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Abstract. We establish new properties of distribution spaces of slow growth
and of exponential growth that are Hankel transformable. We obtain representa-
tions of those generalized functions as initial values of solutions of the Kepinski
type equation. Also we analyze Hankel positive de�nite functions and generalized
functions. Finally we obtain characterizations of Hankel transformable distributions
having bounded above or bounded below support on (0;1).

1. Introduction. In this paper we establish new properties of Hankel
transformable distribution spaces of slow and of exponential growth.

The Hankel transformation is usually de�ned by

h�(�)(y) =

Z 1

0

(xy)
1
2 J�(xy)�(x)dx; y 2 (0;1);

where J� represents the Bessel function of the �rst kind and order �. Throughout
this paper we will consider � > � 1

2 .

To study the Hankel transformation on distribution spaces A.H. Zemanian
introduced in [23] the space H� that consists of all those complex valued and
smooth functions � on (0;1) such that


�m;k(�) = sup
x2(0;1)

(1 + x2)m
����1
x
D
�k
(x���

1
2�(x))

��� <1;

for every m; k 2 N0 = N [ f0g. On H� we consider the topology generated by
the family f
�m;kgm;k2N0 of seminorms. Thus H� is a Fr�echet space. The Hankel

transformation is an automorphism of H� [23, Lemma 8]. The dual space of H� is
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denoted byH 0
� and the elements ofH

0
� are distributions of slow growth. The Hankel

transformation h0� is de�ned on H 0
� as the transpose of the h�-transformation on

H�. That is, if T 2 H 0
� the Hankel transform h0�T of T is de�ned by

hh0�T; �i = hT; h��i; � 2 H�:

Let a > 0. In [24] A.H. Zemanian de�ned the space B�;a constituted by all
those functions � 2 H� such that �(x) = 0, x > a. B�;a is a closed subspace of
H�. The Hankel transform h�(B�;a) of B�;a was characterized in [24, Theorem 1].
It is clear that B�;a is continously contained in B�;b, provided that 0 < a < b. The
space B� = [a>0B�;a is endowed with the inductive topology. As usual B0

� will
denote the dual space of B�.

Topological properties of the spaces H�, B� and their duals were established
in [2] and [3].

J.J. Betancor and L. Rodr��guez-Mesa [8] studied the Hankel transform of
distributions of exponential growth. We introduced the space �� that consists of
all those complex valued and smooth functions � de�ned on (0;1) satisfying

��m;k(�) = sup
x2(0;1)

emx
���� 1
x
D
�k
(x��+

1
2 �(x))

��� <1;

for every m; k 2 N0 . �� is a Fr�echet space when we consider in �� the topology
generated by f��m;kgm;k2N0 . �

0
� represents the dual space of �� and the elements

of �0� are distributions of exponential growth.

By Q� we denote the space of all those functions � verifying the following
two conditions:

(i) z���
1
2�(z) is an even and entire function, and

(ii) for every m; k 2 N0 ,

w�
m;k(�) = sup

j Im zj�k

(1 + jzj2)mjz���
1
2�(z)j <1:

The topology of Q� is the one generated by fw�
m;kgm;k2N0 .

In [8, Theorem 2.1] it is proved that the Hankel transformation h� is an
isomorphism from �� onto Q�. The h�-transformation is de�ned on the dual
spaces �0� and Q0

� as the transpose of h� on Q� and ��, respectively.

F.M. Cholewinski [10], D.T. Haimo [17] and I.I. Hirschman Jr. [18] have in-
vestigated a convolution operation for a version of the Hankel transfomation closely
connected to h�. After doing a single change of variable by taking into account
the results in [18] we can de�ne a convolution of the Hankel transformation h�. In

particular if f and g are in L1(x
�+ 1

2 dx; (0;1)) the Hankel convolution f#g of f
and g is de�ned by

(f#g)(x) =

Z 1

0

f(y)(�xg)(y)dy; x 2 (0;1);
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where the Hankel translation �x, x 2 (0;1), is given by

(�xg)(y) =

Z 1

0

D�(x; y; z)g(z)dz; x; y 2 (0;1);

and

D�(x; y; z) =

Z 1

0

t���
1
2 (xt)

1
2 J�(xt)(yt)

1
2 J�(yt)(zt)

1
2 J�(zt)dt; x; y; z 2 (0;1):

J. de Sousa-Pinto [21] started the investigation about the Hankel convolution
in generalized functions. He de�ned the Hankel convolution of order � = 0 on distri-
butions of compact support on (0;1). More recently, J.J. Betancor and I. Marrero
([4], [5], [6], [7] and [19]), J.J. Betancor and B.J. Gonz�alez [1] and J.J. Betan-
cor and L. Rodr��guez-Mesa ([8] and [9]) have studied the Hankel convolution on
distribution spaces of slow growth and of exponential growth.

