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Abstract. We consider classes of spaces of Beurling and Roumieu type tem-
pered ultradistributions containing some spaces of quasianalytic tempered and all
spaces of non-quasianalytic tempered ultradistributions. We prove that every ultra-
distribution f in a space of the considered classes has the form

f = P (�)u1 + u2;

where P is an ultradi�erential operator, u1 is a smooth function, u2 is a real analytic
function, and both of them satisfy some exponential growth conditions. Also, we
give the boundary value representations for elements in the spaces of considered
classes. Precisely, we prove that every solution of the heat equation, with appropriate
exponential growth rate, de�nes an element in a space of the corresponding class,
and conversely, that every element in a space of the considered classes is a boundary
value of a solution of the heat equation with appropriate exponential growth rate.

1. Introduction

Tempered ultradistributions spaces have appeared in papers of many authors
in the last three decades and even earlier. Among others we mention Gel'fand and
Shilov [7], Bj�ork [2], Wloka [21], Grudzinski [8], Avantaggiati [1], De Roever [20],
Kashpirovskij [10], Pathak [17] and Pilipovi�c [19]. In general, besides Beurling and
Roumieau, for the theory of boundary value problems and of ultradistributions we
should mention K�othe, Tilmann and their pupils, Sebasti~ao e Silva and his school,
H. Komatsu and the Japanese school, C.C. Chou, J. Cior�anescu, V.V.�Zarinov,
S. Pilipovic and many others who have contributed much to the theory. In this
paper, we give new representation theorems for the spaces in classes of tempered
ultradistributions containing some quasianalytic tempered and all non-quasiana-
lytic tempered ultradistributions of Beurling type as well as of Roumieu type.
Examples of spaces of tempered ultradistributions which are considered in the paper
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are: (in the Roumieu case) dual spaces of Gelfand{Shilov space S�� , �; � > 1=2,

dual spaces of the generalized Gelfand{Shilov spaces of S{type (introduced in [7]),
and (in the Beurling case) the space �0� � > 1=2, (introduced in [19]).

In a series of papers [14], [15] and [16], Matsuzawa developed a calculus
approach to the theory of hyperfunctions by treating an element u(x) of a space
of generalized functions as the initial value of a unique solution U(x; t) of the heat
equation � d

dt
��

�
U(x; t) = 0; (x; t) 2 R

n � R+

U(x; 0) = u(x); (1)

which satis�es the appropriate growth rate condition determined by the space.
In this way the elements of the following spaces were characterized: the space of

distributions D0, spaces of Gevrey ultradistributions with compact support E 0fsg,
E 0(s), s > 1 [15]; spaces of tempered distributions S 0 [16]; spaces of hyperfunctions
B [14]; spaces of Gevrey tempered ultradistributions (of Roumieu type) S 0��; spaces
of Beurling type ultradistributions with compact support E 0(Mp); spaces of Fourier
hyperfunctions F 0 [11] and extended Fourier hyperfunctions G0 [5].

In this paper we use the heat kernel tehnique to characterize classes of Beurl-
ing as well as Roumieu type tempered ultradistributions. Our interest lies in the
quasianalytic case, although the theorems do not exclude the non-quasianalytic
case. We prove that every ultradistribution f in the considered classes has the
form

f(x) = P (�)u1(x) + u2(x);

where P is an ultradi�erential operator, u1(x) is a smooth function, u2(x) is a real
analytic function, and both functions satisfy some exponential growth conditions.
Also, we give the boundary value representations for elements of the considered
classes. Precisely, we prove that every solution of the heat equation, with appro-
priate exponential growth rate, de�nes an element of the corresponding class, and
conversely, that every element of the considered classes is a boundary value of a
solution of the heat equation with appropriate exponential growth rate.

Our results concerning boundary value representations for elements of Roum-
ieu type tempered ultradistributions spaces generalize results of the paper [6]. This
generalization is not a trivial one, since instead of Gevrey sequences (fp!s; p 2 Ng),
satisfying strong conditions, we deal with more general class of de�ning sequences.

2. Preliminaries

We use multi-index notation j�j = �1+�2+� � �+�d, �! = �1!�2! � � ��d!, x� =

x�11 x�22 � � �x�dd , jxj =p
x21 + x22 + � � �+ x2d, where d 2 N, � = (�1; �2; . . . ; �d) 2 Nd0 ,

x = (x1; x2; . . . ; xd) 2 Rd . For x 2 Rd , '(x) 2 C1(Rd),

'(�)(x) = (@=@x)�'(x) = (@=@x1)
�1(@=@x2)

�2 � � � (@=@xd)�d :
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Let fMp; p 2 N0g and fNp; p 2 N0g be sequences of positive numbers, where
M0 = N0 = 1. The following conditions will be used: (for their detailed analysis
see, for example [12])

(M.1) (logarithmic convexity)

M2
p �Mp�1Mp+1; p = 1; 2; . . .

