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HOMOTOPY CLASSIFICATION OF NONDEGENERATE

QUASIPERIODIC CURVES ON THE 2-SPHERE

B.Z. Shapiro and B.A. Khesin

Abstract. We classify the curves on S2 with �xed monodromy operator
and nowhere vanishing geodesic curvature. The number of connected components
of the space of such curves turns out to be 2 or 3 depending on the corresponding
monodromy. This allows us to classify completely symplectic leaves of the Zamolod-
chikov algebra, the next case after the Virasoro algebra in the natural hierarchy of
the Poisson structures on the spaces of linear di�erential equations.

x1 Introduction

A curve on the two-dimensional sphere is called nondegenerate if it does not
have inection points, i.e., if its geodesic curvature is everywhere nonvanishing.
The classi�cation of closed nondegenerate curves up to homotopy was described
by Little [Li] in 1970. It turned out that the slightly more general problem of the
classi�cation of quasiperiodic (but not necessarily closed) nondegenerate curves
is closely related to certain problems of conformal �eld theory, namely, to the
classi�cation of symplectic leaves of the Gelfand{Dickey Poisson algebras. These
algebras are de�ned on the space of coeÆcients of nth order linear di�erential
operators on the circle. They are also called SLn(R) (GLn(R)){Adler{Gelfand{
Dickey algebras or generalized n-KdV-structures [GD]. In physics literature these
structure are also known as the classical Wn-algebras [PRS].

The �rst (n = 2) Poisson algebra in this series coincides with the Virasoro
algebra [Kh]. Classi�cation of the Virasoro coadjoint orbits was obtained in di�er-
ent terms independently by Kuiper [Ku], Lazutkin and Pankratova [LP], Segal [Se],
Kirillov [Ki]. In the Virasoro case, the Poisson algebra is linear, while for di�eren-
tial operators of higher order the corresponding structure is quadratic. The next
object in this hierarchy corresponds to the Zamolodchikov algebra and is generated
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by the coeÆcients of the third order linear di�erential equations on the circle with
respect to the quadratic Poisson structure [Za].

In [OK] classi�cation of the symplectic leaves (or maximal symplectic sub-
manifolds) of these Poisson brackets for operators of arbitrary order was related
to the homotopy classi�cation of nondegenerate curves on spheres (or on projec-
tive spaces). Namely, an nth order linear di�erential operator on the circle de�nes
a nondegenerate quasiperiodic curve in Sn�1, i.e., \projectivization" of its \fun-
damental solution curve". (Quasiperiodicity denotes the usual behavior of the
fundamental solution of a linear ode with periodic coeÆcients.) It turned out that
two di�erential operators belong to the same symplectic leaf if and only if the cor-
responding curves are homotopically equivalent within the class of nondegenerate
quasiperiodic curves.

The only continuous (or \local") invariant of any symplectic leaf is the mon-
odromy operator of the corresponding di�erential equation, i.e., the element of the
group SLn(R) up to conjugacy [OK]. The discrete (or \global") invariant enu-
merates connected components in the space of nondegenerate curves with a given
monodromy. In this paper we present the classi�cation of these curves for the
Zamolodchikov algebra, i.e., the case of the SL3(R)-bracket. It turns out that the
number of connected components is �nite and equals two or three according to the
di�erent monodromy matrices in SL3(R). These values of the discrete invariant
split the group SL3(R) into two parts of nonzero measure. It would be interesting
to �nd a physical meaning of this \global" invariant.

Relation of the SL3(R)-bracket to the problems of di�erential geometry was
discussed in [Ov] where the case of the unit monodromy was classi�ed.

One of the crucial notions in classi�cation below is the notion of a disconjugate
curve. Roughly speaking, this is a curve which intersects any great circle on one
period at most twice. The existence of such curves is determined by the given
monodromy operator. The notion of disconjugacy can be generalized to higher
dimensions and is responsible for the existence of an extra connected component in
the space of closed nondegenerate curves on even-dimensional spheres S2n [ShM].

It should also be mentioned that the lift a nondegenerate curve to the ag
manifold (by means of taking its osculating ag) is tangent to the left-invariant
nonholonomic distribution of cones. This distribution is called the Cartan distribu-
tion. This is a subdistribution of the nonholonomic distribution of linear subspaces
for which the covering homotopy property was proved by Smale [Sm]. As a matter
of fact, only the one-parameter homotopy property holds for the Cartan distribu-
tion where the map is the natural projection to the �nal tangent elements and this
only holds on the smaller subset of all conjugate curves. See details in x5.

In [KZ] the analog of the quadratic Gelfand-Dickey Poisson structure was de-
�ned on the space of pseudodi�erential operators of the form @�+

P1
k uk(x)@

��k ,
where � is a real (or even a complex) number. For an integer � = n and additional
constraints u�n�1 = u�n�2 = � � � = 0 pseudodi�erential operators become purely
di�erential and the generalized Poisson structure coincides with the usual GLn-
Gelfand{Dickey bracket. Finding of analogs of "solution curves" for pseudodi�er-
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ential operators and of a geometrical description the invariants of the symplectic
leaves for an arbitrary � is a very intriguing problem.

The paper is organized as follows. The next section is devoted to the geo-
metric formulation of the main results. In x3 we discuss the Poisson aspect of our
consideration. Parts I and II deal with classi�cations of nondegenerate curves with
a �xed monodromy matrix and with a �xed monodromy operator (i.e., class of
conjugate matrices) respectively. The last section is devoted to the geometry of the
train variety and is of independent interest. The main results of this paper were
partially announced in [KS].

We are deeply grateful to V. I. Arnold, M. Z. Shapiro and especially to
R. Montgomery for fruitful discussions and improvements of this text. Boris Khesin
expresses his gratitude to the Swedish Natural Science Research Council support-
ing his visit to Stockholm, to the Mathematics Department of the University of
Stockholm for its kind hospitality, and also to the Swedish Embassy in London for
reasonable delays in the visa business. His research was supported in part by the
NSF grant DMS-9627782, NSERC grant OGP-0194132, PREA, and an Alfred P.
Sloan Research Fellowship.

Part 0. Formulation of the main results

x2. Spaces of curves

De�nition 2.1. A curve  : [0; 1] ! S2 is called nondegenerate if its velocity _(t)
and acceleration �(t) are linearly independent at any moment t 2 [0; 1].

This property of a curve depends only on the image ([0; 1]) in S2, not on
the particular choice of its parametrization.

Remark 2.2. The motivation of the de�nition above is as follows. With any third
order linear ordinary di�erential equation (LDE) P� = 0, one can associate a class
�
P
ofGL3-equivalent curves in R

3. To do this let �1; �2; �3 be an arbitrary basis of
solutions to P� = 0. Set (t) = (�1(t); �2(t); �3(t)). The set of such 's as � varies
over all bases of solutions forms �

P
. The crucial property of such  is that the

vectors (t); _(t); �(t) are linearly independent at any t. In particular, this means
that the radial projection of the curve  along (t) on the standard embedded unit
sphere S2 � R3 is a nondegenerate curve.

An analogous description is valid in any dimension and allows us to study
the topological properties of the space of nondegenerate curves instead of the cor-
responding spaces of LDE's.

For each LDE on the circle (i.e., LDE with periodic coeÆcients) we consider its
monodromy operator which transforms fundamental solutions by one period. This
operator is only determined up to its conjugacy class in GLn(R) (two monodromy
operators taken in di�erent points of the circle can be compared only up to a
conjugacy). Now we de�ne the monodromy operator of a nondegenerate curve.
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De�nition 2.3. A curve  : [0; 1]! S2 � R3 is said to be subordinated to a given
monodromy matrix M 2 GL+3 (R) if the image M(f0) of the ag f0, spanned by
h(0); _(0); �(0)i (i.e., of the \extended initial ag") coincides with the \extended
�nal ag" f1 = h(1); _(1); �(1)i.

