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Abstract. We establish new properties of distribution spaces of slow growth
and of exponential growth that are Hankel transformable. We obtain representa-
tions of those generalized functions as initial values of solutions of the Kepinski
type equation. Also we analyze Hankel positive definite functions and generalized
functions. Finally we obtain characterizations of Hankel transformable distributions
having bounded above or bounded below support on (0, c0).

1. Introduction. In this paper we establish new properties of Hankel
transformable distribution spaces of slow and of exponential growth.

The Hankel transformation is usually defined by

o=

m@w) = [ (@)t (ap)(@)dz, y € (0,00,
0
where J,, represents the Bessel function of the first kind and order p. Throughout
this paper we will consider p > —1.
To study the Hankel transformation on distribution spaces A.H. Zemanian
introduced in [23] the space H, that consists of all those complex valued and
smooth functions ¢ on (0, co0) such that

1 k
Por(@) = s (14237 (=D) @ hg(@)] < oo,
z€(0,00) T

for every m,k € Ny = NU {0}, On H, we consider the topology generated by
the family {7 ,}m ren, of seminorms. Thus H, is a Fréchet space. The Hankel
transformation is an automorphism of H,, [23, Lemma 8]. The dual space of H,, is
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denoted by H}, and the elements of H,, are distributions of slow growth. The Hankel
transformation hj, is defined on H}, as the transpose of the h,-transformation on
H,. That is, if T € H,, the Hankel transform %, T of T' is defined by

(T, ¢) = (T, huo), ¢ € Hy.

Let a > 0. In [24] A.H. Zemanian defined the space B, , constituted by all
those functions ¢ € H, such that ¢(z) =0, z > a. B, , is a closed subspace of
H,,. The Hankel transform h, (B, ) of B, . was characterized in [24, Theorem 1].
It is clear that B, , is continously contained in B, p, provided that 0 < a < b. The
space By, = Us>0By,q is endowed with the inductive topology. As usual B, will
denote the dual space of B,,.

Topological properties of the spaces H,, B, and their duals were established
in [2] and [3].

J.J. Betancor and L. Rodriguez-Mesa [8] studied the Hankel transform of
distributions of exponential growth. We introduced the space x, that consists of
all those complex valued and smooth functions ¢ defined on (0, co) satisfying

(20) @ +tow)| < .

Mmp(®) = sup €™
z€(0,00)

for every m,k € Ny. x, is a Fréchet space when we consider in x, the topology
generated by {n}, ;}m ken,- X}, represents the dual space of x, and the elements
of x;, are distributions of exponential growth.

By Q, we denote the space of all those functions ® verifying the following
two conditions:

(i) z7#~2®(z) is an even and entire function, and

(ii) for every m,k € Ny,

wh (@) = sup (14 2™z # 2 &(2)] < oo.
[Im z|<k

The topology of 9, is the one generated by {wfn,k}m7k€No‘

In [8, Theorem 2.1] it is proved that the Hankel transformation h, is an
isomorphism from x, onto Q,. The h,-transformation is defined on the dual
spaces X, and Q; as the transpose of h, on Q, and Xy, respectively.

F.M. Cholewinski [10], D.T. Haimo [17] and L.I. Hirschman Jr. [18] have in-
vestigated a convolution operation for a version of the Hankel transfomation closely
connected to h,. After doing a single change of variable by taking into account
the results in [18] we can define a convolution of the Hankel transformation h,. In
particular if f and g are in Ll(:r‘”r%da:, (0, 00)) the Hankel convolution f#g of f
and g is defined by

(f9)(z) = / W) () w)dy, 7 € (0,00),
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where the Hankel translation 7, 2 € (0,00), is given by

(rea)) = [ " Dulay, 2)g(2)dz, 7,y € (0,00),

and

=

Dy(z,y,z) = /0 h tH 3 (wt) 2, () (yt) 2 T (yt) (2) 2 T, (2t)dt, @y, 2 € (0,00).

