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TOPOLOGY PRESERVING EDGE CONTRACTION

TAMAL K. DEY, HERBERT EDELSBRUNNER,

SUMANTA GUHA, AND DMITRY V. NEKHAYEV

Abstract. We study edge contractions in simplicial complexes and local con-

ditions under which they preserve the topological type. The conditions are

based on a generalized notion of boundary, which lends itself to de�ning a

nested hierarchy of triangulable spaces measuring the distance to being a man-

ifold.

1. Introduction

This paper studies the operation of shrinking or contracting an edge in a sim-
plicial complex. The repeated application of this operation eventually reduces any
connected complex to a single vertex. During that process, the complex loses all
non-trivial topological properties. We are interested in recognizing edges that can
be contracted without changing the topological type. The repeated application
of such contractions simpli�es the complex while preserving its type. This means
there is a homeomorphism that connects the underlying space of the original with
that of the the simpli�ed complex, and we are also interested in constructing such
a homeomorphism.

Motivation. Edge contractions are used in computer graphics to simplify sur-
faces for fast rendering. A surface consists of triangles in R

3 connected to each
other along shared edges and vertices. In mathematical language it is a 2-complex,
and papers in computer graphics generally restrict themselves to 2-manifolds with
or without boundary. The pioneering publication in this context is Hoppe et al.
[5], but see also Garland and Heckbert [3] for an e�ective numerical prioritization
of edge contractions.
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A related topic is parametrization, where a surface is to be covered by possibly
few and large patches, each the homeomorphic image of an open disk in R2 . The
�rst workable solution is described in a recent paper by Lee et al. [6]. The algo-
rithm simpli�es the surface incrementally and maintains a piecewise linear home-
omorphism. The simpli�cation is generated through repeated vertex removal, but
the same algorithmic idea can also be based on edge contraction [2]. For this to
work it is essential that each simpli�cation step preserves the topological type.

Summary of Results. Edge contractions that preserve the topological type are
recognized by local criteria phrased in terms of a generalized concept of boundary.
Roughly but not exactly, the order of a simplex � in a simplicial complex is the
smallest integer i such that the underlying space of the star of � is homeomorphic
to Rh �X, for some topological space X of dimension i. We could let X equal to the
underlying space of the star and let h be zero, so the order is well-de�ned and at
most the dimension of the star. The j-th boundary of a simplicial complex consists
of all simplices of order i � j. We introduce the Link Conditions for an edge ab
considered for contraction. They require that within each boundary the link of ab
is equal to the intersection of the links of a and of b. More precisely, for each j the
relation between the links of a; b; ab is required within the j-th boundary extended
by cones connecting the (j + 1)-st boundary to a dummy vertex. For 2-complexes
we prove that the Link Conditions characterize edge contractions that permit a
homeomorphic modi�cation limited to the stars of a and b. We prove the same
for 3-manifolds. For general 3-complexes we only prove that the Link Conditions
imply the existence of homeomorphic modi�cations.

Outline. Section 2 introduces de�nitions from combinatorial topology. Section
3 de�nes boundary; its basic properties are established in Appendix A. Section 4
introduces edge contractions and unfoldings. Sections 5 and 6 prove the mentioned
results for contractions in 2-complexes and in 3-complexes. Section 7 concludes the
paper.

2. Basic Definitions

We use concepts and terminology from combinatorial topology and discuss sim-
plicial complexes, topological spaces, and maps between spaces. Most but not all
de�nitions are standard, and the standard ones can also be found in textbooks such
as Munkres [9].

Simplicial complexes. A k-simplex, �, is the convex hull of k +1 � 1 aÆnely
independent points. Its dimension is dim � = k. A face of � is a simplex, � , de�ned
by a non-empty subset of the k + 1 points, and � is proper if the subset is proper.
We call � a coface of � and write � � �. The interior, int�, is the set of points
contained in � but not in any proper face of �.

A simplicial complex, K, is a �nite collection of simplices so � 2 K and � � �

implies � 2 K, and �; �0 2 K implies � \ �0 is either empty of a face of both. All
complexes in this paper are simplicial. The dimension ofK is dimK = maxfdim� j
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� 2 Kg. A d-complex is a simplicial complex of dimension d. A subcomplex is a
simplicial complex L � K. A simplex in K is principal if it has no coface in K. The
vertex set contains all 0-simplices: VertK = f� 2 K j dim� = 0g. The underlying

space is the union of simplex interiors: jjK jj =
S
�2K int�.

Let B be a subset of K that is not necessarily a subcomplex. The closure of B
is the set of all faces of simplices in B. The star of B is the set of all cofaces of
simplices in B. The link of B is the set of all faces of cofaces of simplices in B that
are disjoint from simplices in B. In more formal notation,

B = f� 2 K j � � � 2 Bg;

StB = f� 2 K j � � � 2 Bg;

LkB = StB � StB:

The closure is the smallest subcomplex that contains B. The link is always a
complex while the star is generally not a complex. The closure of the star is
always a complex and denoted as StB = StB. The concepts of dimension and of
underlying space extend immediately to subsets of a complex: dimB = dimB and
jjB jj =

S
�2B int�.

We introduce operations that create new simplices and complexes from old ones.
The cone from a point x to a simplex � is de�ned if x is not an aÆne combination of
the vertices of �, and in this case it is the simplex x �� = conv (x [ �) of dimension
dim� + 1. A subdivision of K is a complex SdK so jjK jj = jj SdK jj and every
simplex in SdK is contained in a simplex in K. Subdivisions can be created by
various operations. One such operation is starring from a point x 2 jjK jj: remove
all simplices that contain x and add x together with the cones from x to the faces
of the removed simplices that do not contain x.

Topological spaces. A d-dimensional point is a d-tuple of real numbers. The
norm of a point x = (x1; x2; : : : ; xd) is kxk = (

P
x2i )

1=2. The d-dimensional
Euclidean space, Rd , is the set of d-dimensional points together with the Euclidean
distance function that maps each pair of points x; y to the non-negative real kx� yk.
In addition to Rd we need names for three other standard topological spaces: the
(d� 1)-sphere, the d-ball, and the d-halfspace:

S
d�1 = fx 2 R

d j kxk = 1g;

B
d = fx 2 R

d j kxk � 1g;

H
d = fx 2 R

d j x1 � 0g:

Most spaces in this paper are underlying spaces of complexes K. The space jjK jj is
subset of some Euclidean space Re , and it is equipped with the subspace topology
inherited from the Euclidean topology of Re .