Consider the space �(M) of all nondegenerate curves starting at the same
initial ag f0 and subordinated to matrices M from a �xed conjugacy class M in
GL+3 (R). (Notice that the spaces �(M) corresponding to di�erent initial ags are
naturally conjugated by operators from GL+3 .)

The problem under consideration is to describe the topology of the space
�(M). This question is closely related to certain problems of in�nite-dimensional
Lie algebras and integrable hierarchies (see [OK] or x3).

In 1970 J. Little described the homotopy classi�cation of all closed nondegen-
erate curves on S2. This case corresponds to the identity monodromy M = id.

Given an orientation on S2 we consider only \right-oriented" curves, i.e., we
insist that ((t); _(t); �(t)) forms a right-handed basis for all t.

Proposition 2.4 [Li]. The space of all right-oriented closed curves on S2 consists
of three connected components with the representatives shown on Fig. 1.

Our main result is the following classi�cation theorem for nondegenerate
curves on S2 with an arbitrary monodromy M� GL+3 (R).

Theorem 2.5. The space of all right-oriented nondegenerate curves on S2 with a
given monodromy M consists of two connected components if the Jordan normal
form of M is one of the following:

(*)

0
@
�� 0

��
0 �

1
A ;

0
@
�� 0

��
0 �

1
A ;

0
@
� 0

�
0 �

1
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0
@
� 1 0

�
0 �

1
A

where �; �; � > 0 are distinct real numbers, and the space consists of three compo-
nents otherwise.

Fig. 1. Representatives of connected components for
right nondegenerate curves on S2
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Remark 2.6. There is no information so far about the higher homology or homotopy
groups of �(M) even in the simplest case whenM is identity. The last case seems to
be a very natural generalization of the (free) loop space but is much harder to study
because of the lack of covering homotopy property. The analogous classi�cation
problem for nondegenerate curves in higher dimensions is still an open question.
The number of connected components of nondegenerate curves is known only for
closed curves on Sn [ShM] and turns out to be equal to 3 on any S2k and to 2 on
any S2k+1 for k � 1.

The proof of the theorem is based on the detailed study of (dis)conjugacy,
deformations and covering homotopy property of the corresponding curves. The
next two theorems present the main steps of the proof and are of an independent
interest.

De�nition 2.7. A curve  : [0; 1] ! S2 is called conjugate if there exists a great
circle on S2 having at least three transversal intersections with .

The curves violating this property are called disconjugate.

Theorem 2.8. The space of right-oriented curves on S2 with given initial and
�nal ags consists of three connected components if for these ags there exists
a disconjugate curve connecting them, and the space consists of two components
otherwise.

Denote the space of all right-oriented conjugate curves with a �xed initial ag
f0 by C(f0) and the map sending each curve to its �nal ag by � : C(f0)! FO3.
Here FO3 is the space of all oriented ags on S2 (coinciding with the space of all
oriented ags in the linear space R3).

De�nition 2.9. A map � : X ! Y is said to satisfy the 1-parameter covering
homotopy property if for any path y(s) � Y; s 2 [0; 1] and for any point x 2 X
such that �(x) = y(0) there exists a path x(s); s 2 [0; 1] such that x(0) = x and
�(x(s)) = y(s) for all s.

Theorem 2.10. For any ag f0 the map � : C(f0) ! FO3 satis�es the 1-
parameter covering homotopy property.

Remark 2.11. This map does not satisfy the 2-parameter covering homotopy prop-
erty (see Section 5).

x3. Classification of symplectic leaves

In this section we recall the general de�nition of the Gelfand{Dickey quadratic
Poisson brackets on the coeÆcients of LDE and their relation to nondegenerate
curves on spheres. The Poisson algebra of functions on the space of the third order
LDE (of the form @3+u(t)@+v(t)) is also called the Zamolodchikov- orW3-algebra.
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De�nition 3.1. Consider the space L of all di�erential operators of the form
fL = @n +

Pn�1
i=0 ui(t)@

ig, where @ = d=dt, ui 2 C1(S1;R). The space of
all linear functionals on L is described in terms of \pseudodi�erential symbols"
X =

Pn
j=1 aj(t)@

�j , aj 2 C1(S1;R). Namely, associate to each X the linear

functional lX(L) =
R
S1

res(XL)dt, where res(XL) is a function on S1 which is

de�ned as follows. Using the Leibnitz rule @�1f = f@�1 +
P1

i=1(�1)
if (i)@�1�i,

we can express the product X �L as a pseudodi�erential operator
P

m2Z pm(t)@
m.

Then by de�nition res(XL) = p�1(t). The space L is an aÆne space (rather than a
linear one), but all functionals lX vanish at the point L0 = @n, so L0 can be viewed
as the origin of L. Clearly the space L is spanned by the functionals lX .

De�nition 3.2. The operator 
 : lX 7! VX 2 Vect(L) which sends a linear func-
tional lX to the vector �eld VX (L) = L(XL)+� (LX)+L on the space of operators
(here the index + denotes the di�erential part) is called the operator of the (second)
Gelfand{Dickey Poisson structure associated with GLn(R). This operator de�nes
quadratic (with respect to L) Poisson bracket on L : flX ; lY g(L) = lY (VX(L)). The
corresponding Poisson algebra of functionals is called the Gelfand{Dickey algebra.

Remark 3.3. The SLn(R){Gelfand{Dikii bracket is de�ned on the space ~L = L \

fun�1(t) � 0g = f@n+
Pn�2

i=1 ui(t)@
ig by the same formula. The constraints on fXg

are determined explicitly by the condition VX (L) 2 Vect( ~L), i.e., @n + VX (L) 2 ~L.

In the SL2(R)-case, this bracket turns out to be linear and coincides with
the Lie{Poisson bracket on the dual space to the Virasoro algebra [Kh].

It should be mentioned that the di�erential operator L can be uniquely re-
constructed if we know the corresponding curve on the sphere and the coeÆcient
un�1(t). Indeed, the curve on S

1 gives us the homogeneous coordinates of the so-
lution set of L. One complementary condition is provided by the Wronskian W (t)

of this set. (W (t) satis�es the Liouville equation _W = un�1(t)W ). In particular,
for the SLn(R)-case this condition has the form W (t) � const.

Theorem 3.4 [OK]. The complete set of invariants of symplectic leaves of the
second Gelfand{Dikii brackets associated with the Lie groupsGLn(R) and SLn(R)
consists of the monodromy operator (considered up to conjugacy in the group) and
of the homotopy class of the corresponding nondegenerate curves on the sphere
Sn�1 which are subordinated to this monodromy.

In other words, two di�erential operators on the circle can be connected by
some \Hamiltonian path" in the space L (i.e., by a path such that its velocity vector
at every moment is Hamiltonian with respect to the Gelfand{Dickey bracket) if and
only if they have the same monodromy operator and belong to the same homotopy
class of such curves. In a sense, the monodromy is a \continuous" invariant and
the homotopy class is a \discrete" one.

For the SL2(R)-case, the classi�cation problem of the Virasoro orbits be-
comes especially straightforward from this point of view. In this case we have to
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classify nondegenerate curves on S1 and for every monodromy there exist a count-
able number of such curves distinguished by the total rotation number [OK].

