) (3:1).

(3.1) implies (3.2) since Y being indecomposable contains no proper subcon-
tinuum with the nonempty interior (see [14, x48, V, Theorem 2, p. 207]). The
implication from (3.2) to (3.3) holds because each almost monotone mapping is
quasi-monotone. Further, since each quasi-monotone mapping is weakly monotone,
(3.3) implies (3.4). The implication from (3.4) to (3.1) is shown in Proposition 2.
So the �rst circle of implication is completed. To complete the second one it re-
mains to note that (3.2) implies (3.5) since each almost monotone mapping is feebly
monotone, and (3.5) implies (3.1) again by Proposition 2.

4. Remark. Theorem 3 extends earlier assertions the �rst named author (see
[1, Proposition 2, p. 210] and [2, Remark 3, p. 71]).

A continuum is said to be hereditarily decomposable (hereditarily indecompos-
able) if each of its subcontinua is decomposable (indecomposable, respectively).

As it has been mentioned in the introduction, the family of hereditarily inde-
composable continua is determined by conuent mappings. The next result summa-
rizes known characterizations of hereditarily indecomposable continua formulated
in terms of their determination by various classes of mappings, as well gives some
new ones expressed in terms of projections. Recall that, given a Cartesian product
X �Y of spaces X and Y , the natural projection means a mapping p : X �Y ! Y

de�ned by p(hx; yi) = y.
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5. Theorem. The following conditions are equivalent for a continuum Y :

(5.1) Y is hereditarily indecomposable;
(5.2) Y is determined by the class of conuent mappings;
(5.3) Y is determined by the class of hereditarily conuent mappings;
(5.4) Y is determined by the class of semi-conuent mappings;
(5.5) Y is determined by the class of hereditarily semi-conuent mappings.
(5.6) for each nondegenerate continuum X the natural projection p : X�Y ! Y

is hereditarily conuent;
(5.7) the natural projection p : [0; 1]� Y ! Y is hereditarily conuent;
(5.8) there exists a nondegenerate continuum X such that the natural projection

p : X � Y ! Y is hereditarily conuent;
(5.9) for each nondegenerate continuum X the natural projection p : X�Y ! Y

is hereditarily semi-conuent;
(5.10) the natural projection p : [0; 1]� Y ! Y is hereditarily semi-conuent;
(5.11) there exists a nondegenerate continuum X such that the natural projection

p : X � Y ! Y is hereditarily semi-conuent.

Proof. Equivalence of conditions (5.1), (5.2) and (5.3) is known, [20, (6.11), p.
53]. Implications from (5.3) to (5.5) and from (5.5) to (5.4) are obvious. Equivalence
of (5.4) and (5.1) is stated in [9, Theorem 5.1, p. 359]. Thus conditions (5.1)-(5.5)
are equivalent.

The implications (5:2) =) (5:6) =) (5:7) =) (5:8) =) (5:11) as well as
the ones (5:6) =) (5:9) =) (5:10) =) (5:11) are obvious. To �nish the proof
it is enough to show that (5.11) implies (5.1). So, assume (5.11) and suppose that
Y is not hereditarily indecomposable. This implies that there are subcontinua A

and B of Y such that

A \ B 6= ; and ArB 6= ; 6= B rA:

Take points a 2 ArB, b 2 B rA and c 2 A \B, and let U and V be two subsets
of A and B, open with respect to A and B, respectively, such that

a 2 U � clU � ArB and b 2 V � clV � B rA:

Then, by the boundary bumping theorem (see e.g. [24, Theorem 5.4, p. 73]), the
component Ka of ArU containing c meets bdU , and the component Kb of BrV

containing c meets bdV . Therefore Q = Ka [ Kb � A [ B is a continuum such
that

Q � (A [ B)r fa; bg; and Q \ (ArB) 6= ; 6= Q \ (B rA):

Let x1, x2 and x3 be three distinct points of the continuum X . De�ne

K = (X � fa; bg) [ (fx1g �A) [ (fx2g �B) [ (fx3g � (A [B)) � X � Y:

Then the restriction pjK : K ! p(K) = A [ B is not semi-conuent. In fact, the
sets C1 = fx1g�A and C2 = fx2g�B are components of (pjK)�1(Q) = K\p�1(Q)
such that p(C1) = Ka and p(C2) = Kb, and therefore the image under p of neither
C1 nor C2 is contained in the image of the other, so pjK is not semi-conuent. The
proof is then complete.
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6. Remark. The implication from (5.7) to (5.1), and, consequently, the e-
quivalence of the two conditions, are shown in Ma�ckowiak's paper [19, Theorem
3.3 and Corollary 3.4, p. 127]. Thus equivalence of conditions (5.6)-(5.11) with
(5.1) can be seen as an extension of the mentioned result of Ma�ckowiak.