A d-manifold is a non-empty topological space, M , so every point x 2 M has
an open neighborhood homeomorphic to Rd . For complexes it suÆces to check the
de�ning condition at the vertices: jjK jj is a d-manifold i� the underlying space of ev-
ery vertex star is homeomorphic to Rd . A d-manifold with boundary is a non-empty
topological space, N, so every x 2 N has an open neighborhood homeomorphic to
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Rd or to H d . The boundary of N is the set of points with neighborhoods homeo-
morphic to H d . The boundary is either empty or a (d�1)-manifold. For complexes
it again suÆces to check the de�ning condition at the vertices: jjK jj is a d-manifold
with boundary i� the underlying space of every vertex star is homeomorphic to Rd

or to H d . Note that every d-manifold is a d-manifold with boundary, namely empty
boundary, but a d-manifold with non-empty boundary is not a d-manifold.

Maps. A homeomorphism between two topological spaces X and Y is a bijection
h : X! Y so h and h�1 are both continuous. If such an h exists then X and Y are
homeomorphic, denoted as X � Y, and they are said to have the same topological

type. A triangulation of X is a simplicial complexK with X � jjK jj. X is triangulable
if it has a triangulation.

We need some de�nitions to introduce the combinatorial counterpart of a home-
omorphism. A vertex map for two complexes K and L is a function f : VertK !
VertL so the vertices of a simplex in K are mapped to the vertices of a simplex in
L. The barycentric coordinates of a point x 2 �, � 2 K, are the unique reals bu(x),
u 2 VertK, so bu(x) 6= 0 only if u � � and

x =
X

u2VertK

bu(x) � u;

1 =
X

u2VertK

bu(x):

We use barycentric coordinates to extend f in a piecewise linear fashion. The
simplicial map � : jjK jj ! jjL jj is de�ned by

�(x) =
X

u2VertK

bu(x) � f(u)

for every x 2 jjK jj. The map � is continuous by construction, but it is neither
necessarily injective nor necessarily surjective. It is a homeomorphism i� f is
bijective and f�1 is also a vertex map. In this case � is an isomorphism and K
and L are isomorphic, which is denoted as K � L. K and L are combinatorially

equivalent if they have isomorphic subdivisions, which is denoted as K ' L. We
need the concept of combinatorial equivalence also for subsets of complexes: B ' C

if there is an isomorphism jjB jj ! jjC jj that maps jjB jj to jjC jj.
We comment that there is a subtle di�erence between the piecewise linear and

the topological categories. This was �rst discovered by Milnor [8] who exhibited
two homeomorphic triangulations that are not combinatorially equivalent. To avoid
related diÆculties we stay within the piecewise linear category by basing further
de�nitions on the notion of combinatorial equivalence. All applications of combi-
natorial equivalence in this paper are to complexes and to sets of simplices whose
complement in the closure are complexes. We therefore do not need a combinatorial
theory of non-compact spaces.
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3. Order and Boundary

The results of this paper rest on the fundamental concept of a strati�cation
de�ned as a nested sequence of boundaries. For 2-complexes these boundaries have
been de�ned earlier by Whittlesey [13]. We begin by de�ning the order of a simplex
and then proceed to introduce the strati�cation.

Order of a simplex. Let � be a simplex in a complex K, and let k be the
dimension of the star: k = dimSt�. The order of � is the smallest integer i = ord�
for which there is a (k � i)-simplex � with combinatorially equivalent star: St � '
St �. We assume � belongs to some suitable other complex so its star is de�ned.
Since int � is homeomorphic to Rk�i the star of � is homeomorphic to Rk�i � X,
for some topological space X of dimension i. Recall that i is chosen as small as
possible. The order cannot exceed the di�erence between the dimension of � and
the dimension of its star:

Order Bound. ord� � dim St� � dim�.

Proof. For i = k � dim� we have dim � = k � i = dim� and can therefore choose
� = �. The stars of � and � are the same and therefore certainly combinatorially
equivalent.

Shark-�n example. The shark-�n complex in Figure 1 illustrates some of the
de�nitions. It is constructed by gluing two closed disks (triangulations of B 2 ) along
a simple path. That path is a contiguous piece of the boundary of one disk (the
�n) and it lies in the interior of the other disk.

Figure 1. The shark-�n complex has dimension 2 and vertices of
all orders: 0, 1, 2.

The dimension of the shark-�n complex is 2 so every triangle has order 0. Each
edge belongs to one, two, or three triangles and we call this number the degree of
the edge. All degree-2 edges have order 0 and the others have order 1. The degree-3
edges are witnesses of the fact that the shark-�n complex is not a manifold with
boundary. The violation of the manifold property by degree-3 edges is less severe
than the violation that can be found at the two endpoints of their path. The star
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of an order-0 vertex is a disk, and that of an order-1 vertex is a cycle of half-disks
glued along a path of two edges. There are two order-2 vertices, and their stars are
more complicated than disks or glued half-disks.

Boundary of a complex. The j-th boundary of a simplicial complex K is the
set of simplices with order no less than j:

Bdj K = f� 2 K j ord� � jg:

By the Order Bound, the j-th boundary contains only simplices of dimension
dimK � j or less. Consider again the shark-�n complex in Figure 1. The 1-st
boundary consists of two circles. Even though the 1-st boundary of the two circles
is empty, the 2-nd boundary of the shark-�n is non-empty and consists of the two
endpoints of the path along which the two disks are glued, see also Property 5 in
Appendix A. Note that both boundaries of the shark-�n are complexes. Property
3 in Appendix A shows that this is not a coincidence and that every boundary
of a complex is again a complex. Property 2 asserts that the j-th boundary is a
topological concept and does not depend on the triangulation. More precisely, the
restriction of a simplicial homeomorphism to the j-th boundaries of two complexes
is again a simplicial homeomorphism.

The j-th boundary contains the (j+1)-st boundary. Hence, if the j-th boundary
is empty then all later boundaries are also empty. Underlying spaces of complexes
with empty 1-st boundary are manifolds, but the reverse is not true. Underlying
spaces of complexes with empty 2-nd boundary can be manifolds with boundary
but can also be di�erent. For example, the 2-nd boundary of a 2-complex that
triangulates a sphere with equator disk is empty, but the complex is not a manifold
with boundary.

Hierarchy of complexes. The boundary concept can be used to de�ne a
hierarchy of progressively more complicated complexes. Let Mj be the class of
simplicial complexes with empty boundaries beyond index j. Since succeeding
boundaries are contained in preceding ones, we have

Mj = fK j Bdj+1K = ;g:

The only member of M�1 is the empty complex. The classes form a nested hierar-
chy:

f;g = M�1 � M0 � M1 � M2 � : : : ;

and all inclusions are proper. For a complex we use the minimum index i with
K 2 Mi as a measure of how complicated it can get locally. It is plausible but also
true that the i-th boundary is at least i classes simpler than the original set.

Nesting Lemma. If K 2 Mj then BdiK 2 Mj�i.