For the SL3(R)-bracket, this classi�cation is described in the preceding sec-
tion and the number of homotopy classes turns out to be �nite but depending on
the monodromy:

Theorem 3.5 (= 2.50). Symplectic leaves of the Zamolodchikov algebra (i.e.,
SL3(R){Gelfand{Dickey bracket) are enumerated by the Jordan normal form of the
monodromy operator (belonging to SL3(R)) and a Z2-invariant for the monodromy
of types (�) or a Z3-invariant otherwise.

Roughly speaking, the discrete invariant is the parity of the \total rotation
number" of the corresponding nondegenerate curves (which are not closed if the
monodromy M 6= id). Moreover, for some monodromies disconjugate curves form
a separate symplectic leaf.

Remark 3.6. The same classi�cation holds for the GL3(R){Gelfand{Dikii bracket,
where the monodromy operator belongs to the wider group GL3(R).

The case of identity monodromy on SL3(R) was considered in [Ov].

It would be interesting to �nd a purely algebraic proof of this result similar
to the Virasoro case. The disconjugacy property (De�nition 2.6) is closely related
to factorization of di�erential operators. In the recent work [Wi] the Gelfand{Dikii
bracket was transferred to the space of solutions of di�erential equations via this
factorization. Perhaps this approach can lead to a Sturmian-type conjugacy theory
for di�erential equations of higher order.

Part I. Nondegenerate curves on S2

with fixed initial and final flags

Below we discuss the classi�cation problem for nondegenerate curves on S2

with a �xed monodromy matrix (or classi�cation of nondegenerate curves with �xed
initial and �nal ags).

x4. Basic notions and types of disconjugacy

Let  : [0; 1] ! S2 ,! R3 be a right-oriented nondegenerate curve (with
respect to a �xed basis in R3 ).

De�nition 4.1. a) The matrix curve G : [0; 1]! GL3 is the curve

G(t) =

0
@
1(t); 2(t); 3(t)
_1(t); _2(t); _3(t)
�1(t); �2(t); �3(t)

1
A ;

where i is the ith coordinate of . Note that nondegeneracy of  implies nonde-
generacy of the above matrix for all t.
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b) The ag curve f : [0; 1] ! FO3 consists of the osculating oriented ags
to all points of , where FO3 is the 3-dimensional variety of all oriented ags in
R3. The osculating ag f (t) consists of the line l spanned by (t) and the plane
p spanned by (t) and _(t).

De�nition 4.2. The restriction of the ag f (t) to S
2 consists of the point (t) 2 S2

together with the oriented great circle passing through (t) tangent to _(t).

The space FO3 has a remarkable 2-dimensional distribution (see [VG]). For
a given ag f = (l; p) 2 FO3 one can de�ne two directions in the tangent 3-space.
The �rst is tangent to the germ (l; p(�)) 2 FO3 where plane p(�) coincides with p
for � = 0 and contains the line l for all � ; the other direction is tangent to the germ
(l(�); p) 2 FO3 where l(�) is contained in p for all � and l(0) = l. These directions
can be oriented in the following way. The velocity of the moving line l(�) (or plane
p(�)) is positive if orientation of the frame of l (or of p) completed by the velocity

vector _l (or _p) of the motion coincides with the orientation of the ambient plane p
(or of R3).

De�nition 4.3. The Cartan distribution C on FO3 is the distribution of quadrants

(R+)
2
spanned by vectors with positive coordinates in the 2-dimensional distribu-

tion discussed above.

Remark 4.4. The ag curve of any 3rd order linear di�erential equation is every-
where tangent to the Cartan distribution. This follows from the matrix form of
the equation and also explains the introduction of C. Note also that a Euclidean
structure on R3 identi�es the space FO3 of complete oriented ags with the group
SO3. The Cartan distribution C is SO3-invariant after such an identi�cation.

Remark 4.5. A change of parameter t for the curve (t) implies a reparametrization
of the ag curve f and a reparametrization together with a multiplication by a
family of upper triangular matrices for the matrix curve G.

De�nition 4.6. The monodromy operator of a parameterized nondegenerate curve
 : [0; 1] ! S2 ,! R3 is the unique linear operator on R3 which sends the initial
frame (0); _(0); �(0) to the �nal frame (1); _(1); �(1). (Cf. De�nition 2.3, where
just the mapping of the corresponding ags was required.)

De�nition 4.7. Two ags (l1; p1) and (l2; p2) in R3 are called nontransversal if
either the plane p1 contains the line l2 or the plane p2 contains the line l1.

Now we recall and specify the concept of (dis)conjugacy.

De�nition 4.8 (=2.70). A curve  : [0; 1]! S2 is called

a) conjugate if there exists a great circle intersecting  transversally in a least
three inner points;

b) strictly disconjugate if there is no great circle intersecting it more than
twice (counting with multiplicities);
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c) nonstrictly disconjugate otherwise.

Note that the last case is borderline between the two previous ones.

Lemma 4.9. A nondegenerate curve  : [0; 1] ! S2 is conjugate if and only if
there exists at least one moment t 2 (0; 1) such that the osculating ag f(t) is
nontransversal to f(0).

Proof. For suÆciently small � the curve (t); t 2 [0; � ] is disconjugate and there
exists some minimal moment �0 < 1 after which the curve  becomes conjugate. At
that moment �0 the segment � of the curve ; t 2 [0; �0] is nonstrictly disconjugate
and thus there exists a circle intersecting � at least 3 times with multiplicities but
less than 3 times transversally (see also [ShB]). None of these intersection points
can be internal for [0; �0] because otherwise a small shift of the initial circle will
intersect � at least 3 times transversally. Therefore this circle passes through the
ends of � and is tangent to one of them, since the sum of multiplicities on both
ends is at least 3. This means that the corresponding initial and �nal ags of � in
the linear space R3 are nontransversal.

Theorem 4.10. There exists one type of strictly disconjugate and 5 di�erent
types of nonstrictly disconjugate curves on S2 (see their stereographic projections
on Fig. 2).

Fig. 2. Types of (non)strictly disconjugate curves on S2

(all cases except A are nonstrictly disconjugate)

Proof. The �nal ag �(�0) of nonstrictly disconjugate curve � cannot be strictly
antipodal (i.e., centrally symmetric on S2) to the initial point �(0) (see [Ar]).
Moreover by the lemma above the disconjugate curve lies inside a certain open
hemisphere, the boundary of which is a small shift of the circle tangent to  at its
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initial point. Curves on the hemisphere can be identi�ed with those on the plane
by stereographic projection from the center of the sphere. The corresponding plane
classi�cation is obvious.

Remark 4.11. The generalization of the above lemma to nondegenerate curves on
Sn is given in [ShM].

x5. The space of curves with �xed initial and �nal ags

In this section we prove the following statement.

Theorem 5.1. The space of right-oriented curves on S2 with given initial and �nal
ags consists of three connected components if there exists a (strictly or nonstrictly)
disconjugate curve connecting these ags and consists of two connected components
otherwise.

This theorem immediately follows from two lemmas stated below.

Lemma 5.2. Right-oriented disconjugate curves connecting any two ags form at
most one connected component.

Lemma 5.3. Right-oriented conjugate curves connecting any two ags form two
connected components.

Fig. 3. Disconjugate curves from a connected set
for all arrangements of initial and �nal ags
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Proof of Lemma 5.2. Let f and g be initial and �nal ags. If the arrangement of
f and g does not admit any disconjugate curve the statement is trivial. Otherwise
the pair ff; gg de�nes one of 6 types of disconjugate curves as described in theorem
4.10. Let 0 be one of these curves. Then 0 lies in an open hemisphere and could
be considered as a planar curve. Let  be an arbitrary disconjugate planar curve
connecting f and g. Then there exists an open hemisphere containing both 0 and
. Indeed the great circle of the initial ag f can intersect  and 0 only in the
initial and �nal points (otherwise the disconjugacy is violated). Moreover the points
of f and g could not be antipodal on S2 (see [Ar]). Thus one can shift slightly the
great circle of f such that both these points will be in the same hemisphere. Hence
 and 0 could be placed of the same plane. The space of planar disconjugate
curves connecting a given pair of ags is evidently contractible. (This lemma also
follows from the description of train varieties, see Appendix.)