J. de Sousa-Pinto [21] started the investigation about the Hankel convolution
in generalized functions. He defined the Hankel convolution of order i = 0 on distri-
butions of compact support on (0, 00). More recently, J.J. Betancor and I. Marrero
([4], [5], [6], [7] and [19]), J.J. Betancor and B.J. Gonzéilez [1] and J.J. Betan-
cor and L. Rodriguez-Mesa ([8] and [9]) have studied the Hankel convolution on
distribution spaces of slow growth and of exponential growth.

In [19, Proposition 2.1, (i)] it is established that the Hankel translation 7,., z €
(0,00), defines a continuous mapping from H,, into itself. The Hankel convolution
TH#pof T € H,, and ¢ € H, is defined by

(T#¢)(x) = (T, 120), x € (0,00). (1.1)

In [19, Proposition 4.3] and [5, Proposition 2.5] we characterized the space O), ,
constituted by the elements of H,, that generate convolution operators in H},.

The Hankel convolution is studied on xj, in [8]. If T' € x|, and ¢ € X, the
#-convolution T#¢ of T and ¢ is also defined by (1.1).

This paper, where we analyze new properties of the distributions in H L and
X,.» is organised as follows. In Section 2 we represent the generalized functions in
H,, and xj, as initial values of solutions of the Kepinski type equations [22, p. 9]

SuU = =U,

ot
where S, , = =#~2 Dg?*+1 D=+~ The Hankel positive definite functions and
generalized functions are studied in Section 3. Finally, in Section 4 we obtain
characterizations of the distributions in Hj, having bounded above or bounded
below support in (0, 00).

Throughout this paper C' will always represent a positive constant not neces-
sarily the same in each occurrence.

2. Hankel transformable generalized functions as initial values of
solutions of Kepinski type equations. In this Section we obtain representations
of the elements of H,, and x), as the initial values of solutions of the Kepinski type
equation [22, p. 99].
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Firstly we need to prove a result that will be essential in the sequel.
We will denote by E the function defined by

E(z,t) = z"t3(2t)7# ! ( mQ) te (0
(1‘, ) =T ( ) exp 4t ’ z, € ( 700)'
According to [14, (10), p. 29] the following useful formula

hu(E(,1)(y) = ™", y.t € (0,00), (2.1)
holds.

LEMMA 2.1 (i) If ¢ € H, then

E(,t)#¢ — ¢, ast — 0T, in H,. (2.2)
(it) If ¢ € x, then
E(,t)#¢ — ¢, ast — 0T, in x,. (2.3)
Proof. (i) For every t € (0,00), E(.,t) € H,. Then, according to [19,
Proposition 2.2, ()], E(.,t)#¢ € H,, for each t € (0, 00).

Let ¢ € H,. By invoking the interchange formula [19, (1.3)] and [23, Lem-
ma 8], (2.2) is equivalent to

2P T hy, (B, ) hy(¢) = hy (), ast — 0T, in H,. (2.4)
Write ¢ = h,(¢). By (2.1) to see (2.4) we have to show that
e*tyzw(y) —Y(y), ast — 07, in H,.
Let m,k € N and € > 0. Leibniz rule leads to
1_\* . 2
1+ (LD) " Ho)e v ) (2:5)
=(L+y*)" (ED)k(y’“*%iﬁ(y))(e’t"’z -1
y
=k 1. \J , i e
+ 3 (D arm (Go) w2t Te by e 0.0,
=0

It is clear that

=t

2
1+ 4° _1|STy2’ t,y € (0,00).
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Hence, there exists yo € (0, 00) such that, for every y > yo and ¢ € (0, 00),

1
1+y?

|e_ty2 -1 <e. (2.6)

Moreover, we can find § > 0, for which

1+y2|e_ty2—1|§5, y<yoand 0 <t <. (2.7)

By combining (2.5), (2.6) and (2.7) it concludes that

Y (e = 1)) 0, as t — 0.

)

Thus the proof of (i) is finished.
(i) Let ¢ € x,. Since E(.,t) € xu, for each t € (0,00), according to [8,

Proposition 3.2, E(.,t)#¢ € x,, for every t € (0, 00).

To see (2.3), by [8, Theorem 2.1], it is sufficient to prove that

e W h(y) = p(y), as t — 01, in Q, (2.8)

where ¢ = h,(4).

