
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE

Nouvelle s�erie, tome 67(81) (2000), 76{84

A GENERALIZATION OF

THE NOTION OF REPRODUCTIVITY

Slavi�sa B. Pre�si�c

Communicated by �Zarko Mijajlovi�c

Abstract. In Section 1 we state the known theory of reproductive equations in gen-
eral. The key result is that every equation, having at least one solution, is equivalent
to some reproductive equation. In Section 2 we extend the notion of reproductive
equations to the class of equations Eq(x) which are solved by means of some given
equation, denoted by Eq1(%). In that case we also prove that such an Eq(x), having
at least one solution, is equivalent to some reproductive equation.

1. Reproductivity of an equation x = f(x)

Let A be a set (or a class) and Eq(x) an equation in x 2 A. Eq can be
understood as a unary relation over A. Let S be the set (class) of all solutions of
Eq(x). Then we have:

(1) (8x 2 A)(Eq(x), x 2 S)

Let us assume that P is another set (class) and � : P ! S a surjection. Using such
P and a function � formula (1) can be reformulated thus

(2) (8x 2 A)(Eq(x), (9p 2 P )x = �(p))

In this case the formula x = �(p), where p is any element of P , gives all the solutions
of Eq(x), and accordingly we have the following de�nition:

Definition 1. If (2) holds, then the formula

x = �(p); p is any element of P

is called a formula of the general solution of the equation Eq(x).
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Let us concentrate on the )-part of the formula (2), i.e., (8x 2 A)(Eq(x) )
(9p 2 P )x = �(p)) which is equivalent to (8x 2 A)(9p 2 P )(Eq(x) ) x = �(p)),
since p does not appear in the �rst part of the implication, i.e., in Eq(x). Using
the axiom of choice, we can introduce a new function  : A! P such that:

(3) (8x 2 A)(Eq(x)) x = �( (x)))

Let f : A! A be de�ned by f(x) = �( (x)). Then (3) transforms into:

(4) (8x 2 A)(Eq(x)) x = f(x))

It is easy to see that (8x 2 A)(Eq(x) , (9p 2 P )x = f(p)) is also true. So, the
formula:

(5) x = f(p); p 2 A

is the formula of the general solution of Eq(x). But, since (4) is true, we say that
(5) is a formula of the general reproductive solution. The notion of a reproductive
solution appeared in 1919 in L�owenheim paper on Boolean equations [1]. In Pre�si�c
[1] we gave the following de�nition of a reproductive equation.

Definition 2. Equation x = f(x) in x 2 A is reproductive i� the equality
(8x 2 A) f(f(x)) = f(x) holds.

It is easy to see that:

Lemma 1. If x = f(x) is a reproductive equation, then all of its solutions are
given by the formula (5).

Example 1. Consider the system of equations

(�1) x = x [ y; y = x \ y

in x; y 2 B, where B is a Boolean algebra. Let f : B2 ! B2 be de�ned by:

If X = (x; y), then f(X) = (x [ y; x \ y)

Then (�1) transforms into X = f(X), (X 2 B2), which is easily seen to be repro-
ductive.

Example 2. Consider the functional equation

(�2) �(x; y) = �(y; x)

in � : R2 ! R. Let Func be the set of all functions � : R2 ! R and f : Func! Func
be de�ned by:

If X is � then f(X) is the function

�
(x; y)

�(x;y)+�(y;x)
2

�
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Equation (�2) becomes X = f(X), which is easily seen to be reproductive. Indeed,
let X = �; then f(X) =  , where  (x; y) = (�(x; y) + �(y; x))=2. Moreover,

f(f(X)) = f( ) =

�
(x; y)

 (x;y)+ (y;x)
2

�
=

�
(x; y)

�(x;y)+�(y;x)+�(x;y)+�(y;x)
4

�

=

�
(x; y)

�(x;y)+�(y;x)
2

�
=

�
(x; y)

 (x; y)

�
=  ;

so f2 = f .

The next important fact (see Pre�si�c [1]) is the following theorem:

Theorem 1. If Eq(x) has at least one solution in x 2 A, then it has an
equivalent reproductive equation.

Proof. Let S � A be the set (class) of all the solutions for Eq(x). It is suÆcient
to de�ne f : A! A thus:

If X 2 S, then f(X) = X ; if X 2 Ar S, then f(X) is any element in S

It is easy to see that the equality X = f(X) is reproductive and equivalent to
Eq(x).