De�nition 5.4. A conjugate curve [0; 1] ! S2 is called an �-fragment if it has
one transversal self-intersection and, moreover, the sum of local multiplicities of
intersections of the curve with any great circle is at most 3. (It looks like the Greek
character \alpha", see Fig. 4C.)

Fig. 4. Three possible forms of simplest conjugate fragments

Proof of Lemma 5.3. Let  : [0; 1] ! S2 be a conjugate curve connecting f and
g. We can assume that the initial and �nal ags of  are in general position, i.e.,
transversal to each other. If they are not we will take some shortening � : [�; 1]!
S2 of the curve  which is still conjugate and its endpoint ags are transversal.
Fix a hemisphere containing both of them as in the previous lemma. Pull into this
hemisphere each separate piece of  previously contained in the opposite hemisphere
by using the procedure suggested by Little, [Li]. In this way  can be deformed
into a conjugate planar curve with the same initial and �nal ags.

The only invariant of connected components for nondegenerate curves on R2

with �xed initial and �nal ags is the total rotation angle of the velocity of the
curves, see [Wh].
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So once we show that any two conjugate plane curves whose rotation angles
di�er by 4� are homotopic on S2 the statement is proved. In other words we show
how to increase the total rotation number of a planar conjugate curves by 2 (or
the total rotation angle by 4�) using deformations on S2 which are nonrealizable
on R2. Thus, the only invariant for conjugate curves with �xed endpoint ags on
2-sphere is the \parity" of their total "rotation".

The rigorous arguments based on the set of pictures on Fig. 5. demonstrate
how the �-fragment transforms into the !-fragment (i.e., the �-fragment with an
extra kink) thus increasing the rotation angle by 4�.

The proof is completed with the remark that any conjugate curve can be
deformed into a curve with an �-fragment while preserving its initial and �nal
ags. Indeed, for a conjugate curve  there exists a great circle intersecting it
transversally at least 3 times, and therefore such a curve  necessarily contains one
of the 3 fragments shown on Fig. 4. The last of these cases already contains the
�-fragment, while other two can be deformed into that. This �nishes the proof of
lemma 5.3 and theorem 5.1.

In the rest of this section we prove the one-parameter covering homotopy
property for the map � : C(f0) ! FO3 taking any conjugate curve (from the
space C(f0) of all conjugate curves with a �xed initial ag f0) to its �nal ag (see
Theorem 2.10 from introduction).

Lemma 5.5. Any conjugate curve  : [0; 1]! S2 can be nondegenerately deformed
preserving its initial and �nal ags into a curve ̂ : [0; 1]! S2 whose image is the
union of the image of  and two small loops attached to the �nal point.

Fig. 5. Basic deformation of the �-fragment
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Proof. Following the previous lemma we deform  to obtain an �-fragment. Then
performing the procedure on Fig. 3 we get an !-fragment adding two loops to the
curve. And �nally we move these loops to the �nal point of the curve .

Remark 5.6. The radius of these extra loops can be increased to some �xed value
(say, one half of the radius of the considered sphere S2) independent of the initial
curve .

Let us for the sake of convenience reformulate Theorem 2.10.

Theorem 5.7. An arbitrary one-parameter deformation of the �nal ag of any
conjugate curve  can be covered by a deformation of the curve  through nonde-
generate conjugate curves.

Proof. First of all we show how to cover any deformation within some �xed neigh-
borhood of the �nal ag. The radius of this neighborhood will not depend on  and
therefore an arbitrarily large deformation will be covered by the iteration of this
procedure. Let the radius of the neighborhood be equal to � (say � = 1

4 ). First

we deform  by adding two circles of a �xed radius 2� (say, 1
2 ) at the end of .

Then we are able to cover any motion of the �nal ag within its �-neighborhood
by changing only the added loops, see Fig. 6. This completes the proof.

Fig. 6. Illustration of the covering homotopy property

Fig. 7. A counterexample to the 2-parameter covering homo-
topy property (the 1-parameter family of curves is obtained
by shortening the ends of the central curve.)

Remark 5.8. The two-parameter covering homotopy property fails for this map.
Given the one-parameter family of conjugate curves shown in Fig. 7 consider the
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one-parameter deformation of the �nal ags of these curves which rotates every �-
nal ag about its �nal point in the anticlockwise direction suÆciently many times.
One can show that this deformation can not be covered by a one-parameter defor-
mation of the initial family of curves. The proof of this statement is based on the
observation that in order to cover the above deformation it is at least necessary to
deform curves in the initial family (preserving initial and �nal ags) into curves
with a sel�ntersection point depending continuously on a parameter of the family.
But this is obviously impossible in the class of nondegenerate curves, see Fig. 7.

Part II. Nondegenerate curves on S2

with a given monodromy operator

This part is devoted to the calculation of the number of connected components
in the space D(M) of all third order linear ordinary di�erential equations with a
�xed conjugacy class M.

Let us �x a basis in R3 and let M be a monodromy matrix belonging to
the conjugacy class M (notation : M 2 M). Consider the action of this matrix
M on FO3 and look at the set of all right-oriented curves satisfying the relation
f1 =Mf0, where f0 and f1 denote the initial and �nal ags of the curve.

Our strategy is rather simple. We consider FO3(= SO3) as the (Hopf) bundle
over S2 with the �bre S1, where the �bre is the set of all oriented ags on S2 passing
through a given point. For each initial ag f0 and �xedM we have already classi�ed
nondegenerate curves connecting f0 and f1 = Mf0 in Part I. Now we study how
the situation changes when we change the point on the base. For generic M the
�bre over a typical point of S2 contains a subset called the arc A consisting of those
ags f which can be connected by a disconjugate curve with its image Mf (see
Part I). One of our aims is to describe connected components of the sets of these
arcs in the ambient space FO3. The main tool is the description of bifurcations of
the arcs when the base point on S2 passes through an invariant subspace of M .

The next section contains the necessary information about the fundamental
groups of conjugacy classes of di�erent Jordan normal forms (JNF) of matrices
in GL3(R). This description of the conjugacy classes gives a classi�cation of the
coadjoint orbits of theGL3(R)-Kac{Moody group and so is of independent interest.

x6. Topology of conjugacy classes in GL3(R)

Here we describe the fundamental groups of conjugacy classes in the universal
coverings GL03(R) and SL03(R) of the groups GL3(R); and SL3(R) respectively.

First of all let us consider the group SO3(R). Topologically this group is the
three-dimensional projective space, and �1(SO3(R)) = Z=2Z. In order to describe
the conjugacy classes in this group, look at the corresponding Lie algebra. The
adjoint orbits in the Lie algebra are two-dimensional spheres (which are simply-
connected). Thus in the neighborhood of the unit element of the group we will see
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the same picture. The image of the open ball of the radius � in the Lie algebra
(di�eomorphic to R3) covers under the exponential map the whole Lie group (dif-
feomorphic to RP3) except for the projective plane RP2 at in�nity. The sphere of
the radius � covers it twice. This plane is the orbit of the rotation of R3 by � under
conjugations. Thus the inverse images of all conjugacy classes in SO3(R) except
the above one in the universal covering SO0

3(R) = S3 for the natural projection
SO0

3(R)! SO3(R) consist of two connected components. The above non-oriented
orbit has a connected lifting in SO0

3(R).