Proof. K 2 Mj i� Bdj+1K = ;. By Property 5 in Appendix A we have Bd` BdiK �
Bdi+`K for every index ` � 0. This implies Bdj�i+1 BdiK = ;, which is equivalent
to BdiK 2 Mj�i.

Note, however, that BdiK can be more than i classes simpler than K. Consider
for example two tetrahedra that meet at a common vertex, u, and let K be the
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2-complex of proper faces. Vertex u has order 2 and all other simplices have order
0. It follows that K 2 M2 and Bd1K = fug 2 M0, which is one index stronger
than claimed by the Nesting Lemma.

4. Edge Contraction

The motivation for de�ning j-th boundary is its role in characterizing edge con-
tractions that preserve the topological type. We begin by de�ning edge contractions
and then proceed to discussing conditions under which they permit the construction
of isomorphic subdivisions.

Edge contractions. The contraction of an edge ab in a complex K replaces
St ab = St a [ St b by the star of a new vertex, St c. Let E = St ab and C = St c be
the closures of the two stars. E and C connect to the rest of K at the common link
of ab and c, which is X = E� St ab = C � St c. We can think of the contraction as
a surjective simplicial map 'ab : jjK jj ! jjL jj de�ned by the surjective vertex map

f(u) =

�
u if u 2 VertK � fa; bg;
c if u 2 fa; bg:

Outside jjE jj, 'ab is the identity, but in the interior it is not even injective. We are
interested in ways to make edge contractions homeomorphic. An unfolding of 'ab
is a simplicial homeomorphism � : jjK jj ! jjL jj. It is local if � di�ers from 'ab only
inside jjE jj, and it is relaxed if � di�ers from 'ab only inside jj StE jj. Clearly every
local unfolding is also relaxed, but not every relaxed unfolding is local.

Isomorphic subdivisions. Each unfolding � of 'ab corresponds to a pair of
isomorphic subdivisions of K and L. If the subdivisions a�ect only St ab and St c
then � is local, and if they only a�ect StE and StC then � is relaxed. Subdivisions
of both kinds can be generated from isomorphic subdivisions SdE of E and SdC
of C. Subdivisions that exploit symmetry need to be avoided since they cannot be
combined with the identity. We therefore say the isomorphism � : jj SdE jj ! jj SdC jj
preserves the connection if �(x) 2 � for every point x 2 � 2 X , whereX = E \ C as
before. We call SdE transparent if X � SdE, and similar for C. The restriction to
jjX jj of any connection preserving isomorphism de�ned by transparent subdivisions
is necessarily the identity.

Isomorphic Subdivision Lemma. If E and C have subdivisions SdE and SdC
admitting a connection preserving isomorphism then 'ab has a relaxed unfolding.

If furthermore SdE and SdC are transparent then 'ab has a local unfolding.

Proof. We �rst show the second claim. Since SdE is transparent, we can replace
E by SdE and get a subdivision of the entire complex, and similar for C. Let
these subdivisions be K 0 = (K � E) [ SdE and L0 = (L � C) [ SdC. To see
that K 0 and L0 are isomorphic note that they share X = E \ C by assumption of
transparency. On one side of X we have an isomorphism jj SdE jj ! jj SdC jj whose
restriction to jjX jj is the identity. On the other side of X we have the identity
because K 0 � SdE = L0 � SdC.
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To show the �rst claim we form K 0 and L0 as before, but because X may have
been subdivided, K 0 and L0 may not be complexes. Let � 2 K�E be a simplex with
a face � 2 E that has been subdivided in SdE. In this case � 62 K 0, and to locally
repair the complex property we only need to subdivide � by starring from an interior
point. The starring is done inductively in the order of non-decreasing dimension,
and it e�ects only simplices in StE �E. Whenever � is subdivided within K 0 it is
similarly subdivided within L0. The result are isomorphic subdivisions of K 0 and
L0 de�ning a relaxed unfolding of 'ab.

By de�nition, if 'ab has a local or a relaxed unfolding then K ' L. We will see
in Section 5 that the reverse is not true: there are edge contractions with unfoldings
that are necessarily global.

Link conditions. We formulate a general condition, which we show implies
edge contractions with local and relaxed unfoldings in some cases. For each i we
extend the i-th boundary by adding a dummy vertex, !, and cones from ! to all
simplices in the (i+ 1)-st boundary:

Bd!i K = BdiK [ ! � Bdi+1K:

If Bdi+1K = ; then Bd!i K = BdiK. We are only interested in the topology of
the extended complex and do not worry about the location of ! and the geometric
shape of the cones. For a simplex � 2 Bd!i K we denote the link within Bd!i K as
Lk!i �.

Link Conditions.: Lk!i a \ Lk!i b = Lk!i ab, 8i � 0.

Refer to the two portions of a surface triangulation in Figure 2 as examples. In
both cases only the links within K are relevant, that is, we only consider the case
i = 0.

Figure 2. To the left we have Lka \ Lk b = fx; yg = Lkab, and
the contraction of ab has a local unfolding. To the right we have
Lka \ Lk b = fx; y; z; xzg 6= Lk ab, and the contraction of ab has
no unfolding.
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Redundancy. Table 1 unwinds the Link Conditions for a d-complex in Mj .
The conditions simplify for large values of i and j. For i = j in the diagonal of
Table 1 the extension with ! is redundant. For i = j = d the i-th boundary is a
0-complex so all links are empty and the condition is void. For i = j = d � 1 � 1

M0 M1 : : : Md�1 Md

0 Lk0 Lk!0 : : : Lk!0 Lk!0
1 Lk1 : : : Lk!1 Lk!1
...

. . .
...

...
d� 1 ; Lk!d�1
d ;

Table 1. For a complex in Mj there are j + 1 conditions, some
may be void (i = j = d) and some may be subsumed by others
(i = j = d� 1).

the condition is subsumed by the condition for d�2. To see this note that Bdd�1K
has dimension at most 1. The condition thus simpli�es to Lkd�1 a \ Lkd�1 b = ;,
which is violated i� a and b belong to a cycle of three edges. Let x be the third
vertex. Then the edge x! 2 Lk!d�2 a because ax belongs to the (d� 1)-st boundary
and thus ax! 2 Bd!d�2K. Similarly, x! 2 Lk!d�2 b, but x! 62 Lk!d�2 ab because the
extended (d� 2)-nd boundary is a 2-complex and thus contains no tetrahedra.

1-complexes. It is instructive to consider the fairly straightforward case of a
1-complex or graph G. The contraction of an edge ab 2 G changes the topological
type i� a and b have a common neighbor or both have degree di�erent from 2, see
Figure 3.

Figure 3. The contraction of ab removes a loop to the left and a
vertex of the 1-st boundary to the right.