Indecomposability and hereditary indecomposability of continua can be express-
ed in terms of chains of continua. By a chain of continua we mean a �nite family of
continua L1; . . . ; Ln such that Li\Lj 6= ; if and only if ji�jj � 1. The elements Li

of the family are called links of the chain. If the chain consists of n links, it is called
an n-chain. Using these terms one can say that a continuum is indecomposable pro-
vided that it is not the union of any 2-chain, and it is hereditarily indecomposable
provided that it does not contain any 2-chain. The next results will be formulated
in terms of chains of continua. In general, observe the following easy fact.

7. Fact. The property of a continuum of not containing any subcontinuum
being the union of an n-chain is hereditary.

A class of mappings that is wider than the class of semi-conuent ones is
the class of joining mappings. One can ask if the characterization of hereditarily
indecomposable continua given in Theorem 5 can be extended by adding the class of
(hereditarily) joining mappings to the list of conditions (5.2)-(5.5) presented there.
The answer to this question is negative. To show this we start with the following
result.

8. Proposition. If there is a continuum X and a surjection f : X ! Y which
is not joining, then Y contains a subcontinuum which is the union of a 3-chain.

Proof. Assume that there is a continuum Q � Y and there are two components
A and B of f�1(Q) such that f(A) \ f(B) = ;. Let A0 � X be a continuum a
little bit greater than A; precisely, A  A0 and f(A0) \ f(B) = ;. Since A is a
component of f�1(Q), the image f(A0) is not contained in Q, so f(A0) r Q 6= ;.
Similarly, let B0 be a continuum in X such that B  B0 and f(B0) \ f(A0) = ;.
Then f(A0), Q and f(B0) form a 3-chain in Y . The proof is complete.

Proposition 8 can be reformulated as follows.

9. Proposition. If a continuum Y does not contain any subcontinuum being
the union of a 3-chain, then each mapping from a continuum X onto Y is joining.

10. Corollary. If a continuum Y does not contain any subcontinuum be-
ing the union of a 3-chain, then each mapping from a continuum X onto Y is
hereditarily joining.

Proof. Let a mapping f : X ! Y be given, and let K be a subcontinuum of
X . Consider the restriction f jK : K ! f(K) � Y . Then by Fact 7 the continuum
f(K) does not contain any 3-chain, hence f jK is joining according to Proposition
9. Thus f is hereditarily joining.



138 CHARATONIK AND CHARATONIK

11. Proposition. If a continuum Y contains a subcontinuum which is the
union of 3-chain, then for every nondegenerate continuum X there exists a continu-
um K � X �Y such that if p : X �Y ! Y means the natural projection, then the
restriction pjK : K ! p(K) = Y is not joining, hence p is not hereditarily joining.

Proof. Let A, B and C be links of a 3-chain in Y such that A\B 6= ; 6= B\C.
Fix points q0 2 A \ B and q1 2 B \ C. Since each composant of a continuum is
dense, see [14, x48, VI, Theorem 2, p. 209], there are proper subcontinua A0 of A
and C 0 of C such that A0 contains q0 and C 0 contains q1. Put B0 = A0 [ B [ C 0

and note that B0 is a proper subcontinuum of Y such that A r B0 6= ; 6= C r B0.
Choose points a 2 A r B0 and c 2 C r B0. Let x0, x1 and x2 be three distinct
points of the continuum X , and de�ne

K = (X � fa; cg) [ (fx0g �A) [ (fx1g � C) [ (fx2g � Y ) � X � Y:

Then the restriction pjK : K ! p(K) = Y is not joining. In fact, for i 2 f0; 1g
let Ki stand for the component of (pjK)�1(B0) = K \ p�1(B0) that contains the
point hxi; qii. Then q0 2 A0 � p(K0) � A and q1 2 C 0 � p(K1) � C, and since
A\C = ;, it follows that p(K0)\ p(K1) = ;. Thus pjK is not joining, and thereby
p is not hereditarily joining.

12. Corollary. If a continuum Y contains a subcontinuum which is the
union of a 3-chain, then there exists a continuum X and a surjective mapping
f : X ! Y which is not joining.

Proof. Really, it is enough to take the continuum K de�ned in the proof of
Proposition 11 as the domain X and to de�ne f = pjK. Since p(K) = Y as it is
indicated in the conclusion of the proposition, f is a surjection. The argument is
thus complete.