Generalizations of this observation are given by the following two theorems.

Theorem 6.1. The conjugacy class of any element M 2 GL+3 (R) with one of the
following Jordan normal forms (JNF)

0
@
�� 0 0
0 �� 0
0 0 �

1
A or

0
@
�� 0 0
0 �� 0
0 0 �

1
A

(where �; �; � > 0 are distinct) has a connected inverse image in the universal

covering GL03 for the natural projection GLÆ3 ! GL+3 (R); otherwise the pull-
back in GLÆ3 of the conjugacy class of M 2 GL+3 (R) consists of two connected
components.

Remark 6.2. The same statement is valid for SL3(R) since GL+3 (R) splits into
SL3(R) and scalar matrices lying in the center.

Remark 6.3. For GL2- and SL2-cases the number of connected components in the
inverse image is in�nite for any monodromy operator.

Proof of theorem 6.1. First of all we show that theorem 6.1 is equivalent to the
following statement.

Let CM 2 GL+3 (R) denote the conjugacy class of the operator M .

Proposition 6.4. For operators M with JNF:

0
@
�� 0 0
0 �� 0
0 0 �

1
A or

0
@
�� 0 0
0 �� 0
0 0 �

1
A

where �; �; � > 0 are distinct, the embedding CM ,! GL+3 induces an epimorphism
� : �1(CM )! �1(GL

+
3 ) = Z=2Z. For other operators the induced homomorphism

� : �1(CM )! 0 2 �1(GL
+
3 ) is trivial.

Equivalence of this proposition to Theorem 6.1 is obvious since CM � GL+3
has connected inverse image in GL03 only in the case when there exists a closed
path  2 CM representing the generator of �1(GL

+
3 ).
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Our proof is based on the explicit consideration of all 10 real Jordan normal
forms in GL+3 .

a)

0
@
� 0 0
0 � 0
0 0 �

1
A b)

0
@
�� 0 0
0 �� 0
0 0 �

1
A c)

0
@

� cos� � sin� 0
�� sin� � cos� 0

0 0 �

1
A

d)

0
@
� 1 0
0 � 0
0 0 �

1
A e)

0
@
�� 1 0
0 �� 0
0 0 �

1
A f)

0
@
� 1 0
0 � 1
0 0 �

1
A

g)

0
@
� 0 0
0 � 0
0 0 �

1
A h)

0
@
�� 0 0
0 �� 0
0 0 �

1
A i)

0
@
� 1 0
0 � 0
0 0 �

1
A

j)

0
@
� 0 0
0 � 0
0 0 �

1
A

Lemma 6.5. Suppose that operatorsM0 andM1 can be connected by a continuous
path Ms 2 [0; 1], where Ms has the same Jordan type for s 2 (0; 1] as M1 (i.e.,
belongs to the same class a), b),... etc. given above but not necessarily with the
same �; �; �; �). Suppose also that �(�1(CM0

)) = 0. Then �(�1(CM1
)) = 0.

Proof. Let  = f�(�); � 2 [0; �]g 2 CM1
be an arbitrary closed path in the conjuga-

cy class ofM1. We will prove that it is contractible. For any path �(�) 2 CM1
there

exists a path g(�) 2 GL+3 ; g(0) = e such that �(�) = g�1(�)M1g(�) by de�nition of
conjugacy classes. The fact that the path is closed ( �(�) = �(0) ) means that g(�)
belongs to the stabilizer St(M1) of the matrix M1. The assumption that Ms for
any s 6= 0 has the same type as M1 means that their stabilizers are conjugated and
one can choose a continuous path gs(�) such that gs(�) 2 St(Ms) for any s 6= 0.
Then gt0(�) for any t0 de�nes the closed path �s0 = g�1s0 (�)Ms0gs0 in the orbit
CM0

(the path is closed since gs(�) 2 St(Ms)). Therefore one-parameter family of
closed paths �s(�) de�nes the homotopy of the path  to some closed path 0 in
CM0

. The condition �(�1(CM0
)) = 0 means that 0 is contractible on the group

GL+3 . Thus  is also contractible.

Corollary 6.6. For operators M of the types c), f), i), j) and d), a), g) with
positive eigenvalues arbitrary closed paths in CM are contractible on GL+3 , i.e.,
�(�1(CM )) = 0.

Proof. The scalar matrix �E belongs to the center and its orbit consists of one
point. Thus obviously �(�1(C�E)) = 0. The other mentioned matrices can be
connected with a scalar matrix by some rather obvious paths within their types.
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We have not handled yet the following three types of M :

b)

0
@
�� 0 0
0 �� 0
0 0 �

1
A ; h)

0
@
�� 0 0
0 �� 0
0 0 �

1
A ; e)

0
@
�� 1 0
0 �� 0
0 0 �

1
A

Lemma 6.7. The �rst two types b) and h) represent a nontrivial element of
�1(GL

+
3 ), i.e., �(�1(CM )) 6= 0.

Proof. Indeed, the stabilizer of these types contains the following element:

� =

0
@
1 0 0
0 �1 0
0 0 �1

1
A :

Therefore the curve g(�) such that g(0) = e; g(�) = �,

g(�) =

0
@
1 0 0
0 cos � sin �
0 � sin � cos �

1
A ;

de�nes closed paths �(�) = g�1(�)Mg(�) in the corresponding orbits CM . These
paths on CM are noncontractible since g(�) inverts the direction of the positive
eigenvector of M and preserves its invariant 2-dimensional "negative" subspace.
Note that corresponding orbits are non-orientable.

Finally the Theorem 6.1 follows from the following proposition.

Lemma 6.8. The orbit of

M =

0
@
�� 1 0
0 �� 0
0 0 �

1
A

is simply-connected:
�(�1(CM )) = 0:

Proof. The stabilizer of M consists of the matrices of the form
0
@
a b 0
0 a 0
0 0 c

1
A

where c > 0. Let g(x) be a curve with g(0) = e; g(�) 2 St(M) de�ning a closed
path � in CM . The family

Ms =

0
@
�� s 0
0 �� 0
0 0 �

1
A ; s 2 [0; 1]
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de�nes the 2-chain �s(�) = g�1(�)Msg(�) since g(�) 2 St(M1) = St(M� ) for � 6= 0.
However, the matrix

M0 =

0
@
�� 0 0
0 �� 0
0 0 �

1
A

under the action of the path g(�) with g(�) 2 StM1
spans a contractible path.

Indeed, the upper (2�2)-block of the stabilizer acts trivially on the scalar (2�2)�
block of matrix M0. We have just mentioned that the path generated by M0 is
noncontractible for the paths g(�) where g(�) has a negative element c only.

This �nishes the proof of Lemma 6.8 and Theorems 6.1.

Remark 6.9. It turns out that the problems discussed in this section are closely
related to the following classi�cation problem for the aÆne Lie algebra orbits.

An aÆne (nontwisted Kac{Moody) Lie algebra Ĝ, where G is a reductive
(matrix) Lie algebra is a one-dimensional central extension of the current Lie alge-

bra ~G = C1(S1;G)). The commutator in Ĝ is de�ned by [(A(x); a); (B(x); b)] =
((AB � BA)(x),

R
Tr(A0(x)B(x))dx). It is known [RS] that the space of matrix

di�erential operators fa d
dx
+A(x); A 2 C1(S1;G)g can be naturally identi�ed with

dual space Ĝ� to the aÆne Lie algebra Ĝ. Under this identi�cation the coadjoint

action of P 2 ~G on Ĝ� coincides (for a 6= 0) with the gauge action on di�erential
operators. Thus the gauge classi�cation of di�erential operators is equivalent to the
classi�cation of the orbits of the coadjoint action on the aÆne Lie algebras. These
orbits are maximal nondegenerate submanifolds of the linear Poisson structure, i.e.,
the symplectic leaves of the Poisson-Lie bracket, also known as Berezin-Kirillov
bracket.