In [19, Proposition 2.1, (i)] it is established that the Hankel translation �x, x 2
(0;1), de�nes a continuous mapping from H� into itself. The Hankel convolution
T#� of T 2 H 0

� and � 2 H� is de�ned by

(T#�)(x) = hT; �x�i; x 2 (0;1): (1.1)

In [19, Proposition 4.3] and [5, Proposition 2.5] we characterized the space O0
�;#

constituted by the elements of H 0
� that generate convolution operators in H 0

�.

The Hankel convolution is studied on �0� in [8]. If T 2 �0� and � 2 �� the
#-convolution T#� of T and � is also de�ned by (1.1).

This paper, where we analyze new properties of the distributions in H 0
� and

�0�, is organised as follows. In Section 2 we represent the generalized functions in
H 0
� and �0� as initial values of solutions of the Kepinski type equations [22, p. 99]

S�;xU =
@

@t
U;

where S�;x = x���
1
2Dx2�+1Dx���

1
2 . The Hankel positive de�nite functions and

generalized functions are studied in Section 3. Finally, in Section 4 we obtain
characterizations of the distributions in H 0

� having bounded above or bounded
below support in (0;1).

Throughout this paper C will always represent a positive constant not neces-
sarily the same in each occurrence.

2. Hankel transformable generalized functions as initial values of

solutions of Kepinski type equations. In this Section we obtain representations
of the elements of H 0

� and �0� as the initial values of solutions of the Kepinski type
equation [22, p. 99].
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Firstly we need to prove a result that will be essential in the sequel.

We will denote by E the function de�ned by

E(x; t) = x�+
1
2 (2t)���1 exp

�
�
x2

4t

�
; x; t 2 (0;1):

According to [14, (10), p. 29] the following useful formula

h�(E(:; t))(y) = e�ty
2

; y; t 2 (0;1); (2.1)

holds.

Lemma 2.1 (i) If � 2 H� then

E(:; t)#�! �; as t! 0+; in H�: (2.2)

(ii) If � 2 �� then

E(:; t)#�! �; as t! 0+; in ��: (2.3)

Proof. (i) For every t 2 (0;1), E(:; t) 2 H�. Then, according to [19,
Proposition 2.2, (i)], E(:; t)#� 2 H�, for each t 2 (0;1).

Let � 2 H�. By invoking the interchange formula [19, (1.3)] and [23, Lem-
ma 8], (2.2) is equivalent to

x���
1
2h�(E(:; t))h�(�)! h�(�); as t! 0+; in H�: (2.4)

Write  = h�(�). By (2.1) to see (2.4) we have to show that

e�ty
2

 (y)!  (y); as t! 0+; in H�:

Let m; k 2 N and " > 0. Leibniz rule leads to

(1 + y2)m
�1
y
D
�k
(y���

1
2 (y)(e�ty

2

� 1)) (2.5)

= (1 + y2)m
�1
y
D
�k
(y���

1
2 (y))(e�ty

2

� 1)

+

k�1X
j=0

�
k

j

�
(1 + y2)m

�1
y
D
�j
(y���

1
2 (y))(�2t)k�je�ty

2

; t; y 2 (0;1):

It is clear that

1

1 + y2
je�ty

2

� 1j �
2

1 + y2
; t; y 2 (0;1):
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Hence, there exists y0 2 (0;1) such that, for every y > y0 and t 2 (0;1),

1

1 + y2
je�ty

2

� 1j � ": (2.6)

Moreover, we can �nd Æ > 0, for which

1

1 + y2
je�ty

2

� 1j � "; y � y0 and 0 < t < Æ: (2.7)

By combining (2.5), (2.6) and (2.7) it concludes that


�m;k( (e
�ty2 � 1))! 0; as t! 0+:

Thus the proof of (i) is �nished.

(ii) Let � 2 ��. Since E(:; t) 2 ��, for each t 2 (0;1), according to [8,
Proposition 3.2], E(:; t)#� 2 ��, for every t 2 (0;1).

To see (2.3), by [8, Theorem 2.1], it is suÆcient to prove that

e�ty
2

 (y)!  (y); as t! 0+; in Q�; (2.8)

where  = h�(�).