13. Theorem. The following conditions are equivalent for a continuum Y :

(13.1) Y does not contain any subcontinuum being the union of a 3-chain;
(13.2) Y is determined by the class of joining mappings;
(13.3) Y is determined by the class of hereditarily joining mappings;
(13.4) for each nondegenerate continuum X the natural projection p : X�Y ! Y

is hereditarily joining;
(13.5) the natural projection p : [0; 1]� Y ! Y is hereditarily joining;
(13.6) there exists a nondegenerate continuum X such that the natural projection

p : X � Y ! Y is hereditarily joining.

Proof. Implication from (13.1) to (13.3) is just Corollary 10. The one from
(13.3) to (13.2) is trivial. Next, (13.2) implies (13.1) by Corollary 12. So, conditions
(13.1)-(13.3) are equivalent. Implications (13:3) =) (13:4) =) (13:5) =)
(13:6) are obvious. To close a circle of implications it it enough to note that (13.6)
implies (13.1) by Proposition 11. The proof is complete.
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14. Question. Let an integer n > 3 be given. What class of mappings
determine continua which do not contain any n-chain?

By a circular n-chain of continua we mean a �nite family of continua L1; . . . ; Ln

such that Li \ Lj 6= ; if and only if either ji� jj � 1 or i; j 2 f1; ng.

15. Question. Let an integer n > 2 be given. What class of mappings
determines continua which do not contain any subcontinuum being the union of a
circular n-chain?

Let n be a positive integer. A continuum Y is said to be n-indecomposable
provided that Y is not the union of n + 1 continua such that no one of them is
contained in the union of the others (see [6, p. 117]).

16. Question. Let an integer n > 2 be given. What class of mappings
determines n-indecomposable continua?

Another class of mappings that contains the class of semi-conuent ones is the
class of weakly conuent mappings. The family of continua determined by weakly
conuent mappings is termed the Class(W ). Introducing this concept in 1973,
A. Lelek asked on a characterization, [15, Problem 1, p. 168]. Since that time a
number of results were obtained in the area, see e.g. [7], [8],[9], [10], [11], [12],
[13] [26], and the references therein.

The family of continua determined by pseudo-conuent mappings (introduced
in [18]) is called the Class(P ). Some partial results, either necessary or suÆcient
for a continuum to be in the Class(P ), or related to continua satisfying additional
conditions, are discussed in many papers, e.g. in [12, Section 5, p. 384], [9, Section
8, p. 358], and in [13, Sections 6 and 7, p. 145 and 149]. In particular, it is known
that Class(P ) is strictly larger than Class(W ), [12, Example 5.1, p. 385]. In the
next two theorems we recall characterizations of families of continua determined by
weakly conuent and by pseudo-conuent mappings, respectively. These character-
izations are not internal (structural), but are expressed in terms of embeddings of
the considered continuum into any other continuum. To formulate them we need
some more de�nitions.

Given a continuum Y , we denote by C(Y ) the hyperspace of nonempty subcon-
tinua of Y metrized by the Hausdor� metric, see [22, (0.1), p. 1]. De�ne a function
C� : C(Y ) ! C(C(Y )) by C�(A) = C(A) for each A 2 C(Y ). It is proved in [22,
(15.2), p. 514] is upper semi-continuous. A continuum Y is said to be C�-smooth
at A 2 C(Y ) provided that the function C� is continuous at A; it is said to be
C�-smooth if C� is continuous on C(Y ), see [22, De�nition (15.5), p. 517], and it
is said to be absolutely C�-smooth provided that, whenever Y is embedded in a
continuum Z, the function C� : C(Z) ! C(C(Z)) is continuous at Y . In other
words, a continuum Y is absolutely C�-smooth if and only if for each continuum
Z with Y � Z, for each sequence of subcontinua Yn of Z with Y = LimYn, and
for each subcontinuum A of Y there is a sequence of subcontinua An such that
An � Yn for n 2 N and A = LimAn.
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The mentioned two results are due to Grispolakis and Tymchatyn, see [10,
Theorem 3.2, p. 178] and [12, Theorem 5.2, p. 385], and compare [13, Theorems
7.4 and 7.5, p. 150].

17. Theorem. The following conditions are equivalent for a continuum Y :

(17.1) Y is determined by the class of weakly conuent mappings (i.e., Y 2
Class(W ));

(17.2) Y is absolutely C�-smooth.

18. Theorem. The following conditions are equivalent for a continuum Y :

(18.1) Y is determined by the class of pseudo-conuent mappings (i.e., Y 2
Class(P ));

(18.2) if Y � Z for some continuum Z and if fYng is a sequence of subcontinua of
Z converging to Y , then for each irreducible subcontinuum K of Y there is
a sequence of continua Kn � Yn converging to K.