The two cases are captured by the Link Conditions for d = j = 1. Indeed,
Lk!0 a \ Lk!0 b = ; i� ab is di�erent from the two cases illustrated in Figure 3. Sup-
pose now that ab satis�es the link condition and assume without loss of generality
that a has order 0. In this case we get a local unfolding by subdividing xc into
xu; uc, where x 6= b is the other neighbor of a. If ab violates the link condition then
there is no unfolding, not even a non-local one.
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Theorem A. If G 2 M1 is a 1-complex then the following statements are equiv-

alent:

(i) Lk!0 a \ Lk!0 b = ;.
(ii) 'ab has a local unfolding.

(iii) 'ab has an unfolding.

5. 2-Complexes

This section proves that for 2-complexes the Link Conditions characterize edge
contractions with local unfoldings. This result is strengthened for 2-manifolds where
the Link Conditions characterize edge contractions that have any unfolding at all.

Stars and half-stars. To prove that an edge contraction 'ab has a local un-
folding we establish transparent subdivisions of E = St ab and C = St c that
permit a connection preserving isomorphism. This task is simpli�ed by assuming
orda = ordab and choosing the new vertex c equal to b. The contraction can
then be visualized by sliding a towards and eventually merging into b, see Figure
4. The operation only a�ects simplices in A = St a and leaves simplices in E � A

unchanged. Call R = Lk a = A � St a the rim of A. Of the simplices in A the
ones in St ab disappear or merge into the rim, and the others remain but assume
di�erent geometric shape and position. We call A0 = A�St b the half-star of a and
R0 = A0 � (St a� St b) the rim of A0. The image of A0 under the contraction is an
isomorphic subcomplex C 0 of C. To establish transparent subdivisions of E and C
that permit a connection preserving isomorphism it suÆces to construct such sub-
divisions of A and C 0. This is equivalent to constructing isomorphic subdivisions of
A and A0 that permit an isomorphism whose restriction to the intersection of the
two rims is the identity. It is therefore essential that R � R0, which will always be
the case when we apply the construction.

Figure 4. The overlay of two subdivisions of a regular k-gon. To
the left the subdivisions are obtained by starring from the center
and from a vertex. To the right they are obtained by starring from
the midpoint and from an endpoint of an edge.

Figure 4 illustrates the construction of isomorphic transparent subdivisions.
Both A and A0 are mapped isomorphically to subdivisions of the same regular
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k-gon. To the left, A and A0 are disks of k and k� 2 triangles. To the right, A and
A0 are half-disks of k � 1 and k � 2 triangles.

General 2-complexes. Let K be a 2-complex and ab 2 K. Recall that the
contraction of ab is a simplicial map 'ab : jjK jj ! jjL jj. There are three Link
Conditions and Table 1 indicates that the last one is void.

Theorem B. If K 2 M2 is a 2-complex then the following statements are equiv-

alent:

(i) ab satis�es the Link Conditions for j = 2:
(i.0) Lk!0 a \ Lk!0 b = Lk!0 ab, and
(i.1) Lk!1 a \ Lk!1 b = ;.

(ii) 'ab has a local unfolding.

Figure 5. From left to right, ab is principal, ab is not principal
and does not belong to the 1-st boundary, ab belongs to the 1-st
boundary. In each case orda = ordab and in the upper row b has
the same and in the lower row it has higher order.

Proof. (i) =) (ii). The argument for suÆciency of the Link Conditions distin-
guishes three cases all of which are illustrated in Figure 5. We note that the order
of an endpoint of edge ab is at least as large as the order of ab, see Property 3 of
Appendix A. The Link Conditions imply that not both endpoints can exceed the
order of ab, and we assume without loss of generality that orda = ordab.

Case 1.: ab is principal. Thus ordab = orda = 0, and a belongs to exactly two
edges: ab and ax. L is obtained from K by removing xa; a; ab and adding xb.
The isomorphic transparent subdivisions of fxa; a; abg and fxbg are obvious.
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Case 2.: ab is not principal and ordab = orda = 0. Map A = St a isomorphi-
cally to a subdivision of the regular k-gon as in Figure 4 to the left, where k
is the number of triangles in A. Similarly, map the half-star A0 = A � St b
isomorphically to a subdivision of the regular k-gon into k� 2 triangles. The
two rims map isomorphically to the boundary of the k-gon and the maps
agree at R \ R0. We can therefore form a common subdivision that leaves
the boundary of the k-gon unchanged. This subdivision maps back to trans-
parent subdivisions SdA, SdA0, and SdC 0. We add the remaining simplices
of E to SdA and the remaining simplices of C to SdC 0 and get transparent
subdivisions of E and C that permit an isomorphism whose restriction to the
underlying space of X = E \ C is the identity. In other words, the isomor-
phism preserves the connection. The Isomorphic Subdivision Lemma implies
(ii).

Case 3.: ordab = orda = 1. Let ax be the other edge with order 1 in the star
of a. A is a cycle of half-disks, and each half-disk is a fan of triangles starting
at ax and ending at ab. Let D be the closure of such a half-disk and let k� 1
be the number of triangles in D. Map D isomorphically to a subdivision of
the regular k-gon with the image of a at the midpoint of a k-gon edge, as
in Figure 4 to the right. A0 is another cycle of half-disks, this time around
ax. Let D0 be the closure of the half-disk that corresponds to D. Map D0

isomorphically to a subdivision of the regular k-gon, with the image of a at
the vertex that is the image of b under the earlier map. We form a common
subdivision that leaves the k-gon boundary unchanged, except for one edge
which is cut into two by the image of a under the �rst map. We denote this
edge as yz. That subdivision maps back to isomorphic subdivisions of D and
D0. Both subdivisions are transparent except at the preimages of yz. The
subdivisions of the half-disks of A meet along xa; ab and together they form
SdA, which is transparent. Similarly, the subdivisions of the half-disks of A0

meet along xa. The images of these subdivisions together form SdC 0, which
is also transparent. By construction SdA and SdC 0 are isomorphic. After
adding the remaining simplices of E to SdA and those of C to SdC 0 we have
transparent subdivisions of E and C that permit a connection preserving
isomorphism. The Isomorphic Subdivision Lemma implies (ii).

:(i) =) :(ii). The argument for necessity of the Link Conditions distinguishes
between the violation of (i.0) and that of (i.1). We will show that in either case

the topological type of the link of at least one simplex in Lk ab changes. Since a
local unfolding is the identity outside St ab, this contradicts its existence. Note
that the link of an edge is contained in the link of its endpoints and de�ne L0 =
(Lk!0 a \ Lk!0 b)� Lk!0 ab and L1 = Lk!1 a \ Lk!1 b.