Let m,k € Ny and € > 0. We can write

e — 1L+ Iyl 2 o) < O+ yP) ™Iy 2ol e "M V7 + 1),

0<t<l, |Imy|<k.

Hence, there exists a > 0 such that, for every y € C being |y| > a and

| Imy| <k,

o™ —1|(1+ |y)™ |y~ F(y)| <e, 0<t< L

Moreover, we can find ¢y € (0,1) for which

le=" = 1[(1+ )"y ™ "2 p(y)| < e, |Tmy| <k, |yl <aand 0<t<to.

Hence, if 0 < t < to, then w!, k(w(e*“/2 —-1) <e.
Thus (2.8) is established. O
Now we characterize the elements of H L as the initial values of solutions of

Kepinski-type equations.

THEOREM 2.2 Let u € H,,. Define the function U by

Uz, t) = (u#E(.,t))(x), z,t € (0,00).
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Then (i) U is an infinitely differentiable function on (0,00) x (0,00) and

SyaU(z,t) = %U(m,t), 2t € (0,00). (2.9)

(i) For every T € (0,00) there exists C > 0 and r € Ny such that
U(z,t)| < Cartae 1420 (1 4 22)7 e (0,00) and 0 < t < T.

(iii) U(z,t) — u, ast — 07, in the weak * topology of H,, that is
o0

(u, ¢y = lim Uz, t)p(z)dx, ¢ € Hy,.

t—0+ 0

Conversely, if U is an infinitely differentiable function on (0, 00) X (0,00) such
that (i) and (i) hold, then there exists a unique u € H,, for which

Ulz,t) = (u#E(,1))(z), 2,t¢€ (0,00).

Proof. Let uw € H,. Since E(.,t) € H,, t € (0,00), by [19, Proposition
3.5] the function U defined by U(z,t) = (u#E(.,t))(z), t,z € (0,00), is infinitely
differentiable and ##~2U is a multiplier of H, 1« [3, Theorem 2.3]. Moreover, [19,
(3.18)]

| U0t = (w B 0#9), 6 € H, and t € 0,50)

Hence, according to Lemma 2.1(i), (iii) holds.

To see that U satisfies (2.9) we take into account that, by [19, Proposition
4.7(ii)],

(2~ S ) UG 1) = (uly), o (B D)) — Tel(Spa B 1)) )
_ (u#(gE(.,t) ~ 5B (1)) (@), 2,1 € (0,00).

Since (Z — S,..)E(z,t) =0, z,t € (0,00), we conclude (i).
We now will prove (ii). Since u € Hj, there exists C > 0 and 7 € Ny such
that

(u, @) < O max 73, 1(9); ¢ € Hy. (2.10)

Let k € Ny and T € (0, 00). We can write

k )
T 1 Nk
zH 2Sﬁk: E aikm2’(—D) rHTz,
y ’ x
1=0
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where a; 1, 1 = 0, ..., k, are suitable real numbers.
Then

2

k
x*“’%557wE(m,t) _ Z ai’k(_1)k+i$2i(2t)*(u+1+k+i) exp ( — Z—t), z,t € (0,00),
i=0

and, if T € (0, 00),

2
w38k B(x, 1) < Ct 0P (1422 exp (_%) z€(0,00) and 0 < t < T.

Hence, according to [19, Proposition 2.1(ii)] and [18, (2), p. 310], we have

Tty
Sty (ECOI < [ Dula,y, 2Bl
z—y
z+y . 22
< Ot~ (nH1+2k) / D, (z,y,2)2" T2 (1 + 2%)k exp ( - —)dz
oyl 4t
2
< Op—(n+142k) (0 it S _(@—y)
<Ct (o) exp (- ),
z,y € (0,00) and 0 < t < T. (2.11)

From (2.10) and (2.11) it deduces that

_ 2
|U(z,t)| < Ct*(u+1+2k)mu+% sup (1+ y2)r exp ( _ u)
0<y<oo 8t

< Ct_(”"'l“k)m”"'%(l +2%)", x€(0,00) and 0 < t < T.

