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TOPOLOGICAL ORDER COMPLEXES AND

RESOLUTIONS OF DISCRIMINANT SETS

V. A. VASSILIEV

Abstract. If elements of a partially ordered set run over a topological space,
then the corresponding order complex admits a natural topology, providing
that similar interior points of simplices with close vertices are close to one an-
other. Such topological order complexes appear naturally in the conical resolu-
tions of many singular algebraic varieties, especially of discriminant varieties,
i.e. the spaces of singular geometric objects. These resolutions generalize the
simplicial resolutions to the case of non-normal varieties. Using these order
complexes we study the cohomology rings of many spaces of nonsingular ge-
ometrical objects, including the spaces of nondegenerate linear operators in
R

n; Cn or Hn, of homogeneous functions R2
! R1 without roots of high

multiplicity in RP
1, of nonsingular hypersurfaces of a �xed degree in CP

n,
and of Hermitian matrices with simple spectra.

1. Introduction

We describe a method of computing the homology groups of many algebraic
varieties, especially of discriminant varieties, and hence, by the Alexander duality,
the cohomology groups of complements of such objects in Rn or Cn:

This method is based on the notion of a topological order complex, associated
with a partially ordered set, whose elements run over some topological space. If
this space is discrete, then we get a standard order complex and the method of
simplicial resolutions, see e.g. [18].

The �rst �ve examples of such complexes are listed in the following subsections
1.1{1.5.
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1.1. Order complex of Grassmannians. Let K be one of �elds R;C or H;
and Gi(K

n) the Grassmannian manifold of all i-dimensional subspaces in Kn: The
disjoint union of all manifolds Gi(K

n), i = 1; : : : ; n; is a poset (partially ordered
set) by incidence of planes. The corresponding topological order complex �(Kn) is
de�ned as follows. Consider the join G1(K

n) � : : : �Gn(K
n); i.e., roughly speaking,

the union of all simplices, whose vertices correspond to points of di�erent Grass-
mannians. Such a simplex is coherent if the planes corresponding to all its vertices
form a 
ag. The desired complex �(Kn) is the union of all coherent simplices. This
is a cone with vertex fKng 2 Gn(K

n): Let us denote by @�(Kn) its link, i.e. the
union of coherent simplices not containing this vertex fKng.

Theorem 1 (see [43], [40], [32]). There is a PL-homeomorphism

@�(Kn) ' SM ; M = (dimRK)n(n� 1)=2 + n� 2:(1.1)

Remark. Probably, this assertion is assumed in Remark 1.4 of [13]. I thank
M. M. Kapranov for this reference.

These spaces �(Kn) have a rich geometrical structure: �ltrations, strati�ca-
tions, etc. Their topological features are closely related to the topology of the
corresponding linear groups GL(n;K), see x 4.1.

1.2. Order complex of con�gurations in S1. Let B(S1; i) be the con�guration
space of unordered collections of i points of the circle S1 (some of which can co-
incide).1 It can be considered as the quotient space of the Cartesian power (S1)i

by the obvious action of the permutation group S(i) and admits the corresponding

quotient topology. The space ti�1B(S1; i) is a poset by inclusion of con�gurations.

It is convenient to consider B(S1; i) as the space of all ideals of codimension i in
the space of smooth functions S1 ! R1, then this order relation coincides with
the incidence of corresponding ideals. Denote by ~�m(S

1) the union of all coherent

simplices in the join B(S1; 1) � : : : �B(S1;m).

Theorem 2. The space ~�m(S
1) is homotopy equivalent to S2m�1:

The essential part of the proof is a theorem of C. Caratheodory (see x 4.2 below),
claiming that the union of all m-vertex simplices spanning m-tuples of points of a
generically embedded circle S1 ,! R2m is homeomorphic to S2m�1.

The geometrical features of the space ~�m(S
1) are closely related to the topology

of spaces of homogeneous polynomials R2 ! R1 of degree d without roots of
multiplicity � k in RP1, where m = [d=k].

1.3. Order complex of multigrassmannians. Let A = (a1 � : : : � ak) be a
monotone sequence of natural numbers, ak � 2, and n �

P
ai. Denote by �A(n)

the space of all unordered collections of k pairwise Hermitian-orthogonal complex
subspaces of dimensions a1; : : : ; ak in Cn. If all numbers ai are di�erent, then it
coincides with the 
ag manifold F (a1; a1+a2; : : : ; a1+ � � �+ak); otherwise it is the

1The more standard notation for this space is SP i(S1). We use a di�erent notation, because

in our applications for any manifold M some such spaces B(M; i) should be considered, which
only occasionally coincide with SP i(M) if M is one-dimensional
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quotient space of such a manifold by the action of the corresponding permutation
group. In any case, this is a smooth compact complex manifold. The disjoint union
of all such manifolds with a given n is a topological poset: a point 
 2 �A(n) is
subordinate to 
0 2 �0A0(n) if any of k planes de�ning 
 lies in some of k0 planes
de�ning 
0. The corresponding topological order complex is a cone with the vertex
fCng 2 �(n)(n).

Theorem 3 (see [52]). The reduced rational homology group of the link of this
order complex is trivial in all dimensions of the same parities as n. For instance, for
n = 2; 3; 4 and 5 the Poincar�e polynomials of these groups are equal to t, t2(1+ t2),
t3(1+ t4)(1+ t2+ t4) and t4(1+ t2+ t4+ t6)(1+ t2+ t4+ t6+ t8+ t10) respectively.

In [52] a recursive method of calculating all these homology groups is proposed,
however any compact formula for their dimensions is unknown for me.

The geometrical features of this complex are closely related to the topology of
the space of Hermitian matrices without multiple eigenvalues in Cn, see x 5.2 below
and [52].