On the other hand description of the classes for the �rst order matrix linear
di�erential equations fa d

dx
	 + A(x)	 = 0; A 2 C1(S1;G)g of the above type

with respect to gauge equivalence: 	 ! P	 (or A 7! P�1 d
dx
P + P�1AP ), where

P 2 ~G = C1(S1; G) is a well known problem of analysis (here G is the Lie group

of the Lie algebra G). Denote by ~GÆ = C1
Æ (S1; G) the connected component of

~G containing the trivial map of S1 onto the unit matrix (connected components of

the entire group ~G are enumerated by the elements of �1(G)):

De�nition 6.10. The monodromy operator M of the linear matrix operator with
�-periodic coeÆcients fa d

dx
+ A(x), A 2 C1(S1;G)g is the operator which sends

each solution  (t) of the corresponding di�erential equation to the solution  (t+�).

Floquet's theorem, [Ha]. The only invariant of the matrix di�erential equation

on the circle under the action of gauge group ~G is the conjugacy class of the
monodromy operator (belonging to G) of this equation; for gauge transformations

from ~GÆ the only invariant is the conjugacy class of the monodromy operator in
the universal covering GÆ of the group G.
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~G-equivalence classes as well as the group ~G itself generally contain several
connected components while for the ~GÆ-equivalence these classes are connected by
de�nition. Therefore, the latter equivalence is often preferable.

The main result of this section can be reformulated using Floquet's theorem as
a result on the orbits of in�nite-dimensional Lie algebras. We obtain the following
classi�cation of the symplectic leaves in the third order aÆne Lie algebras related
to GL3 and SL3.

Theorem 6.11. Symplectic leaves of the linear Poisson structure on the Kac-
Moody algebras related toGL+3 (R) and SL3 are enumerated by the real parameter
a 6= 0, JNF of operators and an invariant from Z=2Z for any JNF except the two
described in the Proposition 6.4. Each of those forms correspond to the unique
symplectic leaf.

In conclusion we recall the proof of Floquet's theorem.

Proof [RS]. Let 	 : R! G be the fundamental solution andM be its monodromy
matrix. Then multiplication of the fundamental solution by a periodic matrix
function changes the monodromy operator M only within its conjugacy class. For
a multiplication by a matrix function P 2 ~GÆ the homotopy type of the path on
G given by the map 	 on the period is also preserved. Then the conjugacy class
of M is the only invariant of the fundamental solution, and thus of the equation
itself.

x7. Classification of curves subordinated to given monodromy operator

Recall that the space D(M) consists of all right-oriented nondegenerate
curves on S2 with a �xed initial ag f0 and subordinated to matrices M from the
conjugacy classM (notation: M 2 M). This means that for any curve  2 D(M)
there exists a matrix M 2 M such that initial ag f0 and �nal ag f1 =Mf0.

Let us �x a matrixM 2 M. Consider the space Df0(M) of all nondegenerate
right-oriented curves with an initial ag f0 and subordinated to M (i.e., for any
 2 Df0(M) the relation f1 =Mf0 holds).

Lemma 7.1. The spaceD(M) is naturally identi�ed with
S
f2FO3

Df (M)=St(M),
where M is an arbitrarily chosen matrix from the conjugacy class of M and
St(M) �GL+3 denotes its stabilizer subgroup.

Proof. Consider the map � :
S
f2FO3

Df (M) ! D(M) shifting any curve by the
unique orthogonal transformation sending the initial ag f of this curve to some
�xed ag f0. Then two curves from

S
f2FO3

Df (M) are mapped to the same

element of D(M) if and only if they di�er by a matrix from St(M).

Thus in order to calculate the number of connected components in D(M) we
can consider it as

S
f2FO3

Df (M)=St(M). By theorem 6.1 the number of connect-

ed components in Df (M) could be either 2 or 3 determined by the existence of
disconjugate curves in Df (M).
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To prove Theorem 2.5 from the introduction we �rst consider the number of
connected components in the set

S
f2FO3

Dcon
f (M), where Dcon

f (M) denotes the set
of all conjugate curves starting at f and ending at Mf and then �nd the number
of components in the quotient

S
f2FO3

Dcon
f (M)=St(M).

Theorem 2.10 implies that an arbitrary 1-parameter deformation of the �nal
ag of any conjugate curve can be covered by its deformation within the class
of conjugate curves. The appropriate choice of parametrization enables us also to
cover any 1-parameter deformation of the �nal matrixM within the conjugacy class
M. Therefore the number of connected components in the set of all right-oriented
conjugate curves subordinated to a given conjugacy class M coincides with the
number of connected components in the universal covering of the conjugacy class
of M. Connected components of conjugacy classes in the universal covering of
GL3 were carefully studied in x6. Finally note that the stabilizer St(M) respects
these components and thus the number of connected components of the quotientS
f2FO3

Dcon
f (M)=St(M) is the same as in

S
f2FO3

Dcon
f (M).

We present below the list of all Jordan normal forms and the number of
components both in the set of conjugate curves and in the set of disconjugate
curves. By the above remark the number #Conj of connected components in the
space of conjugate curves can be taken from x6 (see Theorem 6.1). The column
#Disconj will be discussed later. The total column is summarized in the Theorem
2.5.

JNF #Conj #Disconj Total

a 2 1 3
b 1 1 2
c 2 1 3
d 2 1 3
e 2 1 3
f 2 1 3
g 2 0 2
h 1 1 2
i 2 0 2
j 2 1 3

So it remains to study the number of connected components in the setS
f2FO3

Ddis
f(M)=St(M) where Ddis

f (M) denotes the set of all disconjugate curves

starting at f and ending at Mf , and to de�ne which of them form a separate
connected component and which are connected with

S
f2FO3

Dcon
f (M)=St(M).

Our nearest goal is to determine for which pairs f and M the space Df (M)
contains right-oriented disconjugate curves. It should be mentioned that together
with the M -action in R3 we consider its induced action on the sphere S2.

De�nition 7.2. The ag f is called M -disconjugate if there exists a disconjugate
curve connecting f and Mf .

In order to describe the set of M -disconjugate ags in FO3 we need several
de�nitions.
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De�nition 7.3. The set I(M) of all x 2 S2 � R3 such that x;Mx and M2x are
linearly dependent in R3 is called the degeneration set of the matrix M .

Remark 7.4. The set I(M) is the union of all invariant subspaces of M of positive
codimension. The set I(M) is preserved by the action of St(M).

Remark 7.5. The set I(M) consists of

1) three transversal great circles ifM has the Jordan normal form of the types
a) or b) (see x6);

2) one great circle and a pair of antipodal points for the JNF c);

3) two great circles (one of which is double) for the JNF d) or e);

4) one great circle for the JNF f);

5) the whole S2 otherwise.

De�nition 7.6. A vector x =2 I(M) is called M -positive if the orientation of the
triple x;Mx;M2x coincides with the �xed orientation of R3, and M -negative oth-
erwise.

Remark 7.7. For a �xed orientation on S2 the circle Cx of all ags passing through
any given x (i.e., the �ber Cx of the bundle FO3 ! S2) has a natural orientation
induced from the tangent bundle of S2.