Let m; k 2 N0 and " > 0. We can write

je�ty
2

� 1j(1 + jyj2)mjy���
1
2 (y)j � C(1 + jyj2)mjy���

1
2 (y)j(e�t(Re y)

2

+ 1);

0 < t < 1; j Im yj � k:

Hence, there exists a > 0 such that, for every y 2 C being jyj � a and
j Im yj � k,

je�ty
2

� 1j(1 + jyj2)mjy���
1
2 (y)j � "; 0 < t < 1:

Moreover, we can �nd t0 2 (0; 1) for which

je�ty
2

� 1j(1 + jyj2)mjy���
1
2 (y)j � "; j Im yj � k; jyj � a and 0 < t < t0:

Hence, if 0 < t < t0, then w
�
m;k( (e

�ty2 � 1)) � ".

Thus (2.8) is established. �

Now we characterize the elements of H 0
� as the initial values of solutions of

Kepinski-type equations.

Theorem 2.2 Let u 2 H 0
�. De�ne the function U by

U(x; t) = (u#E(:; t))(x); x; t 2 (0;1):
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Then (i) U is an in�nitely di�erentiable function on (0;1)� (0;1) and

S�;xU(x; t) =
@

@t
U(x; t); x; t 2 (0;1): (2.9)

(ii) For every T 2 (0;1) there exists C > 0 and r 2 N0 such that

jU(x; t)j � Cx�+
1
2 t�(�+1+2r)(1 + x2)r; x 2 (0;1) and 0 < t < T:

(iii) U(x; t)! u, as t! 0+, in the weak � topology of H 0
�, that is

hu; �i = lim
t!0+

Z 1

0

U(x; t)�(x)dx; � 2 H�:

Conversely, if U is an in�nitely di�erentiable function on (0;1)�(0;1) such
that (i) and (ii) hold, then there exists a unique u 2 H 0

� for which

U(x; t) = (u#E(:; t))(x); x; t 2 (0;1):

Proof. Let u 2 H 0
�. Since E(:; t) 2 H�, t 2 (0;1), by [19, Proposition

3.5] the function U de�ned by U(x; t) = (u#E(:; t))(x); t; x 2 (0;1); is in�nitely

di�erentiable and x���
1
2U is a multiplier of H� [3, Theorem 2.3]. Moreover, [19,

(3.18)], Z 1

0

U(x; t)�(x)dx = hu;E(:; t)#�i; � 2 H� and t 2 (0;1):

Hence, according to Lemma 2.1(i), (iii) holds.

To see that U satis�es (2.9) we take into account that, by [19, Proposition
4.7(ii)],

� @
@t
� S�;x

�
U(x; t) =

D
u(y);

@

@t
(�xE(:; t))(y) � �x(S�;xE(:; t))(y)

E
=
�
u#

� @
@t
E(:; t)� S�;xE(:; t)

��
(x); x; t 2 (0;1):

Since ( @
@t
� S�;x)E(x; t) = 0, x; t 2 (0;1), we conclude (i).

We now will prove (ii). Since u 2 H 0
� there exists C > 0 and r 2 N0 such

that
jhu; �ij � C max

0�m;k�r

�m;k(�); � 2 H�: (2.10)

Let k 2 N0 and T 2 (0;1). We can write

x���
1
2Sk�;k =

kX
i=0

ai;kx
2i
�1
x
D
�k+i

x���
1
2 ;



On Hankel transformable distribution spaces 129

where ai;k, i = 0; . . . ; k, are suitable real numbers.

Then

x���
1
2Sk�;xE(x; t) =

kX
i=0

ai;k(�1)
k+ix2i(2t)�(�+1+k+i) exp

�
�
x2

4t

�
; x; t 2 (0;1);

and, if T 2 (0;1),

x���
1
2 jSk�;xE(x; t)j � Ct�(�+1+2k)(1+x2)k exp

�
�
x2

4t

�
; x 2 (0;1) and 0 < t < T:

Hence, according to [19, Proposition 2.1(ii)] and [18, (2), p. 310], we have

jSk�;y�x(E(:; t))(y)j �

Z x+y

jx�yj

D�(x; y; z)jS
k
�;zE(z; t)jdz

� Ct�(�+1+2k)
Z x+y

jx�yj

D�(x; y; z)z
�+ 1

2 (1 + z2)k exp
�
�
z2

4t

�
dz

� Ct�(�+1+2k)(xy)�+
1
2 exp

�
�

(x� y)2

8t

�
;

x; y 2 (0;1) and 0 < t < T: (2.11)

From (2.10) and (2.11) it deduces that

jU(x; t)j � Ct�(�+1+2k)x�+
1
2 sup
0<y<1

(1 + y2)r exp
�
�

(x� y)2

8t

�
� Ct�(�+1+2k)x�+

1
2 (1 + x2)r; x 2 (0;1) and 0 < t < T:

To prove the converse we proceed as in the proof of [13, Theorem 2.4].