(M.2) (stability under ultradi�erential operators) There are constants A and H such
that

Mp � AHp min
0�q�p

MqMp�q; p = 0; 1; . . .

(M.3) (strong non-quasi-analyticity) There is a constant A such that

1X
q=p+1

Mq�1

Mq
� A

pMp

Mp+1
; p = 1; 2; . . .

Some results remain valid, however, when (M.2) and (M.3) are replaced by
the following weaker conditions:

(M.2)' (stability under di�erential operators) There are constants A and H such that

Mp+1 � AHpMp; p = 0; 1; . . . ;

(M.3)' (non-quasi-analyticity)
1X
p=1

Mp�1

Mp
<1:

The corresponding conditions for the sequence fNp; p 2 N0g will be denoted
by (N.1), (N.2), (N.3), (N.2)'and (N.3)'.

The so-called associated functions for the sequence fMp; p 2 N0g are

M(�) = sup
p2N0

log
�p

Mp
; fM(�) = sup

p2N0

log
�pp!

Mp
; M(�) = sup

p2N0

log
�pp!

M2
p

;

where � > 0.

The corresponding associated functions for sequence fNp; p 2 N0g will be

denoted by N(�), eN(�) and N(�).
Remark 1. The Gevrey sequence

psp or (p!)s or �(1 + sp); p 2 N0 ; s > 1;

satis�es all the above conditions and M(�) � �1=s, fM(�) � �1=(s�1), M(�) �
�1=(2s�1) (see [7]).
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We shall also use the following condition which is equivalent to the fact that
the sequence Np = M2

p ; p 2 N0 satis�es condition (N.3) and which follows from
(M.3) see [18, p. 300].

(C) There exists a positive integer k such that

lim inf
p!1

�mkp

mp

�
> k;

where mp =Mp=Mp�1, p = 1; 2; . . . .

Remark 2. 1. The equence Mp = p!s, p 2 N0 , s > 1=2, satis�es condition
(C), but not (M.3), (1=2 < c � 1).

2. If mp = p(log p)�, � > 0, p = 1; 2; . . . then the sequence fMp =
m2 � � �mp; p 2 N0g satis�es (C).

An operator of the form

P (@) =

1X
j�j=0

a�@
�; a� 2 C ;

is called an ultradi�erential operator of class (Mp) (respectively of class fMpg)
if there are positive constants L and C (respectively for every L > 0 there is a
constant C > 0) such that

ja�j � CL�=M�; � 2 N
d
0 :

R denotes a family of increasing sequences fhp; p 2 Ng, with positive ele-
ments, tending to in�nity.

3. Spaces S(Mp)
(Np)

, SfMpg
fNpg

and their duals

De�nition 1. The space SM;m
N;n ; m; n > 0, is the space of smooth functions '

on Rd , such that

jx�'(�)(x)j � C'
Mj�jNj�j

mj�jnj�j
; for every �; � 2 N

d
0 ; (3.1)

where the constant C' depends only on '. It is a Banach space with the norm

sm;n(') = sup
�;�2Nd

0

mj�jnj�j

Mj�jNj�j
kx�'(�)(x)k1: (3.2)

Let
S(Mp)

(Np)
= proj lim

m!1
n!1

SM;m
N;n ; SfMpg

fNpg
= ind lim

m!0
n!0

SM;m
N;n :
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The notation S�y denotes S(Mp)
(Np)

or SfMpg
fNpg

.

Remark 3. The inclusion i : S�y ! S, where S is the Schwartz space of rapidly
decreasing functions, is continuous.

Remark 4. The space SfMpg
fNpg

is a generalized Gel'fand{Shilov space of S{type

as de�ned in [G]. In particular, if Mp = prp and Np = psp, p 2 N0 , s; r > 0, the

Gelfand{Shilov space Ssr is equal to SfMpg
fNpg

.

Remark 5. If conditions (M.1), (M.3)', (N.1), (N.2)' and (N.3)' are satis�ed,

the spaces S(Mp)

(Np)
and SfMpg

fNpg
are test spaces for tempered ultradistibutional spaces

of Beurling and Roumieu type, respectively. More precisely (see [13]),

1. The inclusion i : D� ! S�y is continuous.

2. The set S�y nD� is nonempty.

3. The space D� is dense in S�y .
Here D� denotes the spacesD(Mp) or DfMpg. For the de�nition and properties

of D� see [12].

Remark 6. If conditions (M.1), (M.3)', (N.1) and (N.3)' are satis�ed, the

inclusions i : F ! SfMpg
fNpg

, and i : G ! S(Mp)
(Np)

, are continuous. Here G is a test space

for the space G0 of extended Fourier hyperfunctions (de�ned as in [5]), and F is a
test space for the space F 0 of Fourier hyperfunctions (de�ned as in [11]). (For the
proof see [13].)