To prove the converse we proceed as in the proof of [13, Theorem 2.4].
Let m € N and T € (0,00). Define the function f,, by

tm—l

= = > 0.
fm(t) =0, t <0, and fp,(¢) T(m)’ t>0
As it is well-known, we can write
d\m
(%) o(t) = 8(t) + w(t), (2.12)

where v is an infinitely differentiable function on R such that v(t) = fn(t), t < L;
and v(t) =0, ¢t > %, and w is an infinitely differentiable function on R having its

LT, Here, as usual, § denotes the Dirac functional.

support contained in [, 5
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We now define

~ o0 T
Ul(z,t) = / U(z,t+ s)v(s)ds, 0 <t < 3 and z € (0, ).
0

Thus U is an infinitely differentiable function on (0,00) x (0, £). Moreover, since
U satisfies (ii) there exist C' > 0 and r € Ny such that

U (x,t)| < Catt ot~ 14201 4 22)" 2 € (0,00) and 0 < t < T\

Hence, if m > p + 2r — 1 it follows

N

Ola0] < Cart i)y [ ) 20 u(o)lds

0

N

< C’a;‘”r%(l + x2)r/ g~ (m=m+21) gg

0
T
<Crrtr(l+a2%)", 0<t< 3 and z € (0, 00).
Note that it is also deduced that U can be continuously extended to (0, 00) x [0, L.

Since (% - Suw)ﬁ(x,t) =0,0<t< L andz € (0,00), and by (2.12), one
has

(=Sp.0)™ T (2, 1) = (— %)mﬁ(m,t) = Ulz,t) + /Ooo Uz, t + s)w(s)ds, (2.13)

for every 0 <t < £ and z € (0, 00).
Now we introduce the function H defined by

e T
H(z,t) = —/ Uz, t+ s)w(s)ds, 0 <t < 3 and z € (0, 00).
0

By proceeding as above we can see that (% —Su,z)H(z,t) =0, and |H(z,t)| <
Cartz(1+a2)", 0<t < £ and z € (0,00). Also H can be continuously extended

to (0,00) x [0, %).
If we define g(z) = U(z,0), z € (0,00), and h(z) = U(z,0), z € (0,00), the

uniqueness of solution implies that

Ulz,t) = (g#E(,1)(z), 0<t< % and z € (0, 00),

and
H(z,t) = (h#E(,t)(z), 0<t< % and z € (0, 00).
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Define u = (=S,)™g + h. It is clear that v € H,,. Moreover, by taking into
account [19, Proposition 4.7(iii)] and (2.13), it infers

(u#E(.,1))(x) = (=Su)" (9#E(.,1))(x) + (h#E(., 1)) (x)

T
=(=S,)"U(z,t) + H(z,t) =U(z,t), 0<t < 3 and z € (0, ).

Furthermore, Lemma 2.1(i) implies that
U(.,t) =u#E(,t) - u, ast — 0T,

in the weak * topology of H,.

Hence u is the unique element of H), fulfilling
Ulz,t) = (u#E(.,1))(2), .t € (0,00).

O
As a consequence of Theorem 2.2 we can obtain the following.

COROLLARY 2.3 If u € HL then there exist C > 0, r,m € Ny and two
continuous functions g and h such that

and for which u = S]'g + h.
Proof. Define the function U by
Uz, t) = (u#E(,1))(x), =t € (0,00).

Proposition 2.1 gives us the desired representation for u. O

By proceeding as in the proof of Theorem 2.2 and Corollary 2.3 and by using
Lemma 2.1(ii) instead of Lemma 2.1(i) we can establish the corresponding result
for the space xj,.

THEOREM 2.4 Let u € x},. Define the function
Uz, t) = (u#E(,1))(z), =t € (0,00).

Then (i) U is an infinitely differentiable function on (0,00) x (0,00) and (2.9) holds.
(it) For every T > 0 there exist C > 0 and r € Ny such that

|U(z,t)| < Cattat 120 e=re 0 ¢ < T gpd x € (0, 00).
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(#59) U(.,t) = u, as t = 0T, in the weak x topology of X,

Conversely, if U is an infinitely differentiable function on (0, 00) X (0, 00) such
that (i) and (i) hold, then there exists a unique u € X, for which

Ulz,t) = (u#E(,1))(z), 2t € (0,00).