A class of mappings that comprises the class of weakly conuent mappings is
one of atriodic mappings, [20, (3.5), p. 13]. We will show that the class of heredi-
tarily atriodic mappings determines atriodic continua. Recall that a continuum T

is called a triod provided that there are three subcontinua A, B and C called the
arms of the triod) such that

T = A [ B [ C; A \ B \ C = A \ B = A \ C = B \ C;

and this common part D = A\B\C is a proper subcontinuum of each of them. A
continuum is said to be atriodic provided that it does not contain any triod. The
reader is referred to [27] for more information about structure of atriodic continua.

The ideas of the next two results (Proposition 19 and Theorem 20) comes from
Ma�ckowiak's ones, [19, Theorem 3.7, p. 129] and [20, Corollary 6.13, p. 55].

19. Proposition. If a continuum Y contains a triod T , then for every nonde-
generate continuumX there exists a continuumK � X�Y such that if p : X�Y !
Y means the natural projection, then the restriction pjK : K ! p(K) = T is not
atriodic, hence p is not hereditarily atriodic.

Proof. For each i 2 f1; 2; 3g let Ai denote an arc of the triod T = A1[A2[A3.
Put D = A1 \ A2 \ A3, and choose points ai 2 Ai rD and open subsets Ui such
that

ai 2 Ui \ Ai � cl(Ui \Ai) � Ai rD:

Let d 2 D, and let Ki be the component of Ai r Ui which contains d. Then, by
the boundary bumping theorem (see e.g. [24, Theorem 5.4, p. 73]), the component
Ki meets bd(Ui \Ai). Therefore Q = K1 [K2 [K3 � T is a continuum such that
Q � T r (U1 [U2 [U3) and Q\ (Ai rD) 6= ; for each i 2 f1; 2; 3g. Let x1, x2 and
x3 be three distinct points of the continuum X . De�ne

K = (X�fa1; a2; a3g)[(fx1g�(A2[A3))[(fx2g�(A1[A3))[(fx3g�(A1[A2))

� X � Y:
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Then p(K) = T . To see that the restriction pjK : K ! p(K) is not atriodic
note that the set (pjK)�1(Q) = K \ p�1(Q) has three components, C1, C2, C3,
with Ci � fxig � (Aj [ Ak) for any triple of distinct indices i; j; k 2 f1; 2; 3g, so
images of any two of them under the projection p cover the whole Q, i.e., Q =
p(C1)[ p(C2) = p(C2)[ p(C3) = p(C1)[ p(C3). However, if we consider any two of
these components, Ci and Cj , then for the third one, Ck, with i 6= k 6= j, we have
p(Ck) 6= Q and p(Ck)r p(Ci) 6= ; 6= p(Ck)r p(Cj) by the construction. So, pjK is
not atriodic, as needed. The proof is complete.

20. Theorem. The following conditions are equivalent for a continuum Y :

(20.1) Y is atriodic;
(20.2) Y is determined by the class of hereditarily atriodic mappings;
(20.3) for each nondegenerate continuum X the natural projection p : X�Y ! Y

is hereditarily atriodic;
(20.4) the natural projection p : [0; 1]� Y ! Y is hereditarily atriodic;
(20.5) there exists a nondegenerate continuum X such that the natural projection

p : X � Y ! Y is hereditarily atriodic.

Proof. The implication from (20.1) to (20.2) is shown in [20, Theorem 6.12, p.
53]. Implications (20:2) =) (20:3) =) (20:4) =) (20:5) are obvious. Finally
(20.5) implies (20.1) by Proposition 19. The proof is complete.

21. Remark. Since every hereditarily atriodic mapping is obviously atriod-
ic, it follows that every atriodic continuum is determined by the class of atriodic
mappings. So a question arises in a natural way if the inverse implication is true,
i.e., if the continuum Y considered in Theorem 20 is also determined by the class
of atriodic mappings. The answer to this question is negative. Indeed, an example
is constructed in [12, Example 4.5, p. 383] of a compacti�cation Y of the half line
[0;1) having the simple triod as the remainder, which is in Class(W ). Since each
weakly conuent mapping is atriodic, [20, (3.5), p. 13], Y is determined by the class
of atriodic mappings, while it is not atriodic. Thus the family of continua which
are determined by the class of atriodic mappings is essentially larger than that of
atriodic continua. Compare also a more general result, [9, Theorem 3.5, p. 353],
saying that every continuum can be embedded in a compacti�cation Y of the half
line such that Y is in Class(W ), and hence Y is determined by the class of atriodic
mappings. Therefore it follows that the above mentioned family of continua cannot
be characterized by any condition of not containing a continuum of a certain type.