The following theorem characterizes the topology in the spaces S(Mp) and
SfMpg.

Theorem 1. Let conditions (M.1), (C), (N.1), (N.2)' and (N.3)' be satis�ed.

A sequence 'j in the space S(Mp)

(Np)
(respectively SfMpg

fNpg
), converges to zero in the

space S(Mp)
(Np)

(respectively in SfMpg
fNpg

), as j ! 1, if and only if, for every m;n > 0

(respectively for some m;n > 0)

�m;n('j) = sup
�2Nd

0

x2Rd

mj�j

Mj�j

��'(�)j (x) exp[N(njxj)]��! 0; as j !1: (3.3)

Proof. Let us prove the theorem for the space S(Mp)
(Np)

.

(a) First, we prove that �m;n('j) ! 0, as j ! 0, implies that sm;n('j)! 0,

as j ! 0. Let m1; n1 > 1, and let j 2 N be �xed. Since 'j 2 S(Mp)
(Np)

, for every

m;n > 0,

m
j�j
1 n

j�j
1

mj�jnj�j

Mj�jNj�j

��x�'(�)j (x)
�� <1; �; � 2 N

d
0 ;
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it follows that

mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j converges to zero uniformly in x 2 R

d ; as j�+ �j ! 1:

(3.4)

By condition (N.2)' for every m;n > 0, there exists a C > 0, such that for
every �; � 2 Nd0 ,

mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j � C

mj�j

Mj�j

(1 + nH)j�j+1

Nj�j+1
jxj�j+1'(�)j (x)j 1jxj :

From conditions (M.1), (C), (N.1) and (N.3)' it follows that the sequences
fmj�j=Mj�j; � 2 Nd0g and f(1+nH)j�j+1=Nj�j+1; � 2 Nd0g are bounded. Therefore,
there exists a constant C > 0 such that

mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j � C

k
; jxj � k > 1;

which implies that

mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j converges to zero uniformly in (�; �) 2 N

2d ; as jxj ! 1:

(3.5)
Now, (3.4) and (3.5) imply that there exist x0 2 Rd , �0; �0 2 Nd0 , such that

sm;n('j) = sup
�;�2Nd

0

sup
x2Rd

mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j = mj�0jnj�0j

Mj�0jNj�0j
jx�00 '(�0)j (x0)j

� sup
�2Nd

0

mj�j

Mj�j
k'(�)j (x) exp[N(njxj)]k1 = �m;n('j): (3.6)

(b) Let us prove that sm;n('j) ! 0 as j ! 0, implies that �m;n('j), ! 0,

as j ! 0. Let j 2 N be �xed. Similarly as above one can prove that 'j 2 S(Mp)

(Np)

implies

1.
mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j converges to zero uniformly in (x; �) 2 R

d�Nd0 , as j�j ! 1;

2.
mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j converges to zero uniformly in (x; �) 2 Rd�Nd0 , as j�j ! 1;

3.
mj�jnj�j

Mj�jNj�j
jx�'(�)j (x)j converges to zero uniformly in (�; �) 2 Nd0�Nd0 , as jxj ! 1.

From these facts there exist �1, �1 2 Nd0 and x1 2 Rd such that

�m;n('j) = sup
�2Nd

0

mj�j

Mj�j
k'(�)j (x) exp[N(njxj)]k1 =

mj�1jnj�1j

Mj�1jNj�1j
jx�11 '(�1)j (x1)j

� sup
�;�2Nd

0

mj�jnj�j

Mj�jNj�j
kx�'(�)j (x)k1 = sm;n('j): (3.7)
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Analogously, the assertion can be proved for the space SfMpg
fNpg

. �

From the proof of the second part of the previous theorem we have:

Theorem 2. Let conditions (M.1), (C), (N.1), (N.2)' and (N.3)' be satis�ed.

If ' 2 S(Mp)
(Np)

(respectively SfMpg
fNpg

) then there exists C > 0 such that for every

m;n > 0 (respectively some m;n > 0)

j'(�)(x)j � C
Mj�j

mj�j
exp[�N(njxj)]; x 2 R

d : (3.8)

Let us give the heat kernel characterization of the spaces S�y . Denote by

E(x; t) the heat kernel:

E(x; t) =

�
(4�t)�d=2 exp[�jxj2=4t]; t > 0;

0; t < 0:
(3.9)

The function E(x; t) is an entire function of order 2 for t > 0 and has the following
properties [15].

(E0) E(x; t) satis�es the heat equation.

(E1)
R
Rd
E(x; t)dx = 1; t > 0.