Case 1.: (i.0) is violated, or equivalently L0 6= ;. First suppose that L0 con-
tains an edge xy. The link of xy is a �nite set of vertices that contains both
a and b. The contraction of ab decreases the cardinality of Lkxy and thus
changes its type. Next suppose that L0 contains no edge but it contains a
vertex x. Lkx is a 1- or 0-complex that contains both a and b as vertices.
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If a and b belong to di�erent components then the contraction of ab merges
these components. Otherwise, every path from a to b in Lkx has at least
three edges, for ay; by 2 Lkx implies ayx; byx 2 K and therefore yx 2 L0,
which contradicts the assumption. The contraction of ab thus forms one or
more cycles. In both cases the topological type of Lkx changes.

Case 2.: (i.0) is satis�ed and (i.1) is violated, or equivalently L0 = ; and
L1 6= ;. Then a; b 2 Bd1K for else L1 would be empty, and ab 2 Bd1K
for else ! 2 L0 would violate (i.0). Let x be a vertex in L1. If x = ! then

a; b 2 Bd2K. St ab thus contains two vertices of order 2, while St c contains
at most one such vertex, namely c. This contradicts E ' C. Finally suppose
x 6= !. We have a; b; ab 2 Lkx, and because xa; xb 2 Bd1K the degrees of a
and b in Lkx are both di�erent from 2. In other words, a and b both belong
to Bd1 Lkx, which is a set of vertices. The contraction of ab removes a vertex
from the 1-st boundary and thus changes the type of Lkx.

Non-local isomorphism. An edge contraction with local unfolding preserves
the topological type, but there are type preserving edge contractions that have
neither a local nor a relaxed unfolding. An example is the folding chair complex
illustrated in Figure 6. Before the contraction of ab the complex consists of 5
triangles in the star of x and 4 disks U; V; Y; Z glued to the link of x as shown.
Vertices a and b belong to the 1-st boundary, but ab does not. The dummy vertex
! thus violates the Link Condition for i = 0 and so does x.

Figure 6. The 2-dimensional folding chair complex. Fat edges
belong to three triangles each.

After the contraction there is one less triangle in the star of x, U loses two
triangles, and V; Y; Z are unchanged. The contraction exchanges left and right in
the asymmetry of the complex. We can �nd a homeomorphism jjK jj ! jjL jj that
acts like a mirror, mapping U to V , V to U , Y to Z, Z to Y . Indeed, every
homeomorphism must act this way and di�er from the identity almost everywhere.

2-manifolds. The 2-complex K belongs to M0 i� jjK jj is a 2-manifold. In this
case condition (i.1) in Theorem B is void and condition (i.0) simpli�es because the
extension with ! is redundant. We strengthen the result implied by Theorem B by
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proving that the violation of the Link Condition contradicts the existence of any
unfolding, whether local or not.

Theorem B0. If K 2 M0 is a 2-complex then the following statements are

equivalent:

(i) Lka \ Lk b = Lk ab.
(ii) 'ab has a local unfolding.

(iii) 'ab has an unfolding.

Proof. (i) =) (ii) follows from Theorem B and (ii) =) (iii) from the de�nitions.
To prove :(i) =) :(iii) we distinguish two cases depending on the dimension of
the violating simplex. Let L0 = (Lk a \ Lk b)�Lkab. :(i) is equivalent to L0 6= ;.

Case 1.: L0 contains an edge xy. Then axy and bxy are replaced by a single
triangle cxy. Hence xy belongs to only one triangle in L, which contradicts
L 2 M0.

Case 2.: L0 contains no edge but it contains a vertex x. Then ax and bx are
edges in K. Each belongs to two triangles: apx 6= aqx, brx 6= bsx. The four
triangles are pairwise di�erent because abx 62 K. The four vertices p; q; r; s
are pairwise di�erent because L0 contains no edge. Hence cx belongs to four
triangles in L, which contradicts L 2 M0.

6. 3-Complexes

This section extends Theorems B and B0 to complexes of dimension 3. We
begin with the main geometric tool, which is Steinitz' classical theorem for convex
3-polytopes [11].

Steinitz' theorem. A convex 3-polytope is the convex hull of �nitely many
points in R3 that do not all lie in a common plane. Its boundary is a complex
of vertices, edges, and (2-dimensional) facets. If the points are in general position
then all facets are triangles. The 1-skeleton is the subcomplex of all vertices and
edges. A graph G is a 1-complex. It is connected if for every partition of VertG
into two non-empty sets, G contains an edge with one endpoint in each set. A
connected graph is three-connected if the deletion of any two vertices together with
their edges leaves the graph connected. G is planar if it is isomorphic to a 1-complex
in R2 . For example, the 1-skeleton of every convex 3-polytope is planar and three-
connected. A fundamental result by Steinitz asserts that these 1-skeletons exhaust
all three-connected planar graphs [11].

Steinitz' Theorem. For every three-connected planar graph there is a convex

3-polytope with an isomorphic 1-skeleton.

Planar graphs that are not three-connected arise by removing edges and vertices.
Let X be a triangulation of S2. Let a 2 X be a vertex and consider the graph G
consisting of all edges and vertices in X other than the ones in the star of a. A
drawing of G in R2 has one k-gon and otherwise only triangles. The boundary
of the k-gon is the link of a within X , and we denote it by U . In Figure 7 we
have k = 8 and the k-gon is the unbounded outer region of the drawing. G is
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three-connected i� no edge xy 2 G � U has both endpoints in U . If there is such
an edge xy we repair three-connectedness by cutting xy at an interior point z and
connecting z to the opposite vertices of the two adjacent triangles. This is done
in any opportune sequence over all such edges xy, as in Figure 7. The operation
corresponds to subdividing X by starring from the points z in the same sequence.

Figure 7. A triangulation of the 2-sphere after removing a vertex
of degree k = 8. There are three edges xy that are cut into two
each to restore three-connectedness.

General 3-complexes. Let K be a 3-complex and let ab 2 K. There are four
Link Conditions, and Table 1 indicates that the last one is void.

Theorem C. If K 2 M3 is a 3-complex then the �rst statement implies the

second:

(i) ab satis�es the Link Conditions for j = 3:
(i.0) Lk!0 a \ Lk!0 b = Lk!0 ab,
(i.1) Lk!1 a \ Lk!1 b = Lk!1 ab, and
(i.2) Lk!2 a \ Lk!2 b = ;.

(ii) 'ab has a relaxed unfolding.

Proof. We distinguish four cases, the �rst of which has been treated in the proof
of Theorem B. Recall that the order of an endpoint of ab is at least as large as the
order of ab. The Link Conditions imply that not both endpoints can exceed the
order of ab, and we assume orda = ordab.