In connection with the above remark let us observe that if the continuum Y

considered in Proposition 19 is a triod, then we can put Y = T , and then for each
nondegenerate continuum X there is a continuum (viz. the continuum K � X�Y )
and a surjection from K onto Y (viz. the mapping pjK : K ! p(K) = T = Y )
which is not atriodic. Therefore the following corollary to Proposition 19 is true.

22. Corollary. If a continuum Y is determined by the class of atriodic
mappings, then Y is not a triod.
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23. Remark. The converse implication to that of Corollary 22 is not true
because of the following example. Let X be the simple triod with the vertex v and
arms va, vb and vc, and let a surjective mapping f : X ! Y identi�es the end
points a, b and c of X , being a homeomorphism on the rest. Putting p = f(v) and
q = f(a) = f(b) = f(c) we see that Y is the union of three arcs joining p and q and
mutually disjoint out of these points. Thus Y is not a triod. Taking interior points
a0, b0 and c0 of the arcs f(va), f(vb) and f(vc) respectively, we see that the triod
Q = qa0 [ qb0 [ qc0 � Y has three components of its preimage f�1(Q), the images
of no two of which cover Q; thus f is not atriodic. Therefore, Y is not a triod, and
it is not determined by the class of atriodic mappings.

Remarks 21 and 23, and Corollary 22 leads to the following question.

24. Question. What continua are determined by the class of atriodic map-
pings?

We �nish our discussion on atriodic continua recalling the following result due
to Grispolakis and Tymchatyn, [12, Theorem 5.3, p. 385].

25. Theorem. If a continuum is atriodic, then it is determined by the class
of weakly conuent mappings if and only if it is determined by the class of pseudo-
conuent ones.

Now we intend to discuss some results on continua determined by the class of
universal mappings. The basic problem is the following.

26. Problem. Give an internal (structural) characterization of continua de-
termined by the class of universal mappings.

To formulate the next result (that is related to the above mentiond family
of continua) we need a de�nition and two statements. Let d be a metric on a
continuum Y , and let �i : Y � Y ! Y denote the i-th coordinate projection for
i 2 f1; 2g. De�ne (see [16, p. 35]) the surjective semispan ��0(Y ) of a continuum Y

to be the least upper bound of the set of all real numbers " for which there exists a
subcontinuum Z of Y �Y such that �1(Z) = Y and d(x; y) � " for each hx; yi 2 Z.
The next statement is known, [24, 12.31, p. 254 and 12.57, p. 266].

27. Statement. Let Y be a continuum with a metric d. Then ��0(Y ) is the
least upper bound of the set of all real numbers " such that there are a continuum X

and two mappings f1; f2 : X ! Y with f1(X) � f2(X) = Y and d(f1(x); f2(x)) � "

for each point x 2 X .

Continua Y with ��0(Y ) = 0 were subjects of special interest, see e.g. [25,
Section 4, p. 164]. For these continua the following statement is a consequence of
the de�nition. Recall that the symbol �Y stands for the diagonal of the product
Y � Y .

28. Statement. Let Y be a continuum. Then ��0(Y ) = 0 if and only if for
each subcontinuum Z of Y � Y such that �1(Z) = Y the inequality Z \�Y 6= ;
holds.

Now we are ready to show the mentioned result.
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29. Theorem. The following conditions are equivalent for a continuum Y :

(29.1) ��0(Y ) = 0;
(29.2) for each continuum X and for any two mappings f; g : X ! Y with f(X) =

Y there is a point x 2 X such that f(x) = g(x);
(29.3) Y is determined by the class of universal mappings.

Proof. Equivalence of conditions (29.1) and (29.2) follows from Statements 27
and 28. Equivalence of conditions (29.2) and (29.3) is obvious.

30. Remark. Recall that condition (29.1) implies that the continuum Y is
weakly chainable, [25, Corollary 6, p. 164], tree-like, [25, Theorem 9, p. 165], it
has the surjective span zero according to [16, 1.1, (4), p. 36], and thus it is one
dimensional, [25, Theorem 14, p. 167], atriodic, [25, Theorem 10, p. 166] and is
in Class(W ), [25, Theorem 8, p. 164]. Compare also [21, Theorem 5, p. 1190].
Recently Theorem 29 has been extended to Hausdor� continua in [4, Theorem 25].

Acknowledgement. We sincere thank Dr. Ra�ul Escobedo Conde for fruitful
discussions on universal mappings. In fact, Theorem 29 is due to him.
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