For any point x =2 I(M) we de�ne two pairs of ags (fx; �Fx) and (fx�1 ; �Fx�1)
passing through x. The ags of each pair have the same point x and the same great
circles but with the opposite orientations.

The 4 ags fx; �Fx; fx�1 ; �Fx�1 are de�ned as follows.

a) The ag fx has fot its point x and its great circle passes through x and
Mx and is oriented so that the motion from x to Mx along the shortest of the two
pieces of the great circle is positive. (Recall that we consider the induced action on
S2, and x and Mx can not be antipodal due to condition x =2 I(M).)

b) The ag �Fx coincides with fx except that its great circle has the opposite
orientation;

c) The ag fx�1 has for its point M
�1x and its great circle is M�1(fx), i.e.,

the great circle passing through M�1x and x;

d) The ag �Fx�1 coincides with fx�1 except that its great circle is oriented
oppositely.

In Fig. 7 we give locations ofM -positive andM -negative domains of S2nI(M)
for all JNF a) { f) of M . One can easily check that in all these cases the stabilizer
St(M) acts transitively on M -positive and M -negative domains.

Now we are ready to describe the arc Ax consisting of all M -disconjugate
ags passing through a given point x =2 I(M) on the sphere. Recall that the set of
all ags passing through x form a circle Cx.
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Lemma 7.8. If x =2 I(M) then the arc Ax of all M -disconjugate ags passing
through x coincides with

a) the open interval (fx�1 ; fx) � Cx if x is M -positive;

b) the closed interval [ �Fx; �Fx�1 ] � Cx if x is M -negative.

Proof. Since x =2 I(M) we can choose R2 � R3 so that the points x;Mx and M2x
lie in the same hemisphere. We use central stereographic projection to identify this
hemisphere with R2. Then the pair of vectors (Mx�x;M2x�x) de�nes the same
orientation of R2 if x is M -positive and the opposite orientation if x is M -negative
(see Fig.8).

Fig. 8. The structure of M -positive and M -negative domains
for di�erent JNFs

The orientation of R3 and of the great circle C = R2
T
S2 de�ne the upper

and lower hemispheres H+ and H� of S2 n C as follows. Add to a pair of right-
oriented vectors (v1; v2) on the plane R2 � C the third vector v3 such that the
triple (v1; v2; v3) forms a right-oriented basis in R3. Then v3 is directed to the
upper hemisphere H+. The opposite hemisphere H� is called the lower one.

One can easily see that a ag f 2 Cx passing through x is strictly M -
disconjugate if the following two conditions are satis�ed:

a) the point Mx lies in the upper hemisphere with respect to the great circle of f ;

b) the point x is in the upper hemisphere with respect to the great circle of Mf .



Homotopy classification of nondegenerate quasiperiodic curves on the 2-sphere 149

Fig. 9. The di�erence between M -positive and M -negative points x

This means that if x is M -positive then all the ags between fx�1 and fx are
M -disconjugate, excluding the endpoints because they do not correspond to any of
�ve types of nonstrictly disconjugate curves on Fig. 2.

ForM -negative x the set ofM -disconjugate f 's is formed by the ags between
�Fx and �Fx�1 including the endpoints which correspond to nonstrictly disconjugate
curves.

Let us �nally prove Theorem 2.5. We describe now the connected components
of the set of disconjugate curves for all JNF's.

Let us consider �rst the Jordan normal forms a) { f) where the set I(M)
di�ers from the whole space S2. By the Lemma 7.8 for each point x =2 I(M) the
arc Ax is nonempty and depends continuously on x.

If x is M -negative then the set of disconjugate curves starting at x is con-
nected with the set of conjugate curves starting at x since the boundary ags of
Ax could be connected with conjugate curves via nonstrictly disconjugate curves.
Namely, rotating the initial ag at x it is possible to connect a strictly disconju-
gate curve passing through a nonstrictly disconjugate one with a conjugate curve.
Hence,M -negative points x give no new connected components compared to the setS
f2FO3

Dcon
f (M)=St(M). So it remains to consider the case of M -positive points.

Lemma 7.9. If x(�); � 2 [0; 1) is a path consisting of M -positive points on S2

such that x(1) belongs to I(M) then the arc Ax vanishes as � tends to 1.

Proof. We consider separately the following 3 cases depending on the structure of
I(M):

a) x(1) is a point on a great circle of I(M);

b) x(1) is a point on a double great circle of I(M);

c) x(1) is an isolated point of I(M);

Using Lemma 7.8 we have to prove that in all these cases the open segment
(fx�1(�); fx(�)) vanishes when � ! 1.
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In the cases a) and b) the points x(1), M(x(1)) and M2x(1) form an order
preserving triple on the same great circle. Hence by the de�nition fx(1) = fx�1(1),
and thus fx(�) tends to fx�1(�) when � ! 1. Moreover the set Ax(1) is empty,
i.e., there are no disconjugate curves connecting x(1) and M(x(1)). This gives the
necessary statement.

In the case c) let x(1) be an isolated point of I(M) within a domain of M -
positive points. For any ag f passing through x(1) its image Mf has the same
base point x(1) and its great circle is obtained by rotation in a positive direction
by some angle less than �. The set Ax(1) is also empty in this case. This means
that the segment (fx�1(�); fx(�)) vanishes when the path x(t) tends to the point
x(1) and �nishes the proof of Lemma 7.9.

Corollary 7.10. For the JNF a) { f) the number of connected components formed
by disconjugate curves in the space

S
f2FO3

Ddis
f (M) is equal to the number of M -

positive components in S2nI(M). The number of those components in the quotientS
f2FO3

Ddis
f (M)=St(M) equals one.

Indeed each M -positive component in S2 n I(M) gives rise to a connected
component formed by the union of all arcs in FO3 projected on this component.
This set is separated from the rest of the space of nondegenerate curves by lemma
7.9. The stabilizer acts transitively on M -positive components and this implies
the existence of exactly one disconjugate connected component in the quotientS
f2FO3

Ddis
f (M)=St(M).

The remaining cases g) { j) will be considered separately.

The case j) corresponding to the identity monodromy was investigated by
Little [Li]. According to his results there exists a separate component formed by
strictly disconjugate curves.

In the case g) consider on S2 the great circle E formed by the eigenvectors
with the eigenvalue �. After identi�cation of both hemispheres S2 n E with R2

via central projection the operator M acts as a homothety with the coeÆcient
�=�. For each point x of R2 di�erent from the origin (which corresponds to the
eigenvector with the eigenvalue � on S2) there exists only one ag fx such that it
can be connected withMfx by a (nonstrictly) disconjugate curve, namely, the great
circle of fx passes through x and the origin. See cases �=� > 1 and 0 < �=� < 1
in Fig. 9. The set of such disconjugate curves is connected to the set of conjugate
curves. Indeed, an arbitrarily small perturbation of the line of the ag fx implies
a deformation of any disconjugate curve of the arc Ax into a conjugate one. Thus
disconjugate curves do not form a separate component in this case.

In the case h) the action of M on the same hemispheres constructed as above
is the dilation with the negative coeÆcient ��

�
. For each point x 2 R2 the set of

fx with a nonempty arc Ax consists of the ags the oriented lines of which together
with the radius vector of x form the given positive orientation of R2, see Fig. 9.
They form a separate connected component.



Homotopy classification of nondegenerate quasiperiodic curves on the 2-sphere 151

In the last remaining case i) on each hemisphere of the complement S2 n E
the operator M acts as a Jordan block with the unit eigenvalue. Analogously to
the case g) for each point x 2 R2; x 6= 0 there exists the unique ag fx through x
such that fx and Mfx can be connected by a disconjugate curve, see Fig. 9. These
curves also become conjugate after a small shift of the line of fx. Thus there is no
extra disconjugate component in this case.