(E2) There are positive constants C and a0 such that��� @�
@x�

E(x; t)
��� � Cj�j+1t�(j�j+d)=2�!1=2 exp[�a0jxj2=4t]; t > 0; (3.10)

where a0 2 (0; 1) can be taken as close as desired to 1.

(E3) If conditions (M.1), (M.3)', (N.1) and (N.3)' are satis�ed, E(�; t) is an element
of S�y , for every t > 0.

Theorem 3. Let conditions (M.1), (M.2)', (C), (N.1), (N.2)' and (N.3)' be
satis�ed and ' 2 S�y . For every t > 0, the function

U(x; t) =

Z
Rd

E(x� y; t)'(y)dy (3.11)

is an element of S�y , and U(x; t) converges to '(x) in S�y , as t! 0.

Proof. We shall prove this theorem for ' 2 S(Mp)
(Np)

. The proof for ' 2 SfMpg
fNpg

is analogous.

Let us prove that

sup
�2Nd

0

mj�j

Mj�j




 @�
@x�

�
U(x; t)� '(x)

�
exp[N(njxj)]





1
! 0; as t! 0; (3.12)
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for every m;n > 0. Let Æ be a small positive number. We have��� @�
@x�

�
U(x; t)� '(x)

���� = ��� Z
Rd

E(x� y; t)('(�)(y)� '(�)(x))dy
���

=
��� Z
Rd

E(y; t)('(�)(x� y)� '(�)(x))dy
���

�
Z
jyj�Æ

E(y; t)j'(�)(x � y)� '(�)(x)jdy+

+

Z
jyj�Æ

E(y; t)j'(�)(x� y)jdy

+

Z
jyj�Æ

E(y; t)j'(�)(x)jdy

= I1 + I2 + I3: (3.13)

Since ' 2 S(Mp)
(Np)

, by the mean value theorem and Theorem 2, we have

I1 =

Z
jyj�Æ

E(y; t)j'(�)(x � y)� '(�)(x)jdy

�
Z
jyj�Æ

E(y; t)j'(�+1)(x � �y)j jyj dy

� C
Mj�j+1

~mj�j+1
Æ

Z
jyj�Æ

E(y; t) exp[�N(~njx� �yj)]dy; (3.14)

for some � 2 (0; 1) and every ~m; ~n > 0. For Æ small enough, jyj � Æ, and x 2 Rd ,
we have

N(~njx� �yj) � N
� ~n
2
jxj
�
: (3.15)

Now, inequality (3.14), (3.15) and condition (M.2)' and property (E1) imply that
there exists C > 0 such that

I1 � C
Mj�j

mj�j
Æ exp[�N(njxj)]; (3.16)

where m = ~m=H and n = ~n=2.

From (3.8), and the de�nition of the heat kernel, it follows that there exists
C > 0 such that

I2 =

Z
jyj�Æ

E(y; t)j'(�)(x� y)jdy (3.17)

� C
Mj�j

~mj�j
(4�t)�d=2

Z
jyj�Æ

exp[�y2=4t] exp[�N(~njx� yj)]dy;

for every ~m; ~n > 0.
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Condition (N.1) implies that the associated function N(�) satis�es (see [3])
N(�+ Æ) � N(2�) +N(2Æ); �; Æ > 0: (3.18)

Taking 2� = ~njx� yj and 2Æ = ~njyj, we get

N(~njx� yj) � N
� ~n
2
jx� yj+ ~n

2
jyj
�
�N(~njyj) � N

� ~n
2
jxj
�
�N(~njyj): (3.19)

By (N.1) and (N.3)' (see [12, Lemma 4.1, (4.7)]) we have

N(njyj) � njyj � n y2; (3.20)

for jyj large enough. Therefore from (3.17), (3.19), (3.20), it follows that

I2 � C (4�t)�d=2 exp
h
� Æ2

8t

i
exp

h
�N(

~n

2
jxj)

iMj�j

~mj�j

Z
jyj�Æ

exp
h
� y2

8t
+N(~njyj)

i
dy

� C "t
Mj�j

~mj�j
exp

h
�N

� ~n
2
jxj
�i Z

jyj�Æ

exp
h
� y2

8t
+ ~ny2

i
� ~C "t

Mj�j

~mj�j
exp

h
�N(

~n

2
jxj)

i
; (3.21)

where "t = (4�t)�d=2 exp
h
� Æ2

8t

i
tends to zero as t! 0.

Finally, since ' 2 S(Mp)

(Np)
, by (3.8) and by the properties of the function E(x; t)

we have that there exists a C > 0 such that

I3 =

Z
jyj�Æ

E(y; t)j'(�)(x)jdy � j'(�)(x)j
Z
jyj�Æ

E(y; t)dy

� ~ÆtC
Mj�j

mj�j
exp[�N(njxj)]; (3.22)

for every m;n > 0, where ~Æt =
R
jyj�Æ

E(y; t)dy tends to zero as t! 0.