We would like to point out that Theorem 1 was often a leading idea used in
solving many classes of equations (functional, Boolean, on �nite sets, etc.). We
mention one such result concerning the so called linear homogeneous functional

equations on groups (see Pre�si�c [2], [3]):

a1(x)�(�1(x)) + � � �+ an(x)�(�n(x)) = 0

where x 2 S (S given set); �i : S ! S forms a group of order n, and ai are given
mappings from S into a given �eld F . The function � : S ! F is unknown.

For this equation, an equivalent reproductive equation is e�ectively described
(see also Kuczma [1, p. 268]).

2. Reproductivity of an equation Eq(x) given by a formula

of the form (9% 2 B)(Eq1(%); x = f(x; %))

In mathematics there are many cases when a given equation Eq(x) is solved up

to some other equation, say Eq1(%). In other words, Eq(x) is solved by means of
the equation Eq1(%).

Example 3. Equation (x � 1)2 = 7 in x real can be solved by means of the
following equation Eq1(%) : %

2 = 7. Namely, we have the equivalence

(x� 1)2 = 7, (9% 2 R)(Eq1(%); x = 1 + %)
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Similarly, equation (x � y)2 = 7 in x; y 2 R can be solved using the same
equation Eq1(%). We have:

(x� y)2 = 7, (9p 2 R)(9% 2 R)(Eq1(%); y = p; x = p+ %)

There is a `parameter' p in the previous formula and a quanti�er (9p 2 R),
since equation x� y = % does not have a unique solution in x; y.

Bearing in mind this simple example we shall in general de�ne the meaning of
these sentences:

x is an Eq1(%)-solution of the equation Eq(x).

Equation Eq(x) is solved by means of the equation Eq1(%).

Assume that B is some other set (class) with a unary relation Eq1. Further,
let P be another set (class).

Definition 3. (i) Let x 2 A be determined by an equality of the form x =
�(%), where � : B �! A is a certain function. We say that x is an Eq1(%)-solution
of the equation Eq(x) i� the following implication is true

(x = �(%);Eq1(%))) Eq(x)

(ii) Equation Eq(x) in x 2 A is solved by means of the equation Eq1(%) i� the
following equivalence is true1

(6) Eq(x), (9p 2 P )(9% 2 B)(Eq1(%); x = �(p; %))

where � : P �B ! A is a given function.

We can see how natural is the previous de�nition if we consider the following
fact:

If (6) is true, then all the Eq1(%)-solutions of Eq(x) are determined by x =
�(p; %), where p 2 P is an arbitrary element and % 2 B is any solution of
Eq1(%).

According to this we introduce the following de�nition.

Definition 4. If the equivalence (6) holds, then the formula x = �(p; %),
where p 2 P is an arbitrary element and % 2 B is any solution of the equation
Eq1(%), is called a formula of the general solution of the equation Eq(x) by means
of the equation Eq1(%).

Notice that if Eq(x) has a unique solution, then P is super
uous and (6) be-
comes

Eq(x), (9% 2 B)(Eq1(%); x = �(%))

where � : B ! A is some function.

Concerning De�nition 3 more examples follow. First, we notice that Example
3 can be extended to the case in Galois theory when one considers the question
whether a given algebraic equation is solvable by radicals.

1We can put (8x 2 A) before the formula (6)
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Example 4. In the class of all groupoids take equation gr(X) with the mean-
ing: X is a group. We do not know a general solution to gr(X). But various
representation theorems solve this equation up to some simpler equation. One such
theorem, the so called Cayley representation theorem, can be stated thus:

gr(X), (9G)(G is a permutation group, X �= G)

assuming that in some sense �= (isomorphism) is an equality of algebras.
Similarly, the same is true for various representation theorems in many �elds

of mathematics.

Example 5. Consider the Pexider functional equation (for more on Pexider
equation see Krape�z and Taylor [1])

(7) f(x+ y) = g(x) + h(y)

where f; g; h : R ! R are unknown functions. As is well known this equation
reduces to the Cauchy equation �(x + y) = �(x) + �(y). Indeed, from (7) we get:

(�1) g(x) = f(x)� h(0); h(x) = f(x)� g(0)

Equation (7) then becomes f(x+ y) = f(x)� h(0) + f(y)� g(0), i.e.

(�2) f(x+ y)� g(0)� h(0) = (f(x)� g(0)� h(0)) + (f(y)� g(0)� h(0))

De�ning function � by �(x) = f(x)� g(0)�h(0) equation (�2) transforms into the
Cauchy functional equation. If we introduce two constants by C1 = g(0), C2 = h(0)
then we have the following assertion.