1.4. Order complex of multicon�gurations. Consider a multiindex A = (a1 �
: : : � ak), where all numbers ai are natural and greater than 1. Given a topological
space M (say, M = S1), a multicon�guration of type A in M is any collection of
a1 + � � � + ak distinct points in M divided into groups of cardinalities a1; : : : ; ak:
Denote by V (M;A) the set of all A-con�gurations inM . It is convenient to consider
any such con�guration as a subspace (even a subring) in the space of continuous
(or smooth if M is a manifold) functions M ! R1: namely, as the space of all
functions taking equal values at the points of any group. The codimension of this

subspace is equal to
Pk

i=1(ai � 1), therefore this number is called the complexity

of the multiindex A and of any multicon�guration of type A. Let V (M;A) be the
closure of V (M;A) in the corresponding Grassmannian topology.

Example. Suppose that M = S1, k = 1 and a1 = 2. Then the space V (M;A)

is the con�guration space B(S1; 2), i.e. an open M�obius band, and V (M;A) is the

space B(S1; 2), i.e. a closed M�obius band. However, the "function-theoretical"
interpretation of these spaces di�ers from the one given in x 1.2. E.g., we consider
the exceptional point (a; a) not as the ideal generated by the function (x� a)2 but
as the space of functions S1 ! R1 such that f 0(a) = 0.

For any natural d, the disjoint union of spaces V (M;A) over all admissible
multiindices A of complexity � d is a poset by a natural subordination of mul-
ticon�gurations (this subordination can be interpreted as the inverse inclusion of
corresponding functional subspaces).

The topological and geometrical study of corresponding topological order com-
plexes 
(S1; d) is known as the theory of �nite-order knot invariants (and other
cohomology classes of spaces of knots in Rn, n � 3). Namely, the homology group
of the quotient space 
(S1; d)=
(S1; d � 1) is the �rst2 step of the calculation of

2and, accordingly to M. Kontsevich, in the case of rational coeÆcients also the last
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all such invariants and classes of order d modulo similar classes of order d� 1, see
x 5.1.

The knot theory is the simplest example of a theory of second order. Indeed, a
smooth map f : S1 ! Rn is not a knot if it satis�es some condition at some � 2
points of S1, namely the condition f(a) = f(b) or f 0(a) = 0.

In a similar way, we can consider theories of order 3, e.g. the classi�cation
of curves without triple (self)intersections. The corresponding order complex is
de�ned in exactly the same way, but the elements ai of an admissible multiindex
A should be greater than or equal to 3.

1.5. Order complex of singular sets of projective algebraic hypersurfaces.
For any natural d and n denote by P (d; n) the space of homogeneous polynomials
Cn+1 ! C1 of degree d, and consider all possible singular sets of hypersurfaces
in CPn de�ned by such polynomials. Any such set � de�nes a linear subspace in
P (d; n), consisting of polynomials, whose singular set contains �. Let us denote
by I(d; n; i) the set of all linear subspaces of codimension i de�ned in this way,

and by I(d; n; i) its closure in the Grassmannian manifold of all subspaces of this
codimension.

The disjoint union of all sets I(d; n; i) with arbitrary values of i is a poset; this
is a subposet of the one considered in x 1.1 with Cn replaced by P (d; n). The
corresponding order complex �(d; n) is a cone with the vertex fzero polynomialg.
It plays an important role in the calculation of cohomology groups of spaces of
nonsingular algebraic hypersurfaces in CPn, see x 4.3 below.

If d = 2, then it coincides with the complex �(Cn+1) considered in x 1.1, and

if n = 1 then with the obvious "complexi�cation" ~�[d=2](CP
1) of the complex

~�[d=2](RP
1) considered in x 1.2.

Theorem 4 (see [49]). For (d; n) = (3; 2) or (3; 3) the rational homology group
of the link @�(d; n) of our order complex �(d; n) is trivial in all positive dimensions.
The Poincar�e polynomial of the rational homology group of the link @�(4; 2); reduced
modulo a point, is equal to t14(1 + t3)(1 + t5).

Problem. Is the �rst assertion of this theorem true for any pair (d; n) with
d = 3?

The explicit calculations in these complexes provide a plenty of nice and natural
problems on con�guration spaces and their homology groups.

Example. Let be n = 2; d = 4. There are exactly the following singular sets of
curves of order 4 in CP2 (in angular parentheses we indicate the dimension of the
linear space of all polynomials of degree 4 having singular points at some set of the
corresponding type):

1. Any point in CP1 h12i
2. Any couple of points in CP2 h9i
3. Any triple of points on the same line h7i
4. Any triple of points not on the same line h6i
5. Any line CP1 � CP2 h6i
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6. Any three points on the same line plus one point not on this line h4i
7. Any generic quadruple of points (i.e. none three of them lie on the same line;

the corresponding polynomials are products of two quadrics) h3i
8. Any line CP1 � CP2 plus a point outside it h3i
9. Any �ve points, four of which are in general position, and the �fth is the

intersection point of some two lines passing through two non-intersecting pairs
from this quadruple (the corresponding polynomials split into products of two
linear functions and one quadric, however this quadric isn't de�ned uniquely
by our points) h2i

10. Six points, which are intersection points of some four lines in general position
h1i

11. Any non-singular quadric in CP2 h1i
12. Any pair of lines h1i
13. Entire space CP2, de�ned by the zero polynomial h0i

In some sense, all the nonzero homology groups of @�(4; 2), mentioned in the
last statement of Theorem 4, are provided by the stratum No. 10.

Let me formulate also a funny fact, which is essential for these calculations. Let
B(CPn;m) be the con�guration space of all unordered collections of m distinct
points in CPn. Let �C be the sign local system on it, i.e. the local system with
�ber C such that the loops in B(CPn;m); providing odd permutations ofm points,
act as multiplication by �1 in the �bre. Then the cohomology group of B(CPn;m)
with coeÆcients in this local system coincides with the usual cohomology group of
the Grassmannian manifold Gm(C

n+1):

H i(B(CPn;m);�C) ' H i+m�m2

(Gm(CP
n+1);C):

In particular, this group is trivial in all dimensions if m > n+ 1.

For some other important examples and results on topological order complexes
see [55] and bibliography there.