Case 1.: dimSt ab � 2. The Order Bound implies ordab = orda � 1. The
presence of a tetrahedron in St a would imply one in St ab, hence dimSt a � 2.
In other words, the neighborhood of a is as in Theorem B. Let K 0 be the 2-
complex obtained fromK by removing all simplices � that satisfy dimSt� = 3
and ord� = 0. For a simplex � 2 K 0 the order in K 0 is either the same
or less than the order in K. Speci�cally, if dim St� � 2 in K then the
star remains unchanged and so does ord�. If dimSt� = 3 in K then the
dimension of the star drops and so does ord�. We will argue shortly that the
3-dimensional Link Conditions forK imply the 2-dimensional Link Conditions
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forK 0. Theorem B therefore applies and we get a local unfolding '0ab : jjK
0 jj !

jjL0 jj which di�ers from the identity only inside jj St a jj. A local unfolding of 'ab
is obtained by extending '0ab with the identity inside all simplices in K �K 0.

We now argue that if ab satis�es (i) then ab 2 K 0 satis�es the Link Condi-
tions for j = 2. Since dimSt ab � 2 in K, the star of ab is the same in K and
in K 0. It follows that Lk!0 ab is the same in K and K 0. In general, stars and
boundaries cannot increase from K to K 0. If follows that Lk!0 a and Lk!0 b do
not increase. Since the link of an edge is always contained in the links of its
vertices, Lk!0 a \ Lk!0 b = Lk!0 ab in K implies the same in K 0. The second
Link Condition applies only if the order of both a and b is at least 1 in K 0.
Then ordab � 1 because of (i.0). But ab is principal in Bd1K so its link is
empty. The links of a and b can again not increase from Bd!1 K to Bd!1 K

0.
Hence Lk!1 a \ Lk!1 b = ; in K implies the same in K 0.

Case 2.: dimSt ab = 3 and ordab = orda = 0. De�ne A = St a as usual.
Using Steinitz' Theorem we map A isomorphically to a subdivision S of a
convex 3-polytope P , with the image of a in the interior, the image of b at a
vertex v of P , and the rim R = Lka isomorphic to the boundary complex of
P . Similarly, we map the half-star A0 = A � St b isomorphically to another
subdivision S0 of P , with the image of a at v, and the rim R0 isomorphic
to the boundary complex of P . We construct a common subdivision T of S
and S0 that keeps the boundary complex unchanged. T maps back to SdA,
SdA0, and SdC 0, all transparent and isomorphic. We add the remaining
simplices of E to SdA and the remaining simplices of C to SdC 0 and obtain
transparent subdivisions of E and C. By construction there is an isomorphism
that preserves the connection. The Isomorphic Subdivision Lemma implies
that 'ab has a local unfolding.

Case 3.: dimSt ab = 3 and ordab = orda = 1. By de�nition there is a triangle
� with a 3-dimensional star St � ' St a consisting of one, three, or more
tetrahedra that share �. The number of tetrahedra cannot be two, else we
would have orda = 0. Let U be the set of simplices with order 1 in St a. It
corresponds to � in St � and therefore forms an open disk that decomposes
St a into one, three, or more components. A component B1 of St a � U has
only order 0 simplices.

The closure of a component, A1 = B1, is a triangulation of B 3 , and the
boundary, X1 = Bd1A1, is a triangulation of S2. We use Steinitz' Theorem
to map A1 to a subdivision S1 of a convex 3-polytope P1. Except for a all
vertices of A1 map to vertices of P1, and a maps to a point in the interior of
a facet of P1. To accomplish this proceed as described earlier: construct the
1-complex of edges and vertices in X1, remove a and its edges, cut and add
edges to restore three-connectedness, and let G1 be the isomorphic 1-skeleton
of a convex 3-polytope P1. Finally, subdivide P1 by starring from the image
of a. Because edges were cut and added, the boundary complex of P1 is
isomorphic to a subdivision of X1 but not necessarily to X1 itself. Similarly,
S1 is isomorphic to a subdivision of A1 but not necessarily to A1 itself. The
image of b is a vertex of the k-gon facet. We form a second subdivision S01 of
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P1 by starring from this vertex. S01 is isomorphic to a subdivision of the half-
star A0

1 = A1�St b. The right picture in Figure 4 illustrates S1 and S
0

1 in the
2-dimensional case where P1 is a convex polygon. The common subdivision
T1 of S1 and S01 is obtained as usual, by intersection and starring. T1 maps
back to a subdivision of A1 and a subdivision of A0

1. These subdivisions are
not necessarily transparent.

To �nish the argument we repeat the construction for all other components
B` of St a � U . The subdivisions of the A` are glued along the preimage of
U , which is subdivided as a result of mapping back the subdivision of the
k-gon facet, see left picture in Figure 4. Here it is important that the sub-
divisions of the facets be isomorphic, but this can easily be achieved because
the image of a can be freely chosen anywhere in the interior of the facet. The
result is a subdivision SdA of A. We add the remaining simplices of E, possi-
bly after subdivision because SdA is not necessarily transparent, and obtain
SdE. Similarly, the subdivisions of the A0

` are glued along the preimage of U
and mapped to SdC 0. We add the remaining simplices of C, possibly after
subdivision, and obtain SdC. Since the boundaries of SdA and SdA0 are
isomorphic, the subdivision of the remaining simplices in C can be done such
that SdE � SdC. By construction, SdE and SdC permit an isomorphism
that preserves the connection. The Isomorphic Subdivision Lemma implies
(ii).

Case 4.: ordab = orda = 2. By the Order Bound, the dimension of the stars
is dimSt ab = dimSt a = 3. It follows that a belongs to exactly two edges
of order 2, ab and xa. The argument is similar to Case 3. The disk U is
replaced by a ring U of half-disks glued along xa; ab. Again, U decomposes
St a into one or more components. The closure A` of each such component B`

is a triangulation of B 3 . The boundary X` = Bd1A` is a triangulation of S2,
xa; ab are edges of X`, and the closed star of a within X` is a disk consisting
of two half-disks in the ring U .

The use of Steinitz' Theorem is similar to Case 3 except that now we
map a to the interior point of an edge. To accomplish this, we modify the
construction of the graph by adding the edge xb after removing a and its
edges. The drawing in the plane has a k-gon adjacent to an m-gon and
otherwise only triangles. Three-connectedness is recovered by cutting and
adding edges that neither belong to the k-gon nor to the m-gon. Let G` be
the isomorphic 1-skeleton of a convex 3-polytope P`. A subdivision S` of P`
is obtained by starring from the image of a. Another subdivision S0` of P` is
obtained by starring from the image of b, which is an endpoint of the edge
common to the k-gon and the m-gon. T` is again a common subdivision of
S` and S

0

` and is mapped back to isomorphic subdivisions of A` and A
0

`. The
subdivisions of the A` are glued to form SdA and the subdivision of the A0

`

are glued and mapped to form SdC 0. Finally, the remaining simplices of E
and C are added, possibly after subdivision, to obtain subdivisions SdE and
SdC with a connection preserving isomorphism. The Isomorphic Subdivision
Lemma implies (ii).
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3-manifolds. Steinitz' theorem can be applied to the vertex links of a 3-
manifold K to prove K 2 M0. For 3-manifolds, the Link Conditions consolidate to
a single relation. We strengthen the result implied by Theorem C in two respects:
we construct local unfoldings, and we show the Link Condition is equivalent to the
existence of an unfolding.