(�3) Any solution (f; g; h) of (7) satis�es the condition:

f(x) = �(x) + C1 + C2; g(x) = �(x) + C1; h(x) = �(x) + C2

where C1, C2 are some constants and � is a solution to the Cauchy functional
equation.

This can be written down as

(�4) (8x; y 2 R)f(x+ y) = g(x) + h(y))

(9C1; C2)(9�)(8x; y 2 R)[�(x + y) = �(x) + �(y); f(x) = �(x) + C1 + C2;

g(x) = �(x) + C1; h(x) = �(x) + C2]

As is usual when we prove some implication like (�4), then we check whether
the functions in the consequence part of the formula do make a solution. In this
example this means whether the following equivalence is true:

(8) f(x+ y) = g(x) + h(y),

(9C1; C2)(9�)[�(x + y) = �(x) + �(y); f(x) = �(x) + C1 + C2;

g(x) = �(x) + C1; h(x) = �(x) + C2]

It can be easily checked that equivalence (8) is indeed true.

Next, we prove that this equivalence is of the form (6). First, equation f(x+y)
= g(x) + h(y) is Eq(X) in X 2 A where A is the set of all triples (f; g; h) of
real functions R ! R. Further, let B be a set of all real functions and Eq1(%)
be the Cauchy equation2 (8x; y 2 R)�(x + y) = �(x) + �(y). Let P be R2 and

2� stands instead of %
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� : P �B ! A be de�ned in the following way:
If p, denoted by (C1; C2), is any element of P and � 2 B, then �(p; �) is the

triple (f; g; h) where f(x) = �(x) +C1 +C2; g(x) = �(x) +C1; h(x) = �(x) +C2

Using this notation (8) becomes

Eq(X), (9p)(9�)(Eq1(�); X = �(p; �))

which is of the form (6). Therefore (f; g; h) as given above is a solution of the
Pexider equation by means of the equation Eq1(%), i.e., the Cauchy equation.

Let us return to the general case i.e., to the equation Eq(x) for which is sup-
posed that (6) is true, i.e.:

(9) (8x 2 A)(Eq(x), (9p 2 P )(9% 2 B)(Eq1(%); x = �(p; %)))

The )-part of (9) is equivalent to

(8x 2 A)(9p 2 P )(Eq(x)) (9% 2 B)(Eq1(%); x = �(p; %)))

Using the axiom of choice we can de�ne a mapping  : A! P such that

(�5) (8x 2 A)(Eq(x)) (9% 2 B)(Eq1(%); x = �( (x); %)))

A new function f : A �B ! A is de�ned by: f(x; %) = �( (x); %). Then (�5)
transforms into:

(�6) (8x 2 A)(Eq(x)) (9% 2 B)(Eq1(%); x = f(x; %)))

On the other hand, concerning(-part of (9) we have the following implication
chain

(8x 2 A)((9p 2 P )(9% 2 B)(Eq1(%); x = �(p; %))) Eq(x))

) (8x 2 A)(8p 2 P )((9% 2 B)(Eq1(%); x = �(p; %))) Eq(x))

The variable p is not free in Eq(x) (using a logical law for the quanti�er (9p 2 P )).

) (8x 2 A)((9% 2 B)(Eq1(%); x = �( (x); %)) ) Eq(x)):

\Replacing p by  (x)" (using a logical law for the quanti�er (8p 2 P )).
Thus we have the following implication

(8x 2 A)((9% 2 B)(Eq1(%); x = f(x; %))) Eq(x)):

Combining this implication and (�6) we obtain the following equivalence

(8x 2 A)(Eq(x), (9p 2 P )(9% 2 B)(Eq1(%); x = f(p; %)))
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which states that the formula:

x = f(p; %), p 2 A, % 2 B fwhile % is a solution of Eq1(%)g

gives all the solutions of Eq(x) by means of the solutions of the equation Eq1(%).
Furthermore, since (�6) is true, we can say that this formula is reproductive.

Now we concentrate on the formula

(10) (9% 2 B)(Eq1(%); x = f(x; %))

the right-hand part of the implication (�6), which is understood as an equation in
x 2 A. In the sequel, whenever we give an x-solution, for instance x0, we shall also
specify a value %0, as a corresponding `witness' for the quanti�er (9% 2 B). That
means that the pair < x0; %0 > shall satisfy the conditions Eq1(%0); x0 = f(x0; %0).
Now we de�ne when formula (10) is reproductive:

Definition 5. The formula (9% 2 B)(Eq1(%); x = f(x; %)) is reproductive i�
the following condition

(8x 2 A)(8% 2 B)(Eq1(%)) f(x; %) = f(f(x; %); %)))

holds.