1.6. Discriminants and their complements. The general notion of a discrim-
inant is as follows. Consider any function space F , �nitedimensional or not, and
some class of singularities S which the functions from F can take at the points
of the source manifold. The corresponding discriminant variety �(S) � F is the
space of all functions that have such singular points. For example, let F be the
space of (real or complex) polynomials of the form

xd + a1x
d�1 + � � �+ ad;(1.2)

and S = fa multiple rootg. Then (in the complex case) �(S) is the zero level
set of the usual discriminant polynomial depending on the coeÆcients ai; this is a
motivation for the word \discriminant" in the general situation.

Many important topological spaces can be described as the complements of suit-
ably de�ned discriminants. For instance, so are: spaces of polynomials without
roots of multiplicity � k (k � 2); spaces of nondegenerate endomorphisms of Rn;
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Cn or Hn (homotopy equivalent to classical Lie groups O(n); U(n) and Sp(n) re-
spectively); spaces of Morse or generalized Morse functions on a manifold M or,
more generally, spaces of smooth mapsM ! Rn without complicated singularities;
loop spaces 
Y and, more generally, spaces of maps X ! Y where X is an m-
dimensional cell complex and Y an (m�1)-connected one; spaces of based rational
maps CP 1 ! CPn of �xed degree; spaces of nonsingular algebraic hypersurfaces
of a given degree in RPn or CPn; spaces of knots and links in n-dimensional man-
ifolds, n � 3; spaces of generic plane curves; spaces of symmetric, Hermitian or
hyper-Hermitian matrices in Rn; Cn or Hn; and many others, see e.g. [40], [39].

The regular topological study of such spaces was started by V. I. Arnold in [3]:
he considered the space of complex polynomials without multiple roots in C1, i.e.
the classifying space of the braid group. A seminal idea was proposed in this work:
instead of studying the spaces of non-singular objects (which usually are open man-
ifolds without any transparent geometrical structure) it is convenient to consider
the complementary discriminant spaces, which have natural strati�cations (corre-
sponding to the classi�cation of singular points), and try to express the topological
features of the latter spaces in terms of these strati�cation.

In 1985, solving the Arnold's problem on the stable cohomology ring of com-
plements of bifurcation diagrams, I found that such homology groups should be
calculated by a generalization of simplicial resolutions of discriminants, see [41].
Numerous subsequent exercises (see e.g. [40], [39], [42], [45], [47], [50]) usually gave
the strongest results on the homology groups in the particular problems, in which
the considered discriminant varieties are normal (or at least their singular sets "of
in�nite multiplicity" are nonessential for the topological type). This method is
brie
y described in the next sections 2, 3.

However, there are many important situations, when this assumption fails; some
of them are listed in the Abstract and are mentioned in the conclusions of subsec-
tions 1.1{1.5.

In sections 4 and 5.2 below we describe conical resolutions of discriminant spaces,
which generalize the simplicial resolutions and are based on the topological order
complexes like the ones considered in the previous subsections.

2. Order complexes of discrete posets and simplicial resolutions of

subspace arrangements

In this section we consider a model application of simplicial resolutions: to the
theory of plane arrangements, cf. [19], [21], [54], [44]. There are two di�erent
constructions of simplicial resolutions in this theory, see [54], [44]; I will follow here
the one from [54].

Definition. Let (A;�) be a discrete partially ordered set. The corresponding
order complex �(A) (see e.g. [14]) is the simplicial complex, whose vertices are
the elements of A; and simplices span all strictly monotone �nite sequences fa1 <
: : : < amg; ai 2 A:

Consider any aÆne plane arrangement L, i.e. a �nite collection of aÆne sub-
spaces L1; : : : ; Lk of arbitrary dimensions in RN : Set L = [Li; and, for any set of
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Figure 1. Resolution of a cross

indices I � f1; : : : ; kg, LI � \i2ILi: Then all possible nonempty planes LI form
a partially ordered set (by inverse inclusion). Denote by �(L) the corresponding
order complex. The simplicial resolution of the variety L can be constructed as a
subset of the Cartesian product �(L) � RN : Namely, for any plane of the form
LI we de�ne the corresponding order subcomplex �(LI) � �(L) as the union of
simplices, all whose vertices are subordinate to fLIg, i.e. correspond to planes LJ
containing LI : This is a cone with vertex fLIg. Let us denote by @�(LI) its link,
i.e. the union of all simplices in �(LI) not containing the vertex fLIg.

The resolution space L0 � �(L) � RN is de�ned as the union of all spaces
of the form �(LI) � LI over all geometrically di�erent planes LI . The obvious
projection �(L) � RN ! RN induces a map L0 ! L. This map is proper and
all its �bers are contractible complexes of the form �(LI). It follows easily that
this map is a homotopy equivalence, and moreover, its extension to the map of
one-point compacti�cations, �L0 ! �L; also is a homotopy equivalence.

Example. Let L be the union of two crossing lines a and b in R2; see the middle
part of Fig. 1. The corresponding order complex �(L) consists of two segments
(see the right-hand part of Fig. 1) joining the vertices (a) and (b) (corresponding
to these lines) to the vertex (ab) (corresponding to the intersection point). The
resolution space L0 consists of three complexes: the line (a) � a, the line (b) � b;
and the complex �(L)� (a \ b); see the left part of the picture.

In the general case, this resolution space L0 has a natural increasing �ltration
F1 � F2 � � � � � FN�1 = L0: its term Fm is the union of all spaces �(LI)�LI over
all planes LI of codimension � m in RN : The di�erence Fm n Fm�1 is the disjoint
union of spaces (�(LI) n @�(LI)) � LI over all planes LI of dimension exactly
N � m. Also we get a �ltration �F0 � �F1 � � � � � �FN�1 = �L0 of the one-point
compacti�cation �L0 of the space L0: its term �F0 is the added pont, and any space
�Fi; i > 0; is the closure of the corresponding subspace Fi � L0.
The results of [54] imply in particular that this �ltration homotopically splits:

there is homotopy equivalence

�L0 � �F1 _ ( �F2= �F1) _ : : : _ ( �FN�1= �FN�2):(2.1)

(An equivalent result was obtained in [44].)
This formula implies the Goresky{MacPherson formula for the cohomology of the

complementary space RN nL (see [21]), and also the fact that the stable homotopy
type of this space is determined by the dimensions of all planes LI .
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3. Resolutions of swallowtails

The previous discrete construction has many continuous generalizations. Na-
mely, we can consider the unions of in�nitely many planes parametrized by some
topological spaces. Such an union can be resolved in almost the same way as before,
provided that only a �nite number of planes can meet at the same point: the only
additional diÆculty here appears when collections of intersecting planes tend to
degenerated mutual dispositions, where the dimensions of their intersection sets
jump. Here is a simplest example.