Let m 2 N and T 2 (0;1). De�ne the function fm by

fm(t) = 0; t < 0; and fm(t) =
tm�1

�(m)
; t � 0:

As it is well-known, we can write

� d
dt

�m
v(t) = Æ(t) + w(t); (2.12)

where v is an in�nitely di�erentiable function on R such that v(t) = fm(t), t �
T
4 ;

and v(t) = 0, t � T
2 , and w is an in�nitely di�erentiable function on R having its

support contained in [T4 ;
T
2 ]. Here, as usual, Æ denotes the Dirac functional.
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We now de�ne

eU(x; t) = Z 1

0

U(x; t+ s)v(s)ds; 0 < t <
T

2
and x 2 (0;1):

Thus eU is an in�nitely di�erentiable function on (0;1) � (0; T2 ). Moreover, since
U satis�es (ii) there exist C > 0 and r 2 N0 such that

jU(x; t)j � Cx�+
1
2 t�(�+1+2r)(1 + x2)r; x 2 (0;1) and 0 < t < T:

Hence, if m > �+ 2r � 1 it follows

jeU(x; t)j � Cx�+
1
2 (1 + x2)r

Z T

2

0

(t+ s)�(�+1+2r)jv(s)jds

� Cx�+
1
2 (1 + x2)r

Z T

2

0

s�(��m+2r)ds

� Cx�+
1
2 (1 + x2)r; 0 < t <

T

2
and x 2 (0;1):

Note that it is also deduced that eU can be continuously extended to (0;1)� [0; T2 ).

Since ( @
@t
� S�;x)eU(x; t) = 0, 0 < t < T

2 and x 2 (0;1), and by (2.12), one
has

(�S�;x)
m eU(x; t) = �

�
@

@t

�m eU(x; t) = U(x; t) +

Z 1

0

U(x; t+ s)w(s)ds; (2.13)

for every 0 < t < T
2 and x 2 (0;1).

Now we introduce the function H de�ned by

H(x; t) = �

Z 1

0

U(x; t+ s)w(s)ds; 0 < t <
T

2
and x 2 (0;1):

By proceeding as above we can see that ( @
@t
�S�;x)H(x; t) = 0, and jH(x; t)j �

Cx�+
1
2 (1 + x2)r, 0 < t < T

2 and x 2 (0;1). Also H can be continuously extended

to (0;1)� [0; T2 ).

If we de�ne g(x) = eU(x; 0), x 2 (0;1), and h(x) = U(x; 0), x 2 (0;1), the
uniqueness of solution implies that

eU(x; t) = (g#E(:; t))(x); 0 < t <
T

2
and x 2 (0;1);

and

H(x; t) = (h#E(:; t))(x); 0 < t <
T

2
and x 2 (0;1):
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De�ne u = (�S�)
mg + h. It is clear that u 2 H 0

�. Moreover, by taking into
account [19, Proposition 4.7(iii)] and (2.13), it infers

(u#E(:; t))(x) = (�S�)
m(g#E(:; t))(x) + (h#E(:; t))(x)

= (�S�)
m eU(x; t) +H(x; t) = U(x; t); 0 < t <

T

2
and x 2 (0;1):

Furthermore, Lemma 2.1(i) implies that

U(:; t) = u#E(:; t)! u; as t! 0+;

in the weak � topology of H 0
�.

Hence u is the unique element of H 0
� ful�lling

U(x; t) = (u#E(:; t))(x); x; t 2 (0;1):

�

As a consequence of Theorem 2.2 we can obtain the following.

Corollary 2.3 If u 2 H 0
� then there exist C > 0, r;m 2 N0 and two

continuous functions g and h such that

jh(x)j � Cx�+
1
2 (1 + x2)r; x 2 (0;1);

jg(x)j � Cx�+
1
2 (1 + x2)r ; x 2 (0;1);

and for which u = Sm� g + h.

Proof. De�ne the function U by

U(x; t) = (u#E(:; t))(x); x; t 2 (0;1):

Proposition 2.1 gives us the desired representation for u. �

By proceeding as in the proof of Theorem 2.2 and Corollary 2.3 and by using
Lemma 2.1(ii) instead of Lemma 2.1(i) we can establish the corresponding result
for the space �0�.

Theorem 2.4 Let u 2 �0�. De�ne the function

U(x; t) = (u#E(:; t))(x); x; t 2 (0;1):

Then (i) U is an in�nitely di�erentiable function on (0;1)�(0;1) and (2:9) holds.