Moreover, if u € XL then there exist C' > 0, r,m € Ny and two continuous
functions g and h such that

andu=S;'g+h. 0O

3. Positive definite Hankel transformable generalized functions.
F.M. Cholewinski, D.T. Haimo and A.E. Nussbaum [11] and A.E. Nussbaum [20]
have investigated the Bochner theorem for the Hankel transformation. Following
[11] and [20] we say that a function f € ¥+ L, (0, 00) is positive definite provided

that
n n
Z Z aiaj (Tzi f) (m,]) Z 07 ()
i=1 j=1
for every n € Ny, a; € C, z; € (0,00),i=1,2,...,n.
After performing a suitable change of variables, from the results in [11] it
follows that if f is a positive definite function then there exists a positive measure
A on (0,00) such that [;° 23 d)\(z) < oo and

(M

fz) = /0 " wy)} L (@) dA(y), ae., 7 € (0,00).

Also if u € Hj, (respectively, x;,) way say that u is a positive generalized
function in Hj, (respectively, x},) when

(u, ¢#$> >0, ¢ € H, (respectively, x,).

Note that if u is a positive definite generalized function in H,, then u is also a
positive generalized function in x),.

The following result is a Hankel version of [12, Lemma 2.5] (see [16, pp. 153—
155]).

THEOREM 3.1 A positive definite continuous function is a positive definite
generalized function in H;, (and hence in x),). Conversely, if a continuous func-

tion in x"+2 Loo(0,00) is a positive definite generalized function in X, then it is a
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positive definite function. Hence if a continuous function in w“*éLoo(O,oo) is a
positive generalized function in H,, then it is a positive definite function.

Proof. Let f be a positive definite continuous function. Since f € z#2 Lo (0, 00),
fisin H; and according to [19, Proposition 3.5] we can write

(1,649 = (#0.9) = | N / (D) $@)B(y)dady, € H,

By writing each integral as limit of sums, from (3.1) we deduce that (f, p#p) > 0
for each ¢ € Hy,.

Suppose now that f is a continuous function that is a positive definite general-
ized function in xj,. We will prove that if A is a finite measure which is concentrated
on a bounded set of (0,00) then

/ N / " (D) @)dA@)A(Y) > 0
0 0

This property implies immediately that f is a positive definite function.

Let {tm }nen, be a Hankel approximate identity in the sense of [4]. That is,
there exists a sequence {ap}nen, C (0,00) such that a, | 0, as n — oo, and the
following properties

(i) ¥n € By,

(ii) ¢n(z) >0, z € (0,00), and

(i) [ n(@)an ™z = 20T (s + 1),
hold, for every n € Ny. Note that if {¢)y}nen, and {¥p}nen, are Hankel approxi-
mate identities then {1, # ¥, }nen, also is a Hankel approximate identity.

Moreover, if {¢n }nen, is a Hankel approximate identity and f is a continuous
function on (0, 00) such that f € z#T2 L (0, 00) then, for every z € (0, c0),

| @tw )y - 5@), as 0 . (32
0
Indeed, let = € (0,00). According to [18, (2), p. 310] we can write

/ (ratbn) )y dy = / gt / D (., 2)bn(2)dzdy

0
=/ Y (2 / y" 3D, (x,y, 2)dydz
mem/ Un(@)2 ddz = 2t

for every n € Np.
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Hence, for every n € Ny, one has
/0 (rathn) () f (9)dy — f(z) = / (rathn) @)y (5™ £ (y) — 270~ F f(2)dy.

Let ¢ > 0. There exists 0 < § < z such that |[y=#"2 f(y) — ™" 2 f(z)| < ¢
provided that |z — y| < é. Hence, since f € x”+%Loo(0,oo), we can find ng € N
such that

|[rwra-s@lso( [ [T Yeamwrare=c 0z m

In the last equality we have taken into account that
z+y

(ratbn) (1) = /|

z—y|

Dy (g, 2)bn(2)dz < /5 Dy(@,y, 2)n(2)dz, |z -y >0,

and that ¢, € B4, n € Ny, for some {ay, }nen, C (0,00) being a,, | 0, as n — oo.