This was the last case to consider and the proof of Theorem 2.5 is �nally
�nished.

Fig. 10. Special ags and their disconjugate curves for JNF g), h) and i)

Appendix: Geometry of trains in the space of complete ags

This section is not a part of the proof of main theorems, but is still closely
related to the topic of this paper. We think that geometry of the train variety in
FO3 discussed here is of independent interest.

De�nition A1. The set Tnf of all ags in FO3 nontransversal to a ag f is called
the train of f .

De�nition A2. A positively oriented basis e1; e2; e3 in R
3 is called adjusted to an

oriented ag f = (l; p) if e1 spans the line l and the pair (e1; e2) spans the plane
p with proper orientations. Let us �x an arbitrary ag f and some basis adjusted
to f .
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Consider the natural SL3-action on the space FO3. The stabilizer subgroup
of any ag f can be identi�ed with the subgroup of upper triangular matrices with
positive entries on the main diagonal (in any basis adjusted to f). The orbits of
St(f)-action on FO3 are cells containing the unique coordinate ag, (see [Fu]).
These cells are enumerated by the elements of the group D3 (see [Br]) and their
total number equals 24. Namely, each cell corresponds to a signed permutation on
3 elements with even number of minuses, i.e., to an arbitrary set (a; b; c), where
fa; b; cg 2 �1;�2;�3 and abc = 6. The oriented coordinate ag corresponding to
(a; b; c) is ((sign a)ejaj; (sign b)ejbj; (sign c)ejcj) (for example (2;�3�1) gives the ag
(e2;�e3;�e1)). Adjacency of FO3-cells can be easily obtained from the classical
Bruhat ordering, see Fig. 10 and [St]. By the de�nition Tnf coincides with the
union of all positive codimensional cells of the Schubert decomposition of FO3

associated with f , i.e., all cells except the 4 cells of dimension 3. There are eight
2-cells, eight 1-cells and four 0-cells.

Fig. 11. The closure of the 3-cell (reachable strata are placed in boxes)

The equation for Tnf is as follows. The identi�cation of FO3 with SO3 in any
basis adjusted to f takes f onto the unit matrix. An arbitrary matrix (ai;j) 2 SO3

belongs to the train Tnf if and only if

� = �1(X)�2(X) = 0;

where �i is the right principle (i� i)-minor of the orthogonal matrix (ai;j).

To describe the germ of Tnf in a neighborhood of f we identify the stan-
dard aÆne chart in SO3 with the space of upper triangular matrices of the form0
@
1 x z
0 1 y
0 0 1

1
A. Then the equation of the train of the unit matrix is z(z � xy) = 0.

Globally the space FO3 = SO3 is di�eomorphic to RP3. Each of �1 = 0
and �2 = 0 is di�eomorphic to the 2-torus which is cut by four circles into four
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2-dimensional cells. These circles consist of eight 1-cells forming the 1-skeleton of
Tnf .

Remark A3. The surfaces �1 = 0 and �2 = 0 are de�ned by the following homo-
geneous equations in R4 = f(u1; u2; v1; v2)g:

u21 + u22 = v21 + v22

(u1 � v1)
2
+ (u2 � v2)

2
= (u1 + v1)

2
+ (u2 + v2)

2
:

Thus there are four 3-dimensional cells in FO3. Each one is bounded by
a pair of 2-dimensional cells. Cells from the same pair belong to one torus and
intersects each other in four vertices thus forming a \pillow". Four \pillows" are
glued to each other in a special way which one can restore from the Bruhat order.

Fig. 12. glueing pattern for \pillows"
(edges marked by the same letter belong to one 2-cell)

Remark A4. We have mentioned in x4 that the ag curves of nondegenerate curves
are tangent to the SO3-invariant Cartan distribution C in FO3. Properties of trains
are closely related to those of C. For example if we consider the space of all germs
of ag curves starting at f then they �ll the germ of a domain called the local
reachable domain. It coincides with one of the local components of FO3 n Tnf .
The reachable domain for the ag corresponding to the unit matrix coincides with
the component of the complement to the surface z(z�xy) = 0 given by the system
of inequalities z > 0; z > xy; x > 0; y > 0:

Lemma 4.9 can be reformulated as follows. A nondegenerate curve (t) :
[0; 1]! S2 is disconjugate until the moment �0 2 (0; 1] when the corresponding ag
curve f(t) reaches the train of f(0): f(�0) 2 Tnf(0). Thus all nondegenerate curves
starting at f lie in one connected component of FO3nTnf and remain disconjugate
until they reach its boundary. This component is called the disconjugate domain
of the ag f and denoted by Disf .

If we associate the ag f with the unit matrix then the domain Disf is given
by inequalities �i > 0; i = 1; 2.
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The following proposition describes which strata of the Disf -boundary are
reachable, i.e., which ags in @ Disf could be the �nal ags of nonstrictly disconju-
gate curves.

Proposition A5. A generic point p of the Disf -boundary is reachable if some (and
therefore any) vector v 2 Cjp points outside the domain Disf and is nonreachable

otherwise. A stratum S � Disf of positive codimension is reachable by nonstrictly
disconjugate curves i� S lies in the intersection of the closures of reachable strata.

We skip the proof.

Fig. 10 contains the adjacency diagram of strata in FO3 where signed per-
mutations corresponding to reachable strata are placed in boxes.

Final remarks

As we have mentioned in x4 the ag curves of nondegenerate curves on S2

are tangent to the Cartan distribution C which is the left invariant distribution of

quadrants (R+)
2
on FO3 = SO3. Let us formulate the following general question.

Let Mn be a compact n-dimensional manifold and F be a nonholonomic
distribution of cones, i.e., a distribution of cones such that its associated distribution
of linear subspaces is nonholonomic, see [VG]). Let Regf denotes the space of all
regular i.e., smooth and everywhere tangent to F curves f : [0; 1]!Mng starting
at some �xed tangent element f = (0) and ending elsewhere on Mn, and let
� : Regf ! TMn be the map sending a regular curve to its �nal tangent element.
What kind of homotopy properties holds for the map �?

Recall that for nonholonomic distributions of linear subspaces (instead of
cones) the covering homotopy property is always valid by results of S. Smale but
only in C0-topology.

However for a distribution of cones germs of reachable domains of which
are di�erent from the complete neighborhood of initial points the situation at least
locally is di�erent, i.e., short curves can not satisfy the covering homotopy property
(even in 1-parameter families). Indeed, if we choose a deformation of the �nal
tangent element pulling the point on the base outside the reachable domain then
such a deformation can not be covered by any deformation of the original short
curve. If this local situation is preserved globally (as it holds for example for
a nonholonomic distribution of narrow parallel cones in Rn) then the covering
homotopy fails completely. Still in the case when the global reachable domain of
any point coincides with the whole manifold and there exist closed contractible
curves tangent to the distribution and passing through each tangent element one
can hope that the k-parameter covering homotopy is valid for some k for suÆciently
long 'conjugate' curves as it happened in the situation considered in this paper. It
will be very interesting to study the case of left-invariant distributions on compact
Lie groups and homogeneous spaces.

Another class of questions concerning the Poisson aspect of classi�cation of
curves is the homotopy classi�cation of quasiperiodic curves on spheres and pro-
jective spaces in higher dimensions. The classi�cation of quasiperiodic curves is
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helpful in the study of topology of symplectic leaves of in�nite-dimensional Poisson
structures.

Finally the last and probably the most interesting question is to obtain any
information about the higher homology or homotopy groups of the space of all
closed nondegenerate curves on S2.
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