(ii) For every T > 0 there exist C > 0 and r 2 N0 such that

jU(x; t)j � Cx�+
1
2 t�(�+1+2r)e�rx; 0 < t < T and x 2 (0;1):
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(iii) U(:; t)! u, as t! 0+, in the weak � topology of �0�.

Conversely, if U is an in�nitely di�erentiable function on (0;1)�(0;1) such
that (i) and (ii) hold, then there exists a unique u 2 �0� for which

U(x; t) = (u#E(:; t))(x); x; t 2 (0;1):

Moreover, if u 2 �0� then there exist C > 0, r;m 2 N0 and two continuous
functions g and h such that

jh(x)j � Cx�+
1
2 erx; x 2 (0;1);

jg(x)j � Cx�+
1
2 erx; x 2 (0;1);

and u = Sm� g + h. �

3. Positive de�nite Hankel transformable generalized functions.

F.M. Cholewinski, D.T. Haimo and A.E. Nussbaum [11] and A.E. Nussbaum [20]
have investigated the Bochner theorem for the Hankel transformation. Following
[11] and [20] we say that a function f 2 x�+

1
2L1(0;1) is positive de�nite provided

that
nX
i=1

nX
j=1

aiaj(�xif)(xj) � 0; ()

for every n 2 N0 , ai 2 C , xi 2 (0;1), i = 1; 2; . . . ; n.

After performing a suitable change of variables, from the results in [11] it
follows that if f is a positive de�nite function then there exists a positive measure

� on (0;1) such that
R1
0 x�+

1
2 d�(x) <1 and

f(x) =

Z 1

0

(xy)
1
2 J�(xy)d�(y); a.e., x 2 (0;1):

Also if u 2 H 0
� (respectively, �0�) way say that u is a positive generalized

function in H 0
� (respectively, �0�) when

hu; �#�i � 0; � 2 H� (respectively; ��):

Note that if u is a positive de�nite generalized function in H 0
� then u is also a

positive generalized function in �0�.

The following result is a Hankel version of [12, Lemma 2.5] (see [16, pp. 153{
155]).

Theorem 3.1 A positive de�nite continuous function is a positive de�nite
generalized function in H 0

� (and hence in �0�). Conversely, if a continuous func-

tion in x�+
1
2L1(0;1) is a positive de�nite generalized function in �0� then it is a
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positive de�nite function. Hence if a continuous function in x�+
1
2L1(0;1) is a

positive generalized function in H 0
� then it is a positive de�nite function.

Proof. Let f be a positive de�nite continuous function. Since f 2x�+
1
2L1(0;1),

f is in H 0
� and according to [19, Proposition 3.5] we can write

hf; �#�i = hf#�; �i =

Z 1

0

Z 1

0

(�xf)(y)�(x)�(y)dxdy; � 2 H�:

By writing each integral as limit of sums, from (3.1) we deduce that hf; �#�i � 0,
for each � 2 H�.

Suppose now that f is a continuous function that is a positive de�nite general-
ized function in �0�. We will prove that if � is a �nite measure which is concentrated
on a bounded set of (0;1) then

Z 1

0

Z 1

0

(�xf)(y)d�(x)d�(y) � 0:

This property implies immediately that f is a positive de�nite function.

Let f ngn2N0 be a Hankel approximate identity in the sense of [4]. That is,
there exists a sequence fangn2N0 � (0;1) such that an # 0, as n ! 1, and the
following properties

(i)  n 2 B�;an ,

(ii)  n(x) � 0, x 2 (0;1), and

(iii)
R1
0
�n(x)x

�+ 1
2 dx = 2��(�+ 1),

hold, for every n 2 N0 . Note that if f ngn2N0 and f	ngn2N0 are Hankel approxi-
mate identities then f n#	ngn2N0 also is a Hankel approximate identity.