Consider the space Pd of real polynomials of the form (1.2) and consider the
subspace �k � Pd of polynomials having at least one root of multiplicity � k. In
the simplest topologically non-trivial case, when d = 4 and k = 2, the discriminant
�k is ambient di�eomorphic to the direct product of the lineR

1 and the swallowtail,
i.e. the variety shown in the lower part of Fig. 2.

Remark. The factor R1 here is the group of translations in the argument
line. This group acts freely on the discriminant. All forthcoming constructions are
invariant under this action, and we shall indicate them in our three-dimensional
picture, keeping in mind that everything should be multiplied by R1.

The points of cuspidal edges in this picture correspond to the functions with a
root of multiplicity 3, the very singular point corresponds to the function x4; and
the self-intersection points to functions with two di�erent roots of multiplicity 2.

The homology groups of the one-point compacti�cation ��k of the space �k for
arbitrary d and k were calculated in [6], we give here another calculation demon-
strating our general method. Namely, we construct simplicial resolutions of �k; for
the case d = 4; k = 2 they are shown in the upper part of Fig. 2.

The main remark here is as follows: the space �k is swept out by a one-
parametric family of (d � k)-dimensional aÆne planes: the parameter runs over
R1, and the plane corresponding to the point x 2 R1 consists of all polynomials
having a k-root at exactly this point x. The �rst step of our construction is the
tautological normalization of the discriminant, obtained from its de�nition by the
"elimination of quanti�ers". Indeed, the discriminant �k is de�ned as the space of
all polynomials f such that 9 a point x 2 R1 such that f has a k-fold root at x.
Instead, we can consider the space of all pairs (f; x) such that f has a k-root at
x. The space of all such pairs is topologically trivial: it is a �ber bundle over R1;
whose �bers are (d� k)-dimensional aÆne planes.

Unfortunately, such planes Rd�k, corresponding to di�erent points x, have
nonempty intersections in Pd; in order to count them and to get a space homotopy
equivalent to �k we should add something to the previous tautological resolution.
The best tool for this are the order complexes of all subsets in R1 which can be
de�ned as sets of k-fold points of certain polynomials of the form (1.2).

3.1. The naive simplicial resolution. The naive "geometrical" construction of
this resolution is as follows (see the upper right part of Fig. 2). We �x a generic
embedding I : R1 ! RN of the argument line into the space of a large dimension.
The genericity condition here claims that for any [d=k] distinct points of the line
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Figure 2. A swallowtail and its resolutions

their images cannot lie in the same ([d=k] � 2)-dimensional aÆne subspace. Our
resolution is a subset of the direct product of this space RN and the space Pd of all
polynomials of the form (1.2). Namely, for any discriminant polynomial f we take
all its roots of multiplicity � k, z1; : : : ; zt, and consider the simplex in RN � Pd,
whose vertices are the points (I(z1); f); : : : ; (I(zt); f). The desired resolution space
�k is the union of all such simplices. The obvious projection RN �Pd ! Pd de�nes
a proper map of �k onto �k; the extension of this map to a map of one-point
compacti�cations of these spaces, � : ��k ! ��k, is a homotopy equivalence.

On the other hand, the space �k (and hence also its one-point compacti�ca-
tion ��k) has a natural increasing �ltration: the term Fp of this �ltration consists
of all simplices of dimensions � p � 1 participating in the previous construction;
F0 = fthe added pointg. The �rst element F1 of this �ltration in �k coincides with
the above-described tautological normalization. The term E1

p;q of the corresponding
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homological spectral sequence is equal to �Hp+q(Fp n Fp�1), where �H� denotes the
Borel{Moore homology group, i.e. the homology group of the one-point compacti�-
cation reduced modulo the added point. This space Fp(��k)nFp�1(��k) has a natural
structure of a �bre bundle, whose base is the con�guration space B(R1; p) of all
subsets of cardinality p in the line, and the �bre over such a collection (z1; : : : ; zp)
is the direct product of an open (p� 1)-dimensional simplex and an aÆne space of
dimension d � p � k, consisting of all polynomials of the form (1.2), having k-fold
roots at exactly these p points. Hence the space of this bundle is a cell, and E1

p;q

is equal to Z if q = d � p(k � 1) and p � d=k, and is trivial for all other p and q.
Obviously, this sequence degenerates at the term E1 and gives us immediately the
structure of groups H�(��k) � H�(��k) and H�(Pd n�k).

The inserted simplices, participating in this construction (i.e. spanning the
points I(z1); : : : ; I(zt)), can be considered as supports of certain order complexes
similar to subcomplexes �(LI) from x 2. Namely, for any t-element subset of R1 let
us consider the poset of all its nonempty subsets. The corresponding order complex
is naturally isomorphic to the �rst barycentric subdivision of a (t� 1)-dimensional
simplex. For instance, any inserted segment in the upper right part of Fig. 2
should be considered as the union of two segments, joining its boundary points
(corresponding to some two points a; b 2 R1) to the middle point (corresponding
to the two-element subset (a; b) � R1).

3.2. The formal simplicial resolution. Now we describe a more formal con-
struction of the same resolution, not depending on any embedding R1 ! RN . First
we construct a slightly di�erent (but homotopy equivalent) resolution space as a

subset of the space
�
B(R1; 1) �B(R1; 2) � : : : �B(R1; [d=k])

�
�Pd; where B(R1; i)

is the space of unordered collections of i points in R1 (some of which can coincide).
It is convenient to consider this space as that of all ideals of codimension i in the
ring of smooth functions R1 ! R1.