From (3.13), (3.16), (3.21) and (3.22), we obtain that U(x; t) converges to

'(x), in the space S(Mp)
(Np)

, as t tends to zero. �

The dual spaces for S(Mp)
(Np)

and SfMpg
fNpg

, are denoted by S 0(Mp)
(Np)

and S 0fMpg
fNpg

,

respectively, or for brevity, S 0�y . Using Theorem 2 it is easy to prove the following
theorem:

Theorem 4. Let conditions (M.1), (C), (N.1), (N.2)' and (N.3)' be satis�ed.

If f 2 S 0(Mp)
(Np)

(respectively f 2 S 0fMpg
fNpg

) then for some m;n > 0 (respectively every

m;n > 0) there exists C > 0 such that

jhf; 'ij � C sup
�2Nd

0

x2Rd

mj�j

Mj�j
j'(�) expN(njxj)j: (3.23)
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4. Structure theorems for the spaces S 0(Mp)
(Np)

and S 0fMpg
fNpg

We will use the following notations:

Ph(�) = (1 + �)2
1Y
p=1

�
1 +

�

hmp

�
; h > 0;

Php(�) = (1 + �)2
1Y
p=1

�
1 +

�

hpmp

�
; hp 2 R:

If (M.1), (M.2) and (M.3) are satis�ed, the operator Ph(d=dx) is an ultradi�erential
operator of class (Mp) and the operator Php(d=dx) is an ultradi�erential operator
of class fMpg, (see [12]).

The following lemma asserts that there exists a parametrix for the equation
Php(d=dx)u = Æ. Its proof is inspired by constructions in [12, Lemma 11.4] and [4,
Lemma 2].

Lemma 5. Let the sequence Mp satisfy conditions (M.1), (M.2), (M.3). For
every " > 0 and every constant h > 0 (respectively every sequence hp 2 R) there
exist smooth functions v and w such that:

1. supp v � [0; "],

2. jv(x)j � C exp
h
� supp log

x�pp!

hpMp

i
,�

resp. jv(x)j � C exp
h
� supp log

x�pp!

h1 � � �hpMp

i�
, for some C > 0,

3. jv(p)(x)j � C2phpMp (resp. jv(p)(x)j � C2ph1 � � �hpMp), for some C > 0,

4. suppw � ["=2; "],

5. jw(p)(x)j � CLphpMp (resp. jw(p)(x)j � CLph1 � � �hpMp), for every L > 0
and some C > 0,

and Php(d=dx)v(x) = Æ + w(x):

Proof. We will prove the lemma in the Roumieu case. Let " > 0, hp 2 R and

Gp = h1 � � �hpMp, p 2 N0 . By G(�) and eG(�) we denote the associated functions for
the sequence fGp; p 2 N0g. Put

�(z) =
1

2�i

Z 1

0

Php(�)
�1ez�d�: (4.1)

Note that in the proof of [12, Lemma 11.4] the following entire function was con-
sidered:

z 7! 1

2�

Z 1

0

Php(�)
�1eiz�d�:

Since the sequence fGp; p 2 N0g satis�es conditions (M.1), (M.2) and (M.3)', by
analogous arguments as in [12, Lemma 11.4] one can prove that:
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(i) The integral (4.1) converges absolutely on fzj arg z 2 (�=2; 3�=2)g. It can be
continued analytically on fzj arg z 2 (0; 3�=2)g by

�+(z) =

(
1
2�i

R1ei�

0
Php(�)

�1ez�d�; arg z 2 (0; �);

�(z); arg z 2 (�=2; 3�=2);

where � 2 [��=2; �=2], and Re(zei�) < 0, and on fzj arg z 2 (�=2; 2�)g by

��(z) =

8<:
�(z); arg z 2 (�=2; 3�=2);

1
2�i

Z 1ei�

0

Php(�)
�1ez�d�; arg z 2 (�; 2�);

where � 2 [��=2; �=2], and Re(zei�) < 0;

(ii)

Php

� d

dx

�
�(z) = � 1

2�i

1

z
; for Re(z) < 0; (4.2)

(iii) The functions �+ and �� are bounded, satisfy (4.2), and


(x) = ��(x� i0)� �+(x+ i0) ==

8<: 1
2�i

Z +i1

�i1

Php(�)
�1ex�d�; x > 0;

0; x < 0:

(iv) The function g(x) = Re(
(x)), x 2 R, is a real analytic function on Rnf0g;
g(x) = 0 for x < 0 and

jg(x)j � A
p
x exp[� eG(1=x)]; x 2 R+ : (4.3)