Moreover, if f ngn2N0 is a Hankel approximate identity and f is a continuous

function on (0;1) such that f 2 x�+
1
2L1(0;1) then, for every x 2 (0;1),

Z 1

0

(�x n)(y)f(y)dy ! f(x); as n!1: (3.2)

Indeed, let x 2 (0;1). According to [18, (2), p. 310] we can write

Z 1

0

(�x n)(y)y
�+ 1

2 dy =

Z 1

0

y�+
1
2

Z 1

0

D�(x; y; z) n(z)dzdy

=

Z 1

0

 n(z)

Z 1

0

y�+
1
2D�(x; y; z)dydz

=
1

2��(�+ 1)
x�+

1
2

Z 1

0

 n(z)z
�+ 1

2 dz = x�+
1
2 ;

for every n 2 N0 .
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Hence, for every n 2 N0 , one hasZ 1

0

(�x n)(y)f(y)dy � f(x) =

Z 1

0

(�x n)(y)y
�+ 1

2 (y���
1
2 f(y)� x���

1
2 f(x))dy:

Let " > 0. There exists 0 < Æ < x such that jy���
1
2 f(y) � x���

1
2 f(x)j < "

provided that jx � yj < Æ. Hence, since f 2 x�+
1
2L1(0;1), we can �nd n0 2 N

such that

���Z 1

0

(�x n)(y)f(y)dy�f(x)
���� C

�Z x�Æ

0

+

Z 1

x+Æ

�
(�x n)(y)y

�+ 1
2 dy+" = "; n � n0:

In the last equality we have taken into account that

(�x n)(y) =

Z x+y

jx�yj

D�(x; y; z) n(z)dz �

Z 1

Æ

D�(x; y; z) n(z)dz; jx� yj > Æ;

and that  n 2 B�;an , n 2 N0 , for some fangn2N0 � (0;1) being an # 0, as n!1.

Assume that � is a �nite measure and that it is concentrated on (0; a). For
every n 2 N0 , we de�ne

	n(x) =

Z 1

0

(�x n)(y)d�(y); x 2 (0;1):

Note that 	n(x) = 0, x > a+ an and n 2 N0 . Indeed, let n 2 N0 . According
to [18, (2), p. 308] we have that

	n(x) =

Z a

0

Z x+y

jx�yj

D�(x; y; z) n(z)dzd�(y) = 0; x > a+ an:

Moreover, by [5, (1.2)] and [25, (7)] one has, for every x2(0;1) and n; k2N0 ,

�1
x
D
�k
(x���

1
2	n(x)) =

Z 1

0

h�((xt)
���kJ�+k(xt)h�(S

k
� n)(t))(y)d�(y):

Hence, for every n; k 2 N0 , since that the function z
��J�(z) is bounded on

(0;1), and by taking into account [25, Lemma 5.4-1 and Theorem 5.4-1], we get

sup
x2(0;1)

���� 1
x
D
�k
(x���

1
2	n(x))

��� <1:

Thus we conclude that, for every n 2 N0 , 	n 2 B�, and then 	n 2 �� and

hf;	n#	ni � 0: (3.3)
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On the other hand, � 2 O0
�;#. In fact, for every � 2 H�, we have

hh0�(�); �i = h�; h�(�)i =

Z 1

0

h�(�)(x)d�(x) =

Z 1

0

�(y)

Z 1

0

(xy)
1
2 J�(xy)d�(x)dy:

Hence

h0�(�)(y) =

Z 1

0

(xy)
1
2 J�(xy)d�(x); y 2 (0;1):

Let k 2 N0 . We have

�1
y
D
�k
(y���

1
2 h0�(�)(y)) =

Z 1

0

x2k+�+
1
2 (xy)���kJ�+k(xy)d�(x); y 2 (0;1):

Since z��J�(z) is bounded on (0;1) and � is supported on a bounded set on
(0;1), it follows

sup
y2(0;1)

����1
y
D
�k
(y���

1
2h0�(�)(y))

��� <1:

Thus we prove that y���
1
2 h0�(�) is a multiplier of H� ([3, Theorem 2.3]).

Hence, from [19, Proposition 4.2] we deduce that � 2 O0
�;#.

According to [19, Proposition 4.7] it follows

hf;	n#	ni = hf; (�# n)#(�# n)i = hf; (�#�)#( n# n)i

= hf#�; �#( n# n)i

=

Z 1

0

(f#�)(x)

Z 1

0

�x( n# n)(y)d�(y)dx

=

Z 1

0

Z 1

0

�y( n# n)(x)(f#�)(x)dxd�(y); n 2 N0 :

On the other hand, f#� is a continuous function on (0;1) and we can write

jx���
1
2 (f#�)(x)j �

Z 1

0

x���
1
2 j(�xf)(y)jdj�j(y) � C

Z 1

0

y�+
1
2 dj�j(y); x 2 (0;1):

Hence f#� 2 x�+
1
2L1(0;1). By (3.2) and by using dominated convergence theo-

rem we conclude, since f n# ngn2N0 is a Hankel approximate identity, thatZ 1

0

Z 1

0

�y( n# n)(x)(f#�)(x)dxd�(y)!