Assume that A is a finite measure and that it is concentrated on (0,a). For
every n € Ny, we define

W, (2) = / () W)AA), 7 € (0,00).

Note that ¥, (z) =0, z > a+a, and n € Ny. Indeed, let n € Ny. According
to [18, (2), p. 308] we have that

a prrty
U, (z) = /0 /x_y Dy (z,y, 2)n(2)dzd\(y) =0, = > a+ ay.

Moreover, by [5, (1.2)] and [25, (7)] one has, for every z € (0, 00) and n, k€ Ny,

(30) @ @) = [ Bt Dan ot (SEo )G,

T

Hence, for every n,k € Ny, since that the function z~#.J,(z) is bounded on
(0,00), and by taking into account [25, Lemma 5.4-1 and Theorem 5.4-1], we get

Gy <

Thus we conclude that, for every n € Ny, ¥,, € B, and then ¥,, € x, and

(f, Un#¥y) > 0. (3.3)
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On the other hand, \ € (’)L’#. In fact, for every ¢ € H,,, we have

(H,0.9) = Ol 0) = | h(@) (@) x) = / o) / (ay) 2T, (ay)dN(@) dy.
Hence -
B W) = / (z9) J(ay)dA(@), y € (0, 00).
Let k£ € Ny. We have

1

(G0) s, = [ ) R )i, v € 0,00).
Y 0

Since z~#J,,(z) is bounded on (0, o) and A is supported on a bounded set on
(0, 00), it follows

sup |(20) i) )| < oo
ye(0,00) ' VY .

Thus we prove that y*"*%h;(/\) is a multiplier of H, ([3, Theorem 2.3]).
Hence, from [19, Proposition 4.2] we deduce that A € (’)L’#.

According to [19, Proposition 4.7] it follows
(F, it Tn) = (f, M) #E D)) = (f, AN # ($n )
= [ @ [ i) @i

0

- /Ooo /000Ty(¢n#¢n)(x)(f#x)(x)dm(y), neNy.

On the other hand, f#X is a continuous function on (0, c0) and we can write

oo

e N@I < [ e DWW <0 / A, w € 0,00)

0

Hence f#) € #+2 L. (0,00). By (3.2) and by using dominated convergence theo-
rem we conclude, since {t)n#¢n, }nen, is a Hankel approximate identity, that

[ ntto@ @ @iedio) - [ [ mpua@ine, sn- .
0 0 0 0
Then, from (3.3) it infers that

/OOO /OOO(Tzf)(y)d/\(m)dX(y) > 0.
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Thus the proof is finished. O

Next we give a characterization of the positive definite generalized functions
that involve the heat kernel function E.

PRrOPOSITION 3.2. Let u € HL Then the following two properties are equiv-
alent.

(i) u is a positive definite generalized function in H},.

(i) The function U(xz,t) = (u#E(.,t))(z), x € (0,00), is a positive definite
function, for every t € (0,00).

Proof. (i) = (i7). By virtue of Theorem 3.1 it is sufficient to prove that
(U(.,t),p#p) >0, ¢ € H, and t € (0,0).

By taking into account the interchange formula [19, (1.3)] and [14, (10),
p. 29] it is not hard to see that E(.,t) = E(., 5)#E(., %), t € (0,00).
Then, since E(.,t) € Hy, t € (0,00), [19, Proposition 3.5] leads to

(U(,1), p#6) = (uH#E(, 1), o#P) = (u, (P#E(.,1/2))#(p#E(.,1/2))) > 0,
t € (0,00) and ¢ € H,

beacuse u is a positive definite generalized function in H},.
(i1) = (i). Let ¢ € H,. According to Theorem 3.1 one has

(U(.1), ¢#6) >0, t € (0,00).
Hence, [19, Proposition 2.2,(i)] and Theorem 2.2,(iii) imply that
(u, ¢ ) > 0.