Let us now prove the estimates for the derivatives of the function g. Let
q 2 N. Since for every � > 0,

jg(q)(x)j � j
(q)(x)j = 1

2�

Z �+i1

��i1

�qPhp(�)
�1ex�d�;

using the estimation (see [12, p. 88])

exp[G(j�j)] �
1Y
p=1

�
1 +

�

hpmp

�
; Re(�) > 0;

we have

jg(q)(x)j � 1

2�
inf
�>0

�Z �+i1

��i1

j�q jjd�j
jPhp(�)j

ex�
�

� 1

2�
inf
�>0

�Z �+i1

��i1

j�jq exp[�G(j�j)]
j1 + �j2 jd�jex�

�
� 1

2�
inf
�>0

�Z �+i1

��i1

j�jq
j1 + �j2 inf

p2N0

Gp

j�jq jd�je
x�
�
:
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By putting p = q, we get

jg(q)(x)j � 1

2�
inf
�>0

�Z �+i1

��i1

Gq

j1 + �j2 jd�je
x�
�

� Gq

2�
inf
�>0

�
ex�

Z �+i1

��i1

jd�j
j1 + �j2 )

� Gq

2
inf
�>0

� ex�

1 + �

�
� Gq

2
x =

hpMq

2
x;

for q 2 N and � = 1=x.

Let u be an element of E(Gp)(R), equal to 1 on (�1; "=2], and equal to 0 on
[";1). Put

v(x) = g(x)u(x); x 2 R: (4.4)

By (4.3) and the fact that supp v � [0; "], there exists a C > 0 such that

jv(x)j � C exp[� eG(1=x)]:
For x 2 [0; "]

jv(q)(x)j �
qX

k=0

�
q

k

�
jg(k)(x)u(q�k)(x)j � C

qX
k=0

�
q

k

�
Gk

2
"Gq�k � C2qGq : (4.5)

Let

~u(x) =

�
0; x 2 (�1; "=2)

u(x)� 1; x 2 ("=2;1)

and ! = g~u.

As real analytic functions are ultradi�erentiable (see [12]), and EfGpg is closed
under pointwise multiplication, it follows that ! 2 EfGpg. Since the support of !
is compact, it follows that ! 2 DfGpg.

The operator Php(d=dx) is an ultradi�erential operator of class fGpg and

therefore Php(d=dx)! 2 D(Gp). Furthermore, since

Php

� d

dx

�
g(x) = Re

�
Php

� d

dx

�

(x)

�
= Æ(x);

we have

Php

� d

dx

�
v(x) = Php

� d

dx

�
g(x)(1 + u(x)� 1)

= Php

� d

dx

�
g(x) + Php

� d

dx

�
!(x) = Æ + w(x);

which completes the proof. �
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Theorem 6. 1: Let conditions (M.1), (M.2)', (C), (N.1), (N.2)' and (N.3)'

be satis�ed and f 2 S 0(Mp)
(Np)

(respectively f 2 S 0fMpg
fNpg

). The function

U(x; t) = hf(y); E(x � y; t)i

is well de�ned on R
d+1
+ = f(x; t)jx 2 Rd ; t > 0g, belongs to C1(Rd+1+ ) and satis�es

the heat equation � d
dt
��

�
U(x; t) = 0: (4.6)

Furthermore, for some m;n > 0; (respectively for every m;n > 0) and arbitrary
T > 0, there exists a positive constant C such that

jU(x; t)j � C exp
h
N(njxj) + 1

2
M
�m
t

�i
; x 2 R

d
+ ; t 2 (0; T ): (4.7)

Also, for any  2 S(Mp)
(Np)

(respectively any  2 SfMpg
fNpg

), we have

Z
Rd

U(x; t) (x)dx ! hf;  i; t! 0: (4.8)

2: If conditions (M.1), (M.2), (C), (N.1), (N.2)' and (N.3)' are satis�ed, the

converse is also true: for every smooth function U(x; t) de�ned on R
d+1
+ , satisfying

conditions (4:6) and (4:7), for some m;n > 0, (respectively for every m;n > 0)

there exists unique f 2 S 0(Mp)
(Np)

, (respectively f 2 S 0fMpg
fNpg

) such that

U(x; t) = hf(y); E(x� y; t)i: (4.9)

Proof. We shall prove the assertion of the theorem only in the Beurling case.
The assertion in the Roumieu case can be proved analogously.