Z 1

0

Z 1

0

(�xf)(y)d�(x)d�(y); as n!1:

Then, from (3.3) it infers thatZ 1

0

Z 1

0

(�xf)(y)d�(x)d�(y) � 0:
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Thus the proof is �nished. �

Next we give a characterization of the positive de�nite generalized functions
that involve the heat kernel function E.

Proposition 3.2. Let u 2 H 0
�. Then the following two properties are equiv-

alent.

(i) u is a positive de�nite generalized function in H 0
�.

(ii) The function U(x; t) = (u#E(:; t))(x), x 2 (0;1), is a positive de�nite
function, for every t 2 (0;1).

Proof. (i)) (ii). By virtue of Theorem 3.1 it is suÆcient to prove that

hU(:; t); �#�i � 0; � 2 H� and t 2 (0;1):

By taking into account the interchange formula [19, (1.3)] and [14, (10),
p. 29] it is not hard to see that E(:; t) = E(:; t2 )#E(:;

t
2 ), t 2 (0;1).

Then, since E(:; t) 2 H�, t 2 (0;1), [19, Proposition 3.5] leads to

hU(:; t); �#�i = hu#E(:; t); �#�i = hu; (�#E(:; t=2))#(�#E(:; t=2))i � 0;

t 2 (0;1) and � 2 H�;

beacuse u is a positive de�nite generalized function in H 0
�.

(ii)) (i). Let � 2 H�. According to Theorem 3.1 one has

hU(:; t); �#�i � 0; t 2 (0;1):

Hence, [19, Proposition 2.2,(i)] and Theorem 2.2,(iii) imply that

hu; �#�i � 0:

Thus we prove that (i) holds. �

In a similar way we can establish the corresponding property for �0�.

Proposition 3.3. Let u 2 �0�. The following two properties are equivalent.

(i) u is a positive de�nite generalized function in �0�.

(ii) The function U(x; t) = (u#E(:; t))(x), x 2 (0;1), is a positive de�nite
function, for every t 2 (0;1). �

An immediate consequence of Propositions 3.2 and 3.3 is the following.

Corollary 3.4. Let u 2 H 0
�. Then u is a positive de�nite generalized

function in H 0
� if, and only if, u is a positive de�nite generalized function in �0�. �
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4. Distributions in H 0
� having Hankel transforms zero outside the

interval (0; a] or outside the interval (a;1). In [4] it was established a Hankel
version of the Paley{Wiener theorem. We introduced in [4] the space E� that
consists of all those complex valued and smooth functions � on (0;1) such that,
for every k 2 N, there exists

lim
x!0+

� 1
x
D
�k
(x���

1
2�(x)):

E� is endowed with the topology generated by the family fp�m;kgm2N0nf0g;k2N0 of
seminorms, where

p�m;k(�) = sup
x2(0;m)

����1
x
D
�k
(x���

1
2 �(x))

���; � 2 E�;

for every m 2 N0 nf0g and k 2 N0 . A functional T 2 H 0
� is in E0�, the dual space of

E�, if and only if, there exists a = a(T ) > 0 such that hT; �i = 0, for every � 2 E�

being �(t) = 0, t < b, for some b > a [4, Proposition 4.4]. Moreover the elements
of E0� were characterized as follows. A functional T 2 H 0

� is in E0� if, and only if,
the Hankel transform F = h0�T of T satis�es the following two properties

(i) z���
1
2F (z) is an even and entire function, and

(ii) there exists C;A > 0 and r 2 N0 such that [4, Propositions 4.5 and 4.9].

jz���
1
2F (z)j � C(1 + jzj)reAj Im zj; z 2 C :

In this section, inspired by the paper of J.P. Gabardo [15], we obtain a new
characterization of the elements T 2 H 0

� that are also in E0�. Also we characterize
the functionals in H 0

� that are, for some a > 0, zero inside the interval [a;1), that
is, those T 2 H 0

� such that hT; �i = 0, � 2 B�;a.

Theorem 4.1. Let T 2 H 0
� and a > 0. Then the following two properties are

equivalent

(i) hh0�T; �i = 0, for every � 2 H�, such that supp � � (a;1),

(ii) limk!1 R�2kSk�T = 0, in the weak � topology of H 0
�, for every R > a.

Proof. (i) ) (ii). Firstly note that by virtue of [25, Lemma 5.4-1,(6) and
Theorem 5.4-1], for every R > 0, the sequence fR�2kSk�Tgk2N0 converges to zero

in the weak � topology of H 0
� if, and only if, the sequence fR�2kx2kh0�Tgk2N0

converges to zero in the weak � topology in H 0
�.