Thus we prove that (i) holds. O

In a similar way we can establish the corresponding property for xj,.

PRroPOSITION 3.3. Let u € XL. The following two properties are equivalent.

(i) u is a positive definite generalized function in X,

(i7) The function U(z,t) = (u#E(.,t))(x), z € (0,00), is a positive definite
function, for every t € (0,00). O

An immediate consequence of Propositions 3.2 and 3.3 is the following.

COROLLARY 3.4. Let u € H,. Then u is a positive definite generalized
: : 1 : : e : : : ]
function in H, if, and only if, u is a positive definite generalized function in x;,. O
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4. Distributions in H, having Hankel transforms zero outside the
interval (0, a] or outside the interval (a,0c0). In [4] it was established a Hankel
version of the Paley—Wiener theorem. We introduced in [4] the space E,, that
consists of all those complex valued and smooth functions ¢ on (0,00) such that,
for every k € N, there exists

lim (1D)k(az*u*%¢(m)).

z—0t \T
E, is endowed with the topology generated by the family {pfn,k}mENo\{O},kENo of
seminorms, where

i@ = sw |(20) @ tow))| ser
ok ze(0,m) ' \T ’ o

for every m € Ny \ {0} and k € Ny. A functional T € H}, is in E,, the dual space of
E,, if and only if, there exists a = a(T") > 0 such that (T, ¢) = 0, for every ¢ € E,
being ¢(t) = 0, t < b, for some b > a [4, Proposition 4.4]. Moreover the elements
of B, were characterized as follows. A functional T' € H}, is in E, if, and only if,
the Hankel transform F = h;T of T satisfies the following two properties

(i) 27~ 2 F(2) is an even and entire function, and
(ii) there exists C, A > 0 and r € Ny such that [4, Propositions 4.5 and 4.9].

|27H 3 F(2)| < (1L + |z])7etl™ ) 2 e C.

In this section, inspired by the paper of J.P. Gabardo [15], we obtain a new

characterization of the elements T' € H L that are also in EL Also we characterize

the functionals in H,, that are, for some a > 0, zero inside the interval [a, 00), that
is, those T' € H,, such that (T,¢) =0, ¢ € By, 4.

THEOREM 4.1. Let T € H;, and a > 0. Then the following two properties are
equivalent

(i) (h,T,$) =0, for every ¢ € H,,, such that supp$ C (a, o),

(17) limg_y 00 R_%S}jT = 0, in the weak * topology of H,,, for every R > a.

Proof. (i) = (i7). Firstly note that by virtue of [25, Lemma 5.4-1,(6) and
Theorem 5.4-1], for every R > 0, the sequence {R’%SﬁT}keNo converges to zero
in the weak # topology of Hj, if, and only if, the sequence {R™?*z**h) T'};en,
converges to zero in the weak x topology in H,,.

Let a < € <y < R. Define 1) € C*°(0,00) such that ¢(y) =1, y € (0,¢), and
Y(y) =0,y € (n,00). Then h),T =+h,,T.
Let now m € Ny and ¢ € H,,. Leibniz rule leads to

GD)m(y*“*%y%R”%(y)w(y))

ok (T Fy2)20=0) (L p)" T (et
=R k]z_;<j>2k-(2k-_2)...(2k;—2]+2)y (k )(QD) W™ 2 o)y (y)),

keNy and y € (0,0).
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Hence, since ¢ (y) = 0, y > n, where n < R, we conclude that
%‘{m(y%Rf%qﬁw) — 0, as k — oo,
for every ¢ € H,, and then
(R y** 1y, (T), ¢) = (hy, (T), R™>* 4 ¢9p) — 0, as k — oo,

for every ¢ € H,. Thus (ii) is proved.

(i) = (i). Let R > a and ¢ € H,, such that ¢(z) =0, z < a + ¢, for some
e > 0. Since R™?*SET — 0, as k — o0, in the weak * topology of H},, [25, Theorem
5.4-1] implies that the sequence {R’%yzkhLT}keNo is weakly * (or, equivalently,
strongly) bounded in H,.