Theorem C0. If K 2 M0 is a 3-complex then the following statements are

equivalent:

(i) Lka \ Lk b = Lk ab.
(ii) 'ab has a local unfolding.

(iii) 'ab has an unfolding.

Proof. Only Case 2 of the proof of Theorem C arises for 3-manifolds. In this case the
conclusion is that 'ab has a local unfolding, which shows (i) =) (ii). (ii) =) (iii)
follows from the de�nitions. To prove :(i) =) :(iii) we distinguish three cases
depending on the dimension of the violating simplex. Let L0 = (Lk a \ Lk b)�Lk ab.
:(i) is equivalent to L0 6= ;.

Case 1.: L0 contains a triangle xyz. Then axyz; bxyz are replaced by a single
tetrahedron cxzy. If follows that xyz belongs to only one tetrahedron in the
complex L obtained from K by contracting ab. This contradicts L 2 M0.

Case 2.: L0 contains no triangle but it contains an edge xy. Then axy and bxy
are triangles in K. Each belongs to two tetrahedra: apxy 6= aqxy, brxy 6=
bsxy. The four tetrahedra are pairwise di�erent because abxy 62 K, which
follows from xy 62 Lkab. The four vertices p; q; r; s are pairwise di�erent
because L0 contains no triangle. Hence, cxy belongs to four tetrahedra in L,
which contradicts L 2 M0.

Case 3.: L0 contains no edge and no triangle, but it contains a vertex x. Then
ax and bx are edges inK. Their links are two circles. These circles are disjoint
because y 2 Lk ax \ Lk bx would imply that L0 contains an edge, namely xy.
We have b 62 Lkax because else abx 2 K and hence x 62 L0. Similarly, we
have a 62 Lk bx. It follows that after the contraction of ab to c both circles
belong to Lk cx, which contradicts L 2 M0.

7. Discussion

This section concludes the paper with an open problem and a comment on
simplifying manifolds using edge contractions.

Link conditions. The most important remaining problem is the extension of
the link condition results to complexes of dimension beyond 3. At this time the
limitation of Steinitz' Theorem to convex polytopes of dimension at most 3 is an
obstacle in extending the proofs of this paper. Do Theorems B0 and C0 extend to
combinatorial d-manifolds for d � 4? Speci�cally, is it true that for every K 2 M0

the contraction of an edge ab 2 K has an unfolding i� Lka \ Lk b = Lk ab? Is
there a general result that relates the Link Conditions with topology preserving
edge contractions for simplicial complexes of any �xed dimension? Speci�cally, do
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the Link Conditions for d and j imply that the contraction of ab in a d-complex
K 2 Mj has an unfolding?

Irreducible triangulations. A simplicial complex is irreducible if it has no
edge whose contraction preserves the topological type. It is not diÆcult to prove
that the boundary complex of the tetrahedron is the only irreducible triangulation
of the 2-sphere. It is also known that every compact 2-manifold has only �nitely
many irreducible triangulations [1]. In other words, topology preserving edge con-
tractions can be used to quickly classify a triangulated 2-manifold.

The classi�cation problem for 3-manifolds is considerably more diÆcult [4], and
for 4-manifolds it is known to be undecidable [7]. Algorithms that recognize the
3-sphere have been found only recently [10, 12]. In view of the apparent diÆculties,
it is not surprising that even the 3-sphere has in�nitely many irreducible triangu-
lations. To construct an in�nite family we use knots made up of only three edges
each. Take a 3-cube decomposed into n3 little cubes, and let n be large enough
so we can drill a one cube wide tunnel in the form of a non-trivial knot. Instead
of completing the drilling we leave the last cube of the tunnel so the complex is
still homeomorphic to B 3 . Let ab be one of the edges of the retained last cube that
connects the end of the incomplete tunnel with the outside. A triangulation of B 3

is formed by decomposing each little cube into tetrahedra, which is done without
adding new vertices. Finally, a triangulation of S3 is obtained by adding the cone
from a new vertex, x, over the boundary complex of the triangulation of B 3 . The
cycle of three edges ab; bx; xa forms a knot of the type of the tunnel. The triangle
abx is not part of the triangulation because ab is not part of the boundary complex.
In fact, this triangle cannot be embedded in S3 because ab; bx; xa is a non-trivial
knot. Hence none of the three edges can be contracted without changing the topo-
logical type of the triangulation. We get an in�nite family by drilling tunnels of
di�erent knot types. Indeed, if we had a �nite set of irreducible triangulations we
would have only �nitely many cycles of three edges and thus only �nitely many
knot types. This contradicts the existence of in�nitely many di�erent knot types.

Acknowledgements

The second author thanks Wolfgang Haken and Min Yan for interesting discus-
sions and G�unter Ziegler for suggesting the knot construction in the triangulation
of the 3-sphere mentioned in Section 7.

References

[1] D. W. Barnette and A. L. Edelson, All 2-manifolds have �nitely many minimal trian-

gulations, Israel J. Math. 67 (1989), 123{128.
[2] H. Edelsbrunner, M. A. Facello and D. V. Nekhayev, Surface remeshing and

parametrization, Report rgi-tech-98-019, Raindrop Geomagic, Champaign, Illinois,
1998.

[3] M. Garland and P. S. Heckbert, Surface simpli�cation using quadratic error metrics,

Computer Graphics, Proc. siggraph 1997, 209{216.



42 DEY, EDELSBRUNNER, GUHA, AND NEKHAYEV

[4] W. Haken, �Uber das Hom�oomorphie Problem der 3-Mannigfaltigkeiten I, Math. Z. 80
(1962), 89{120.

[5] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. St�utzle, Mesh optimization,

Computer Graphics, Proc. siggraph 1993, 19{26.
[6] A. W. F. Lee, W. Sweldens, P. Schr�oder, L. Cowsar and D. P. Dobkin, MAPS: mul-

tiresolution adaptive parameterization of surfaces, Computer Graphics, Proc. siggraph
1998, 95{104.

[7] A. A. Markov, Insolubility of the problem of homeomorphy, In: \Proc. Internat. Con-
gress Math., 1960", Cambridge Univ. Press.

[8] J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann.
of Math. 74 (1961), 575{590.

[9] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Redwood City, 1984.
[10] J. H. Rubinstein, An algorithm to recognise S3, In: \Proc. Internat. Congress Math.,

1994", Z�urich, Switzerland.
[11] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl. Math. Wiss. 3 (Geometrie),

Part 3AB12 (1922), 1{139.
[12] A. Thompson, Thin position and the recognition problem for S3, Math. Res. Lett. 1

(1994), 613{630.
[13] E. F. Whittlesey, Finite surfaces: a study of �nite 2-complexes,Math. Mag. 34 (1960),

11{22 and 67{80.