The reason for this de�nition is that like Lemma 1 we have the following fact:

Lemma 2. If the formula (10) is reproductive, then all of its solutions by means
of the equation Eq1(%) are given by the following formula

(11) x = f(p; %)

p 2 A, % 2 B are any elements provided Eq1(%)

Indeed, if p0 2 A, and %0 2 B with property Eq1(%0) are any elements, then x
de�ned by x = f(p0; %0) satis�es the formula (9% 2 B)(Eq1(%); x = f(x; %)), since
we can take %0 as a witness for quanti�er (9% 2 B) and the equality x = f(x; %)
reduces to the true equality f(x0; %0) = f(f(x0; %0); %0). Conversely, if x1 is a
solution of (9% 2 B)(Eq1(%); x = f(x; %)), then a certain %1 is a witness for (9% 2
B), consequently the equality x1 = f(x1; %1) holds. This equality is an instance of
(11) when p = x1; % = %1.

It is important that we have a theorem similar to Theorem 1:

Theorem 2. Let Eq(x) be an equation in x 2 A whish is solvable by means
of 3 Eq1(%), and which has at least one Eq1(%)-solution. Then there is a formula

(9% 2 B)(Eq1(%); x = f(x; %))) (f : A�B ! A is some function)

3i.e., the equivalence of type (6) is valid
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which is equivalent to Eq(x) and reproductive in the sense of De�nition 5.

Proof. Denote by S the set of all the Eq1(%)-solutions of Eq(x). We de�ne the
function f as follows:
If x 2 S, then for all % 2 B such that Eq1(%), we de�ne f(x; %) = x; for other %0s
f(x; %) is arbitrary. If x 62 S, then for all % 2 B such that Eq1(%), we de�ne f(x; %)
as some x0 2 S; for the remaining %0s f(x; %) is arbitrary.

First, we prove the equivalence:

Eq(x), (9% 2 B)(Eq1(%); x = f(x; %))

The )-part. Let Eq(x0), i.e. x0 2 S and %0 some element in B such that
Eq1(%0). Further, by the de�nition of f , the value of f(x0; %0) is x0. So: Eq1(%0); x0
= f(x0; %0), which yields (9% 2 B)(Eq1(%); x0 = f(x0; %)).

The (-part. Let for some %0 and x0 be Eq1(%0); x0 = f(x0; %0). According to
the de�nition of f we conclude that x0 2 S, i.e. Eq(x0).

Second, we prove that f satis�es

(�7) f(f(x; %); %) = f(x; %) whenever Eq1(%)

for all x 2 A; % 2 B. Indeed, let Eq1(%). Then:

1Æ If x 2 S, then f(x; %) = x and (�7) follows.
2Æ If x 62 S, then f(x; %) = x0, where x0 2 S so:

(i) f(f(x; %); %) = f(x0; %) = x0 (since x0 2 S); (ii) f(x; %) = x0

From (i) and (ii) (�7) follows.

Now, we can use De�nition 5 and Theorem 2 to guide us in solving a given
equation Eq(x) by means of another given equation Eq1(%). Brie
y, we follow the
following plan. We attempt to �nd a formula For with these properties:

For is a logical consequence of Eq(x)
For is equivalent to Eq(x)
For is reproductive in the sense of De�nition 5.

However, comparing this idea with the idea from Example 5 used in solving
Pexider equation, it might seem that it is rather arti�cial. Returning to Pexider
equation we disprove this view.

The main step was the conclusion (�3), stated as the implication (�4). But
was it necessary to introduce constants C1, C2, which are just denotations for g(0),
h(0) respectively? We might say that this introduction was merely for psychological
reasons|therefore unnecessary. Without C1, C2 formula (�4) would read:

(8x; y 2 R)f(x+ y) = g(x) + h(y)

) (9�)(8x; y 2 R)[�(x + y) = �(x) + �(y); f(x) = �(x) + g(0) + h(0)

g(x) = �(x) + g(0); h(x) = �(x) + h(0)]

Denote this implication by P ) Q temporarily. The converse of this im-
plication is also true and moreover the part Q is easily seen to be reproductive.
Therefore, all the solutions (f; g; h) are given by:

f(x) = �(x) +G(0) +H(0); g(x) = �(x) +G(0); h(x) = �(x) +H(0)
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where � is any solution of the Cauchy functional equation and G, H arbitrary
functions. Therefore, whether we prefer C1, C2 to G(0), H(0) is just a matter of
taste.

I wish to express my thanks to S. Rudeanu who read this paper and made
many helpful suggestions.
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