Moreover, for every k,l,m € Ny we can write that
1 m . 2k
(1+22) (D) (" 3z R g(x)
x

= B Y @)1+ (2D) @b gt e (0,00,
=0

where ¢;(k) is a polynomial in k, for every j =0,...,m.

Hence, it follows

‘(1 + .7;2)l (%D)m(m_“_%w_QkR%qb(m))‘

<03 (B ewla+ a2y (20) e tow)
< Ci (afg)%kj(k)w;fj((z)), z € (0,00) and k,I,m € Ny.

<
Il
=]

Then, we conclude that R*z~2*¢ — 0, as k — oo, in H,,, provided that
R<a+e.

Hence, for each a < R < a+¢,
lim (R~ aF b T, R** 22k ) = 0.
k—o00
Thus we prove that (b, T,¢) =0. O
The following result can be seen as a dual version of Theorem 4.1.

THEOREM 4.2. Let T € H, and a > 0. The following two properties are
equivalent.

(i) (h,,T,¢) =0, for every ¢ € B, with b < a.
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(i) There exists a unique sequence {Ly}ren, in H), such that Ly = T,
SuLipt1 = Ly, k € Ny, and limy_, o R_2khLLk = 0, in the weak * topology of
H,,, for every R > %

Proof. (i) = (ii). We define, for every k € N,
_ —k
Ly = h,((—2*)""h,T). (4.1)

Note that, since h;, T vanishes in (0,a), Ly, € H,, for each k € Np. Let R > % and
+ < 0 < a. Choose a function 1) € C*(0, 00) such that ¢(z) =0, 0 < z < 4, and
¢(z) =1,z > “E2. From (i) it deduces that

hLT = thT.
Moreover, for every ¢ € H,,
(R™**h), Ly, ¢) = ((=1)*(Rx) **n, T, p(x)) = (h), T, (—1)*(Rx) > ¢(z)(x)).
Since 1 is a multiplier of H, [3, Theorem 2.3], ¢v» € H,. By taking into

account that ¢¥(z) =0, 0 < z < 4, being Rd > 1, by proceeding as in the proof of
part (i) = (i7) in Theorem 4.1, we can conclude that

(R™*h,Li, ) — 0, as k — oo.
We now prove that {Ly}ren, where Ly is defined by (4.1), for every k € Ny,

is the unique sequence satisfying the conditions in (ii).
Assume that, for every k € No, £ € H,,, being

Lo=0, SuLiy1 =Ly, k€N and klim R, =0,
— 00

in the weak * topology of H,,, for every R > L.
We define the H/,-valued function F' by

o0
F) =) MLy (4.2)
k=0
that is holomorphic in [A| < a. It is easy to see that
o0
SuaF(N) =D ML = NF()), A <a.
k=0

Then, according to [25, Theorem 5.5-2,(8)] it follows

—a®h), F(\) = N’h,F(\), |\ <a. (4.3)
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Since, for every A # 0, the function f(z) = 22+ A2, z € (0, 00), is a multiplier
in H, ([25, Lemma 5.3-1]) from (4.3) we infer that

¢

(W FN), ) = (@ + X FO), =

>:0, $p€ Hyand 0 < A <a.
Hence FI(A\) = 0, 0 < |\ < a. From the representation (4.2) we conclude that
Lr =0, k € Nyp. Thus the uniqueness of the sequence {Lj}ren, satisfying the
properties in (ii) is established.

(i4) = (i). Let {Lg}ren, be a sequence in H), satisfying the properties in (ii).
Let ¢ € By, where 0 < b < a, and let R € (£, ). We can write

(h, T, ¢) = (h, (S L), &) = ((—=a*)*hy, Ly, §) = (R™* b, Ly, (=1)*(zR)**¢), k € Noy.

Since ¢(x) = 0, z > b, being Rb < 1, (zR) " ?*¢ — 0, as k — oo, in H,. Hence, by
taking into account that R*%h;lLk — 0, as k — oo, in the weak * topology of H/,,
it concludes that (h;,T,¢) = 0, and the proof is completed. O
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