1. Let f 2 S 0(Mp)
(Np)

. The function U(x; t) = hf(y); E(x � y; t)i obviously

belongs to C1(Rd+1+ ). Using Theorem 4, the estimate (3.10), condition (M.2)', the

fact that E(�; t) 2 S(Mp)
(Np)

, for every �xed t > 0, and

N(hjyj)�N(2hjx� yj) � N(hjxj); h > 0;
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(which follows from (3.18) by a similar argument as in (3.19)), we obtain

jU(x; t)j = jhf(y); E(x � y; t)ij

� C1 sup
�2Nd

0

kj�j

Mj�j




E(�)(x� y; t) exp[N(hjyj)]




L1(Rdy)

� C1 sup
�2Nd

0

kj�j

Mj�j

~Cj�j+1t�(j�j+d)=2�!1=2



 exp h�4jx� yj2

(16t=a0)

i
+N(hjyj)]





L1(Rdy)

� C1 sup
�2Nd

0

(1 + k)j�j+1 ~Cj�j+1t�(j�j+d)=2(�+ 1)!1=2
A(1 +H)j�j+1

Mj�j+1
�

� (4 � 16�T=a0)d=2

E(2jx� yj; 16T=a0) expN [hjyj]


L1(Rdy)

� . . .

� C2

�
C
j�j+d
3

t�(j�j+d)(�+ d)!

M2
j�j+d

�1=2

E(2jx�yj; 16T=a0) exp[N(hjyj)]


L1(Rdy)

= C2 exp
h1
2
M
�C3
t

�i


E (2jx� yj; 16T=a0) exp[N(hjyj)]




L1(Rdy)

� C4 exp
h1
2
M
�C3
t

�i


 exp[�N(2hjx� yj)] exp[N(hjyj)]




L1(Rdy)

� C exp
h
N(njxj) + 1

2
M
�m
t

�i
;

for some k; h > 0, n = h, m = C3 = (1 + k)(1 + H) ~C, where ~C is a constant in
(E2).

2. Assume that U(x; t) satis�es (4.6) and (4.7). Note that the sequence
fM2

p ; p 2 N0g satis�es conditions (M.1), (M.2), (M.3), since the sequence fMp; p 2
N0g satis�es (M.1), (M.2) and (C).

Let " > 0. Applying Lemma 5 to the sequence fM2
p ; p 2 N0g, we get that

for every h > 0 there exist smooth functions v; w 2 C10 (R), with properties

supp v � [0; "]; suppw � ["=2; "]; (4.10)

jv(t)j � C sup
p2N0

log
� 1

ht

�p p!

M2
p

= C exp
h
�M

� 1

ht

�i
; t > 0; (4.11)

and such that

Ph

� d
dt

�
v = Æ + w; (4.12)

where

Ph

� d
dt

�
=
�
1 +

d

dt

�2 1Y
p=1

�
1 +

1

hm2
p

d

dt

�
:

Let

g(x; t) =

Z 1

0

U(x; t+ s)v(s)ds;

h(x; t) =

Z 1

0

U(x; t+ s)w(s)ds:

(4.13)
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Put h = 1=m. Since supp v � [0; "], we have that

jg(x; t)j � C exp[N(njxj)]
Z "

0

exp
h1
2
M

�
m

t+ s

�
�M

�
1

hs

�i
ds (4.14)

� C exp[N(njxj)]
Z "

0

exp
h
� 1

2
M
�m
s

�i
ds � ~C exp[N(njxj)];

for (x; t) 2 R
d+1
+ .

It is easy to see that

jh(x; t)j � ~C exp[N(njxj)]; (x; t) 2 R
d+1
+ : (4.15)

The functions g(x; t); h(x; t) are smooth on R+ and satisfy the heat equation. It
can be easily proved, by using (4.10) and (4.11), that g(x; t) and h(x; t) can be

continuously extended on R
d+1
+ = f(x; t)jx 2 Rd ; t � 0g. Put

g0(x) = lim
t!0

g(x; 0); h0(x) = lim
t!0

h(x; 0); x 2 R
d :

The functions g0(x) and h0(x) are C
1(Rd+1).

Since suppw � ["=2; "], the function h(x; t) can be continued analytically to
f(x; t) 2 Rd+1 ; x 2 Rd ; t > �"=2g. Thus h0(x) is a real analytic function.

From (4.14) and (4.15) it follows

jg0(x)j � C exp[N(njxj)] and jh0(x)j � C exp[N(njxj)]: (4.16)

for some n > 0. Since g(x; t) satis�es the heat equation, it follows from (4.12), that

U(x; t) + h(x; t) = Ph

� d
dt

�
g(x; t) = Ph(��)g(x; t): (4.17)

De�ne

f(x) = Ph(��)g0(x) � h0(x): (4.18)

From (4.16) it follows that g0; h0 2 S 0(Mp)
(Np)

. Since Ph is an ultradi�erential operator

of class (M2
p ), we have that Ph(��)g0 2 S 0(Mp)

(Np)
. Therefore, f 2 S 0(Mp)

(Np)
.