The natural topology in the space of such ideals it the "Hilbert-scheme topol-
ogy". (In multidimensional generalizations, when we resolve discriminants in spaces
of functions on manifolds M of higher dimensions, we should consider the con�gu-
ration space B(M; i) as a subset of the in�nitedimensional Grassmannian manifold

of all subspaces of codimension i in C1(M; i) and de�ne B(M; i) as its closure in
this manifold.)

The disjoint union of these spaces B(R1; 1); : : : ; B(R1; [d=k]) is a partially or-
dered set (by inclusion of con�gurations, or, which is the same, by the inverse

inclusion of corresponding ideals). Consider their join B(R1; 1)� : : :�B(R1; [d=k]),

set m = [d=k], and de�ne the topological order complex ~�m(R
1) as the union

of all coherent simplices in this join. The desired resolution space is a subset of
the product ~�m(R

1) � Pd: Namely, for any polynomial f 2 �k with exactly i
roots of multiplicity � k we consider the set s(f) of all its (� k)-fold roots as a

point in B(R1; i) and take the subcomplex ~�(f) � ~�m(R
1), consisting of coher-

ent simplices, all whose vertices are subsets of s(f). Finally, the resolution space

~�k � ~�m(R
1)�Pd is the closure of the union of all simplices of the form ~�(f)�ffg.
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Again, all �bers of the obvious projection ~� : ~�k ! �k are compact cones, and
this projection de�nes a homotopy equivalence of one-point compacti�cations of
these spaces.

However, topologically this resolution ~� does not coincide with the resolution
constructed in x 3.1. In the case d = 4; k = 2 it is shown in the upper left part
of Fig. 2. The half-line in the right-hand part of this left part symbolizes the
con�guration space B(R1; 2) (which is in fact di�eomorphic to the direct product
of such a half-line and R1, see Remark in the beginning of this section). This
con�guration space is a manifold with boundary: its boundary points correspond
to con�gurations of two equal points. In the construction of the corresponding
order complex ~�2, any non-boundary point (a; b) of this con�guration space is
joined by segments with two points (a) and (b) of the space B(R1; 1) � R1 (so
that the union of these two segments can be considered as a segment joining the
points (a) and (b)), and the boundary point (a; a) is joined by a single segment
with the point (a) 2 B(R1; 1): Any such segment (for any a 2 R1) is a contractible
space. Contracting any such segment into a single point, we get a space homotopy
equivalent to the previous one (and homeomorphic to the one indicated in the upper
right part of Fig. 2).

For general d and k this factorization is de�ned as follows. For any point � 2
B(R1; i) we de�ne its geometrization �0 as the point of some B(R1; n); n � i;
obtained from the con�guration � by taking all its points without multiplicities.
Given a point � 2 B(R1; n); we say that a coherent simplex in ~�m(R

1) is a ghost
simplex of � if the geometrizations of all its vertices coincide with �. De�ne the
ghost subspace �(�) � ~�m(R

1) as the union of all ghost simplices of �. This is a
compact cone with the vertex f�g. Then we obtain the quotient space �m(R

1) of
~�m(R

1); contracting any ghost simplex to one point and extending this contraction
by linearity to all coherent simplices containing such ghost simplices as their faces.

Remark. The obtained quotient space is in obvious set-theoretical bijection
with the subset of ~�m(R

1) consisting of coherent simplices, all whose vertices are

geometrical, i.e. belong to subspaces B(R1; n) � B(R1; n). However as topological
spaces they are di�erent.

The canonical projection ~�m(R
1) ! �m(R

1) is a proper strati�ed map of
semialgebraic sets, whose restriction on the pre-image of any stratum of �m(R

1)

in ~�m(R
1) is a �bre bundle with compact contractible �bres. In particular, it

de�nes a homotopy equivalence of one-point compacti�cations of these spaces.
Further, this factorization map ~�m(R

1)! �m(R
1) de�nes in the obvious way

the map ~�m(R
1) � Pd ! �m(R

1)� Pd: Its restriction to the space ~�k maps this
space onto a certain subspace �0k � �m(R

1) � Pd. This map also is proper and
strati�ed with contractible �bers.

Proposition 1. This map � : ~�k ! �0k factorizes the resolution map ~� : ~�k !
�k, i.e. there exists a proper map �0 : �0k ! �k such that ~� � � Æ � (namely,
� is the restriction of the projection �m(R

1) � Pd ! Pd). The extensions of all
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Figure 3. Resolution of a cone

these maps to one-point compacti�cations de�ne the homotopy equivalences of all
three spaces ~�k; �0k and �k: The resolution space �0k thus constructed is naturally
homeomorphic to the space �k constructed in x 3.1. 2

4. Resolutions of non-normal discriminants

In this and the next sections we discuss the following generalizations of the above
constructions.

First, we consider non-normal discriminant varieties, whose tautological resolu-
tions have non-discrete �bers.

Next, we consider theories of degrees � 2. The discriminant spaces, considered
in xx 3, 4, are de�ned in the terms of monosingularities, i.e. the restrictions are
formulated in the terms of the behavior of the function or map at some single
point of the source manifold. A theory of degree 2 appears when the simultaneous
behavior at two di�erent points should be taken into account. The simplest such
theory is that of knots and links, where the essential singularities are the self-
intersection points, i.e. the conditions of the form f(x) = f(y):

A problem, including diÆculties of both these kinds, is provided by the theory
of Hermitian matrices with (non)simple spectra.

An example of 3-d order theory appears if we study the plane curves with(out)
triple intersections, see 5.3.