Appendix A

This appendix proves basic properties of boundary as de�ned in Section 3. All
properties are intuitively clear but the proofs are somewhat technical.

Invariance of order. Isomorphic subdivisions are constructed by just one
method also described in the proof of the Isomorphic Subdivisions Lemma: map
the complexes to a common underlying space, intersect simplices, and subdivide by
starring. We use this construction to establish that simplices with combinatorially
equivalent stars indeed have the same order.

Property 1. If St � ' St � then ord � = ord�.

Proof. Let ` = ord� and k = dimSt �. By de�nition of order there is a (k � `)-
simplex � in some hypothetical complex with St� ' St �. Construct a subdivision L
of St� by combining the subdivision isomorphic to Sd St � with the one isomorphic
to Sd St �. Map L to new and �ner subdivisions of St � and St � using the simplicial
homeomorphisms � : jj St� jj ! jj St � jj and  : jj St � jj ! jj St � jj. By de�nition of
combinatorial equivalence for subsets of complexes we have �(jj St� jj) = jj St � jj and
 (jj St� jj) = jj St � jj. Then  Æ��1 is an isomorphism between these �ner subdivisions
and  Æ��1(jj St � jj) = jj St � jj. This implies St � ' St � and ord � � dim St ��dim � =
` = ord�. By the symmetric argument we get ord� � ord � .

Boundary commutes with subdivision. We show that the boundary of a
subdivided simplicial complex K is the same as the boundary of K subdivided.
This is intuitively what one expects as the subdivision operation does not change
the geometric neighborhood of any point in the underlying space of K.
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Property 2. Bdi SdK = SdBdiK.

Proof. For each � 2 SdK there is a unique simplex � 2 K with int � � int�. We
prove that � and � have the same order by showing that their closed stars are
simplicially equivalent.

Choose a point x 2 int � � int�. Let C e�1 be the boundary of a cube with
center at x, where e is the dimension of the ambient Euclidean space. Subdivide
both St � and St� by starring from x. In the �rst subdivision the closed star of x
has the same underlying space as St � and the link of x is the di�erence between
the closed star and the star. Similarly, in the second subdivision the closed star of
x has the same underlying space as St� and the link is the di�erence between the
closed star and the star:

Lk1 x = St � � St � ;

Lk2 x = St� � St�:

Let X be the central projection of jjLk1 x jj to C e�1 . Since the subdivision operation
does not change the geometric neighborhoods of x 2 jjK jj = jj SdK jj, X is also
the central projection of jjLk2 x jj to C

e�1 . We construct a common subdivision of
the two projected links. By projecting this subdivision back to the two links and
subdividing the two stars accordingly we get isomorphic subdivisions of St � and
St�. Property 1 implies ord � = ord�.

In words, the subdivision operation preserves orders so the i-th boundaries of
K and SdK have the same underlying space. It follows that the i-th boundary of
SdK is a subdivision of the i-th boundary of K.

Boundary is closed. A fairly straightforward consequence of Property 2 is
that faces of a simplex in the boundary also belong to the boundary. Together with
the Order Bound this implies that the i-th boundary of a d-complex is a complex
of dimension at most d� i.

Property 3. BdiK is a simplicial complex.

Proof. It suÆces to show that the order of a simplex cannot exceed that of its faces:

� � � =) ord� � ord � :

Let ` = ord � and k = dimSt � . By de�nition, there is a (k � `)-simplex � with
St � ' St �. Let Sd St � and Sd St � be isomorphic subdivisions of the two closed
stars so the de�ned simplicial homeomorphism maps jj St � jj to jj St � jj. Let �0 be a
highest-dimensional simplex in Sd St � with int�0 � int�, and let �0 2 Sd St � be
the isomorphic image of �0. Finally, let � be the simplex in St � with int �0 � int �.
Clearly, dim � = dim�0 = dim �0 � dim �. Using Property 2, Property 1, Property
2, and the Order Bound, in this sequence, we get

ord� = ord�0

= ord �0

= ord �

� dimSt � � dim �:
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The result follows because dim St � � k and dim � � dim � = k � `, so ord� � ` =
ord � .

Boundary decreases order. It is intuitively clear that in the i-th boundary
the order of a simplex is at least i less than in the original complex. The reason is
that the i-th boundary reduces the dimension of the star of any simplex by i. We
write ordi � for the order of � in BdiK.

Property 4. ordi � � ord� � i for all simplices � 2 BdiK.

Proof. We have � 2 BdiK i� ` = ord� � i. Let k = dimSt�. By de�nition
of order there is a (k � `)-simplex � in some complex Y with St� ' St �. Let
Sd St� and Sd St � be isomorphic subdivisions of the two closed stars so the de�ned
simplicial homeomorphism maps jj St� jj to jj St � jj. By Property 1, the orders of
corresponding simplices in the two subdivisions are the same. We formally rephrase
this observation in the �rst line below and derive the second using Property 2:

Bdi Sd St� � Bdi Sd St �;

SdBdi St� � SdBdi St �:

When we reverse the order of the boundary and the closure operations we get the
same results within the stars. This is because the stars of all simplices � 2 St� are
the same within K and within St �. Hence � has the same order in K and in St�
and belongs to the i-th boundary of K i� it belongs to the i-th boundary of St�.
The same is true for simplices in the star of �. In other words, the star of � in
BdiK and the star of � in Bdi Y are combinatorially equivalent. Using Property 1
again we conclude that the order of � in the i-th boundary of K is the same as the
order of � in the i-th boundary of Y . By the Order Bound, the latter is bounded
from above by dimBdi Y � dim �. Because dimBdi Y � k � i and dim � = k � `,
the order of � in the i-th boundary is bounded from above by `� i, and the claim
follows.

Taking boundary simpli�es. Taking 1-st boundaries i times does not neces-
sarily produce the same result as taking the i-th boundary once. Indeed, the former
operation tends to produce smaller complexes than the latter. The intuitive reason
is that taking boundary eliminates context and blurs the topological properties of
the remaining neighborhood. We prove a slightly stronger result.

Property 5. Bd`BdiK � Bdi+`K.

Proof. We have Bdi+`K � BdiK. A simplex � belongs to BdiK � Bdi+`K i�
i � ord� < i+ `. By Property 4, the order of � in BdiK is at least i less than in
K, which implies 0 � ordi � < `, or equivalently � 2 BdiK�Bd`BdiK. In words,
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if � in the i-th boundary does not belong to the (i + `)-th boundary then it also
does not belong to the `-th boundary of the i-th boundary.
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