Let us prove that U(x; t) = hf(y); E(x� y)i. Put

A(x; t) =

Z
Rd

E(x� y; t)g0(y)dy; t > 0;

B(x; t) =

Z
Rd

E(x � y; t)h0(y)dy; t > 0:
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The functions A(x; t) and B(x; t) satisfy the heat equation and A(x; t) and
B(x; t) converge locally uniformly to g0(x) and h0(x), respectively, as t converges

to zero. Therefore, they can be continuously extended to Rd+1+ and

lim
t!0

A(x; t) = g0(x) = lim
t!0

g(x; t); and lim
t!0

B(x; t) = h0(x) = lim
t!0

h(x; t):

Furthermore, the functions A(x; t) and B(x; t) satisfy the following growth
conditions:

jA(x; t)j � C exp[N(ajxj)] � eC exp[ax2]; t 2 (0; T );

jB(x; t)j � C exp[N(ajxj)] � ~C exp[ax2]; t 2 (0; T ):

Let us prove the �rst inequality. For arbitrary Æ > 0,

jA(x; t)j � j
Z
Rd

E(y; t)g0(x� y)dyj

� C

Z
jyj�Æ

E(y; t) exp[N(njx� yj)]dy + C

Z
jyj�Æ

E(y; t) exp[N(njx� yj)]dy

= I1 + I2:

Using (3.18) we get that

I1 � C exp[N(2njxj)]
Z
jyj�Æ

E(y; t) exp[N(2njyj)]dy

� C exp[N(2njxj)] exp[N(2nÆ)]

Z
Rd

E(y; t)dy

� C1 exp[N(2njxj)] � ~C exp[ax2];

for some n > 0. For Æ > 0 large enough, by (3.18), we have

I2 � C(4�t)�d=2 exp[N(2njxj)]
Z
jyj�Æ

exp[�y
2

4t
+N(2njyj)]dy

� C(4�t)�d=2 exp[N(2njxj)] exp[�Æ
2

4t
(1� 1

b
)]

Z
jyj>Æ

exp[� y2

4Tb
+ 2ny2]dy

� C1 exp[N(2njxj)] � ~C exp[2nx2];

for some n > 0 and t 2 (0; T ), where 0 < b < min(1; 1=8Tn).

By the uniqueness theorem for the initial-value heat equation (see [9, p. 216],
it follows that the solution of the problem

ut ��u = 0; t 2 (0;1); u(x; 0) = f(x);
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is unique, provided we restrict ourselves to a solution satisfying

ju(x; t)j � C exp[ax2]; t 2 (0; T ):

Therefore,

g(x; t) = A(x; t) =

Z
Rd

E(x� y; t)g0(y)dy;

h(x; t) = B(x; t) =

Z
Rd

E(x� y; t)h0(y)dy:

From above (4.18) and (4.17) it follows thatZ
Rd

E(x� y; t)f(y)dy =

Z
Rd

E(x� y; t)[P (��)g0(y)� h0(y)]dy

= P (��)

Z
Rd

E(x� y; t)g0(y)dy �
Z
Rd

E(x� y; t)h0(y)dy

= P (��)g(x; t)� h(x; t) = U(x; t);

i.e. U(x; t) = hf(y); E(x� y; t)i. The uniqueness can be easily proved. �

Theorem 7. Let conditions (M.1), (M.2), (C), (N.1), (N.2)' and (N.3)' be

satis�ed and f 2 S 0(Mp)
(Np)

(respectively f 2 S 0fMpg
fNpg

). There exist an ultradi�erential

operator P (d=dx) of class (M2
p ) (respectively fM2

pg), a smooth function u1(x) and
a real analytic function u2(x) such that

ju1(x)j � C exp[N(njxj)]; and ju2(x)j � C exp[N(njxj)];

for some n > 0, (respectively every n > 0), and

f(x) = P (�)u1(x) + u2(x):

Proof. Let f 2 S 0(Mp)
(Np)

(respectively S 0fMpg
fNpg

) and let

U(x; t) = hf(y); E(x� y; t)i:

By the �rst part of the Theorem 6, we have that U(x; t) 2 C1(Rd+1+ ), (4.6), and
(4.7). By using the same construction as in the proof of the second part of the
Theorem 6 one can prove that

U(x; t) = P (��)g(x; t)� h(x; t); (4.19)

where g and h are de�ned as in (4.13). Note that since U(x; t) converges to f(x)

in the space S 0(Mp)

(Np)
, as t ! 0+ (see the proof of the �rst part of Theorem 6), the
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function g(x; t) converges to a smooth function g0(x), and h(x; t) converges to a
real analytic function h0(x) as t! 0+ with

jg0(x)j � C exp[N(njxj)]; and jh0(x)j � C exp[N(njxj)];

for some n > 0, (respectively every n > 0). This and (4.19) imply

f(x) = P (��)g0(x) � h0(x)

in the space S 0(Mp)
(Np)

(respectively S 0fMpg
fNpg

). Put u1(x) = g0(x) and u2(x) = �h0(x).
This completes the proof. �
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