4.1. Resolutions of determinants. Let K be any of �elds R;C or H: Consider
the determinant variety Det(Kn) of all degenerate operators Kn ! Kn:

Its tautological resolution is again de�ned by elimination of quanti�ers. Namely,
by de�nition an operatorA 2 End(Kn) belongs toDet(Kn) if 9 a point x 2 KPn�1

such that fxg 2 kerA. De�ne the resolution space det1(K
n) as the space of all

pairs (x;A) 2 KPn�1 � End(Kn) such that fxg 2 kerA. This is a very simple
space: tautologically, it admits the structure of a (n2 � n)-dimensional K-vector
bundle over KPn�1. There is obvious projection det1(K

n)! Det(Kn), which is a
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homeomorphism in a neighborhood of operators having 1-dimensional kernels, but
its pre-image over an operator with dimker = l is equal to KPl�1.

Say, let K = R; n = 2. The space End(R2) of all operators R2 ! R2 is 4-
dimensional, and Det(R2) is a 3-dimensional conical subvariety in it, see Fig. 3.
There is a single point in Det(R2), over which the tautological resolution is not a
homeomorphism: namely, the zero operator. Its preimage is the line RP1: In order
to get a space homotopy equivalent to Det(R2) we need to insert a disc, whose
boundary coincides with this preimage, see Fig. 3. It is useful to consider this disk
as the space �(R2), see x 1.1.

For other K and n the conical resolution of Det(Kn) is constructed as a subset
of the direct product �(Kn)�Det(Kn): To any plane L � Kn there corresponds
a subspace �(L) � �(Kn); namely, the union of all coherent simplices, all whose
vertices correspond to planes lying in L. This is a cone with vertex fLg. Also
de�ne �(L) � End(Kn) as the linear space of all operators Kn ! Kn; whose
kernels contain L; and de�ne the conical resolution Æ(Kn) � �(Kn)�Det(Kn) as
the union of all products �(L)� �(L) over all planes L of all dimensions 1, : : : , n.
It is easy to see that the obvious projection Æ(Kn)! Det(Kn) induces a homotopy
equivalence of one-point compacti�cations of these spaces (indeed, this projection
is proper and all its �bers are contractible cones of the form �(L)). On the other
hand, the space Æ(Kn) has a nice �ltration: its term Fi is the union of products
�(L)� �(L) over planes L of dimensions � i. The term Fi n Fi�1 of this �ltration
is the space of a �ber bundle over Gi(K

n): Its �ber over a point fLg is the space
(�(L) n @�(L)) � �(L), which by Theorem 1 is homeomorphic to an Euclidean
space. Thus the Borel{Moore homology group of this term can be reduced to that
of the base. The spectral sequence, generated by this �ltration and converging
to the Borel{Moore homology of Det(Kn) (or, equivalently, to the cohomology of
the complementary space GL(Kn)), degenerates in the �rst term and gives us, in
particular, the homological Miller splitting

Hm(GL(C
n)) = �n

k=0Hm�k2(Gk(C
n))

and similar splittings for R and H; see [43], [40].

4.2. Homogeneous polynomials in R2 without multiple zeros. Another ex-
ample of a non-normal discriminant variety is as follows. Consider the space HPd
of all homogeneous polynomials R2 ! R1 of degree d, and de�ne the discriminant
subset �k � HPd as the set of polynomials vanishing with multiplicity � k on some
line in R2. Its resolution can be constructed similarly to x 3.2, but not to x 3.1.
This is due to the fact that the tautological resolution of �k (consisting of pairs
f(a 2 RP1; f 2 HPd)jf has a k-fold zero along the corresponding line fagg) has a
non-discrete preimage over the point fidentical zerog 2 �k.

The possible singular sets, which the discriminant polynomials can de�ne in
RP1, are any con�gurations of 1; 2; : : : ; [d=k] points and entire RP1. Thus we

need to construct the complex gH�[d=k](RP
1) as the topological order complex of

all these sets. By Theorem 2 (see x 1.2) the link of this complex (consisting of
all coherent simplices not containing the vertex fRP1g) is homotopy equivalent to
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S2[d=k]�1. Similarly to x 3.2 we can consider the geometrization H�[d=k] of this
complex, contracting all "ghost simplices". This geometrization has the following
interpretation (similar to the "naive" construction from x 3.1). Let us embed S1

generically into the space of a large dimension N � 2m, m � [d=k], and consider
the union of convex hulls of all m-tuples of points of this embedded circle. The
"genericity" condition implies that all these convex hulls are simplices, which can
intersect only on their common faces.

The original theorem of C. Caratheodory (applying to the particular embedding
t 7! (sin t; cos t; : : : ; sin(mt); cos(mt))) claims that this union is homeomorphic to
the sphere S2m�1. Theorem 2 follows immediately from this one and the fact that
the "geometrization" reduction of links of these order complexes is a homotopy
equivalence.

4.3. Spaces of nonsingular algebraic projective hypersurfaces. For any nat-
ural d and n, we study the cohomology group of the space �(d; n) of all non-singular
projective hypersurfaces in CPn of degree d. The real version of this problem, es-
pecially its part concerning the 0-dimensional cohomology, is the well-known rigid
isotopy classi�cation problem, see e.g. [22].

Our algorithm of calculating these homology groups (see [49]) in its essential part
repeats the one described in xx 3.2, 4.2. We consider the linear space of all homoge-
neous polynomials Cn+1 ! C of degree d. The subset in it, de�ning non-singular
varieties in CPn, is the complement of the conical discriminant hypersurface of
singular polynomials, hence it is homeomorphic to the Cartesian product of the
desired space �(d; n) of nonsingular hypersurfaces and the punctured line C�. The
Alexander duality reduces its cohomology groups to the Borel{Moore homology
groups of the discriminant cone. To calculate these groups, we consider the poset
of all possible subsets in CPn which can serve as singular sets of certain varieties
of degree d (see x 1.5), take its closure in the Hilbert-scheme topology, and con-
struct the conical resolution of the discriminant as a subset of the product of this
order complex and the space of polynomials. The natural �ltration in this space is
de�ned by the (co)dimensions of linear spaces of polynomials, having singularities
at a given subset in CPn. For instance, the last term FN n FN�1 of this �ltration
corresponds to the greatest possible singular set, i.e. to entire CPn; and coincides
with entire order complex less its link.

Here are some �rst results on the groupsH�(�(d; n)) obtained in this way. These
groups with d = 2 are well-known: the space �(2; n) is homotopy equivalent to the
(n + 1)-st Lagrangian Grassmannian U(n + 1)=O(n + 1), whose homology groups
were calculated in [12].

Theorem 5 (see [49]). The Poincar�e polynomial of the group H�(�(d; n);C)
with (d; n) = (3; 2) (respectively, (3; 3), respectively, (4; 2)) is equal to (1+t3)(1+t5)
(respectively, (1 + t3)(1 + t5)(1 + t7), respectively, (1 + t3)(1 + t5)(1 + t6)).

Two �rst assertions of this theorem lead to the following conjecture.

Conjecture. For any n � 2 the rational cohomology ring of the space �(3; n)
is isomorphic to that of the projective linear group PGL(n+ 1;C).
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A principal part of these calculations is the study of the order complex �(d; n),
in particular of topological properties of classes of singular sets, see x 1.5.

Remark. It turns out that all these classes corresponding to one-dimensional
singular sets cannot provide a nontrivial contribution to the group H�(�(4; 2);C).
Namely, such a nontrivial contribution is provided by strata No. 1, 2, 4, 10 and
13. The most mysterious of them3 is the stratum No. 10: it provides the six-
dimensional generator of the ring H�(�(4; 2);C).

Problem. To express this generator in the interior terms of the space �(4; 2)
(and not by means of the Alexander duality).

One other problem is as follows. In all the non-trivial cases I have calculated (i.e.
the ones described in Theorem 5 and in the next Theorem 6) the corresponding
spectral sequences degenerate at the �rst term: E1 � E1 (although in the trivial
case d = 2 it is not more so). Is it true also for greater d and n?

Theorem 6 (see [49]). The rational cohomology ring of the space of homo-
geneous quadratic vector �elds in C3, having no singularities outside the origin,
is isomorphic to that of homogeneous polynomials C3 ! C1 of degree 3 de�ning
a nonsingular curve in CP2; in particular, its Poincar�e polynomial is equal to
(1 + t)(1 + t3)(1 + t5). This isomorphism is induced by the gradient embedding,
sending any polynomial to the set of its partial derivatives.

5. Theories of second and third order

5.1. Knot theory and related combinatorial problems. It was said very
much on the �nite-order knot invariants, see e.g. [11], [10], [24].

Their original construction was essentially (up to minor modi�cations) the same
as in x 3.1. We consider the space of all smooth maps S1 ! R3, de�ne the dis-
criminant subspace as the set of all maps having either self-intersections or singular
points, de�ne its tautological resolution by the elimination of quanti�ers (i.e. as

the space of all pairs of the form fa couple of points (a; b) 2 B(S1; 2), a map
f : S1 ! R3g such that either a 6= b and f(a) = f(b), or a = b and f 0(a) = 0), and
then insert some simplices to get a space "homotopy equivalent to"4 the discrimi-
nant.

There are numerous combinatorial problems arising from this resolution. First
of all, the singular strata of the discriminant (and hence of its resolution) are
described in the terms of con�gurations of points pasted together by corresponding
singular maps. Their types are codi�ed by �nite sequences of natural numbers
(a1 � a2 � : : : � ak; b): such a code denotes the set of maps gluing together some
groups of a1; : : : ; ak points and additionally having b singular points. Of course,

3We exclude the exceptional stratum No. 13, which accumulates all the diÆculties and beauties
of all other strata.

4the quotes here are due to the fact that we are in the in�nite-dimensional situation, and
the standard notion of the homotopy equivalence cannot be applied. However, some speculation
with �nite-dimensional approximations allows us to work with these spaces as with semialgebraic
�nite-dimensional varieties
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there can be many nonequivalent con�gurations with the same code. Also, the
complexes of connected and two-connected graphs appear naturally in the �bers of
the "naive" resolution. Indeed, if we consider a map with exactly one m-fold self-
intersection point, then its preimage in the tautological resolution consists of

�
m
2

�
points, and following the "naive" construction we should span them by a

��
m
2

�
� 1
�
-

dimensional simplex. This simplex belongs to the (m � 1)-st term of the natural
�ltration of the resolution, while some of its faces belong to smaller terms.

Namely, the faces of this simplex are naturally encoded by the graphs with m
given vertices; a face belongs to a smaller term of the �ltration if and only if it
corresponds to a not connected graph. Such faces form a simplicial subcomplex of
our simplex, thus the homological study of the discriminant leads to the calculation
of the homology group of the complex of not connected graphs (or of the complex
of connected graphs, related with it by the exact sequence of our simplex), see
[44]. This homology group is concentrated in dimension m � 2 and is isomorphic
to Z(m�1)!.

However, we could construct our resolution following the scheme of x 3.2, i.e.
inserting over any m-point con�guration not the naive

�
m
2

�
-vertex simplex but the

order complex of all proper subspaces in C1(S1;R3); consisting of maps gluing
together the points of some or other subcon�gurations of this m-point one, cf.
x 1.4. This order complex is (m � 2)-dimensional from the very beginning. It
can be naturally embedded into our simplex as a subcomplex of its barycentric
subdivision. This embedding induces an isomorphism of homology groups of these
complexes modulo their intersections with the lower terms of the canonical �ltration
of the corresponding resolution (while for the latter order complex this intersection
is nothing but its link).

The complex of two-connected graphs allows us to de�ne the higher indices (or
residues), which a knot invariant de�nes at a singular knot. In the banal theory of
�nite-type invariants one considers only the singular knots inR3 having several (say,
k) transverse double self-intersections and no more complicated singular points.
Such a singular knot can be slightly moved in 2k locally di�erent ways to obtain
non-singular knots. Given a knot invariant, i.e. a locally constant function on
the space of knots, its k-th index at our singular knot is de�ned as the alternated
sum of its values at all these 2k resolutions; these indices play a key role in the
calculus of knot invariants (under the name of weight functions). In a similar
way we can de�ne higher indices at more complicated singularities. However, they
usually are not numerical. E.g., if our map S1 ! R3 has exactly one generic m-
fold sel�ntersection point, then this index takes values in the homology group of
the complex of two-connected graphs with m vertices. This group was calculated in
[17] and [37]. If our map has several such points, maybe of di�erent multiplicities,
then the values are taken in the tensor product of such homology groups.

Remark. Essentially the same spectral sequence calculates all the cohomol-
ogy groups of the space of knots in any (� 4)-dimensional manifold and probably
provides interesting invariants of such manifolds. M. Kontsevich has proved (un-
published) that in the case of knots in Rn, n � 3, this spectral sequence (with
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complex coeÆcients) degenerates at the �rst term: E1 � E1. (His famous integral
formula [24], [11] for the knot invariants in R3 is only a very particular version of
this result). In the case of an arbitrary manifold the similar statement is not true,
see [47].

5.2. Spaces of Hermitian matrices with simple spectra. V. I. Arnold [4], [9]
has studied the topology of spaces of Hermitian operators in Cn with non-simple
spectra in a relation with the theory of adiabatic connections and the quantum
Hall e�ect (see also [28], [29] concerning physical motivations of this problem).
The natural �ltration of these spaces by the sets of operators with a �xed number
of eigenvalues de�nes a spectral sequence, providing interesting combinatorial and
homological information on these sets, see [9].

In [52] a di�erent spectral sequence was constructed, also converging to the
homology groups of these spaces and based on the above-described techniques.

This spectral sequence degenerates at the term E1 and is hypothetically mul-
tiplicative. When n grows, it converges to a stable spectral sequence, calculating
the cohomology group of the space of in�nite Hermitian operators without multiple
eigenvalues; all terms Ep;q

r of this stable sequence are �nitely generated.
The main object of this construction is the topological order complex of all col-

lections of pairwise Hermitian-orthogonal complex subspaces in Cn, see x 1.3.
Again, the resolution of the space of singular (i.e. having multiple eigenvalues)

operators is a subspace of the Cartesian product of this order complex and the space
of all Hermitian operators. The singular strata of this resolution are classi�ed in
almost the same way as these for the space of knots (the multiindex A � (a1 �
a2 � : : : � ak) denotes the set of operators with an eigenspace of dimension a1,
an eigenspace of dimension a2 orthogonal to the previous one (but maybe with the
same eigenvalue), etc.).

Although the cohomology ring of the space of non-discriminant Hermitian op-
erators is known (see [12], [9]), this construction provides a very natural �ltration
in this ring. This �ltration is stable with respect to embeddings of spaces of such
operators induced by the embeddings Cn ! Cn+1 ! � � � ; thus de�ning a sta-
ble structure in the cohomology ring of the space of in�nite-dimensional generic
Hermitian operators.

E.g., the 2-dimensional cohomology group of our space is generated by the �rst

Chern classes c
(i)
1 of all linear vector bundles formed by eigenvectors of operators

(ordered by the increase of corresponding eigenvalues) subject to a single relation:

the sum
P

i c
(i)
1 of all these classes is equal to zero. For any m, the m-th term of

our �ltration of this 2-cohomology group is nothing other than the space of integral

sequences
P

i �ic
(i)
1 ; where f�ig is the sequence of values at integral points of some

polynomial of degree � d. (A basis in the space of such polynomials consists of
polynomials �d � i(i � 1) � : : : � (i � d + 1)=d!, d = 1; 2; : : : ;m.) An important
problem is to give an explicit expression of all other terms Ep;q of this sequence in
terms of Chern classes of these linear bundles.
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5.3. Triple points free plane curves. V. I. Arnold [7], [8] has introduced three
local invariants of generic plane closed immersed curves. The most interesting of
them, the strangeness, is in fact an invariant of triple points free immersed curves
and can be de�ned as the linking number with the (suitably oriented) discriminant
subvariety in Imm(S1;R2) consisting of all immersions having a triple point. The
investigation of invariants of generic immersed plane curves was continued in [1],
[53], [34], [36], [31], [27], and many other works; in particular A. B. Merkov [27] has
proved that the (suitably de�ned) �nite-order invariants of such curves provide a
complete system of invariants.

About the same time, I studied ornaments, i.e. collections of closed plane curves
without triple intersections (but maybe with singular points) and constructed some
their invariants by the methods similar to the ones described in x 5.1, see [44],
[45], [39], [40]. The recent work [50] contains a translation of these methods to the
classi�cation of triple points free immersed plane curves, and also to the neighboring
theory of doodles, i.e. closed plane curves without triple points but maybe with
singularities. (The last theory has been previously studied by M. Khovanov [23]
and by A. B. Merkov [27], who in particular has discovered the �rst example of a
non-trivial one-component doodle and proved that the �nite-order invariants form
a complete system of invariants also in this problem. A slightly di�erent notion
was considered in [20].)

These methods lead naturally to the study of complexes of connected 3-hyper-
graphs in the same way as the knot theory leads to the calculus of connected graphs,
see [44], [16], [25]. (In fact, these problems are even more important here. The
elements of the homology group of the complex of connected graphs with m vertices
can be involved more or less only in the calculation of the � (m � 3)-dimensional
cohomology group of the space of knots; in particular such complexes with m = 2
and 3 only are important for the study of knot invariants. On the contrary, the
homology groups of connected hypergraphs with arbitrarily many vertices play
important role in the calculation of invariants of doodles and/or immersed triple-
points free curves.)

E.g., the �rst nontrivial invariant of one-component doodles is of order 4. The 3-
hypergraphs can be depicted by collections of triangles, therefore we get the calculus
of triangular diagrams in the almost the same way as the calculus of chord diagrams
appears in the knot theory. The chord diagram depicting the easiest (of order 2)
knot invariant is the cross

L
. Analogously, the triangular diagram depicting our

4-th order invariant of doodles is as follows: n
TT����AA .

I thank V. I. Arnold, A. Bj�orner, G. Kalai, A. B. Merkov, and R. T. Zhivaljevich
very much for helpful conversations. Also I thank the organizers of this conference
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