Let a < " < � < R. De�ne  2 C1(0;1) such that  (y) = 1, y 2 (0; "), and
 (y) = 0, y 2 (�;1). Then h0�T =  h0�T .

Let now m 2 N0 and � 2 H�. Leibniz rule leads to�1
y
D
�m

(y���
1
2 y2kR�2k�(y) (y))

= R�2k
mX
j=0

�
m

j

�
2k(2k � 2) � � � (2k � 2j + 2)y2(k�j)

�1
y
D
�m�j

(y���
1
2 �(y) (y));

k 2 N0 and y 2 (0;1):
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Hence, since  (y) = 0, y > �, where � < R, we conclude that


�n;m(y
2kR�2k� )! 0; as k !1;

for every � 2 H�, and then

hR�2ky2kh0�(T ); �i = hh0�(T ); R
�2ky2k� i ! 0; as k !1;

for every � 2 H�. Thus (ii) is proved.

(ii) ) (i). Let R > a and � 2 H� such that �(x) = 0, x � a + ", for some
" > 0. Since R�2kSk�T ! 0, as k !1, in the weak � topology of H 0

�, [25, Theorem

5.4-1] implies that the sequence fR�2ky2kh0�Tgk2N0 is weakly � (or, equivalently,
strongly) bounded in H 0

�.

Moreover, for every k; l;m 2 N0 we can write that

(1 + x2)l
�1
x
D
�m

(x���
1
2 x�2kR2k�(x))

= R2k
mX
j=0

cj(k)(1 + x2)l
� 1
x
D
�j
(x���

1
2 �(x))x�2(k+m�j) ; x 2 (0;1);

where cj(k) is a polynomial in k, for every j = 0; . . . ;m.

Hence, it follows���(1 + x2)l
�1
x
D
�m

(x���
1
2x�2kR2k�(x))

���
� C

mX
j=0

�R
x

�2k
jcj(k)j

���(1 + x2)l
� 1
x
D
�j
(x���

1
2�(x))

���
� C

mX
j=0

� R

a+ "

�2k
jcj(k)j


�
l;j(�); x 2 (0;1) and k; l;m 2 N0 :

Then, we conclude that R2kx�2k� ! 0, as k ! 1, in H�, provided that
R < a+ ".

Hence, for each a < R < a+ ",

lim
k!1

hR�2kx2kh0�T;R
2kx�2k�i = 0:

Thus we prove that hh0�T; �i = 0. �

The following result can be seen as a dual version of Theorem 4.1.

Theorem 4.2. Let T 2 H 0
� and a > 0. The following two properties are

equivalent.

(i) hh0�T; �i = 0, for every � 2 B�;b, with b < a.
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(ii) There exists a unique sequence fLkgk2N0 in H 0
� such that L0 = T ,

S�Lk+1 = Lk, k 2 N0 , and limk!1 R�2kh0�Lk = 0, in the weak � topology of

H 0
�, for every R > 1

a
.

Proof. (i)) (ii). We de�ne, for every k 2 N0 ,

Lk = h0�((�x
2)�kh0�T ): (4.1)

Note that, since h0�T vanishes in (0; a), Lk 2 H
0
�, for each k 2 N0 . Let R > 1

a
and

1
R
< Æ < a. Choose a function  2 C1(0;1) such that  (x) = 0, 0 < x < Æ, and

�(x) = 1, x > a+Æ
2 . From (i) it deduces that

h0�T =  h0�T:

Moreover, for every � 2 H�,

hR�2kh0�Lk; �i = h(�1)k(Rx)�2kh0�T; �(x)i = hh0�T; (�1)
k(Rx)�2k�(x) (x)i:

Since  is a multiplier of H� [3, Theorem 2.3], � 2 H�. By taking into
account that  (x) = 0, 0 < x < Æ, being RÆ > 1, by proceeding as in the proof of
part (i)) (ii) in Theorem 4.1, we can conclude that

hR�2kh0�Lk; �i ! 0; as k !1:

We now prove that fLkgk2N0 where Lk is de�ned by (4.1), for every k 2 N0 ,
is the unique sequence satisfying the conditions in (ii).

Assume that, for every k 2 N0 , Lk 2 H
0
�, being

L0 = 0; S�Lk+1 = Lk; k 2 N0 and lim
k!1

R�2kLk = 0;

in the weak � topology of H 0
�, for every R > 1

a
.

We de�ne the H 0
�-valued function F by

F (�) =

1X
k=0

�2kLk+1 (4.2)

that is holomorphic in j�j < a. It is easy to see that

S�;xF (�) =
1X
k=0

�2kLk = �2F (�); j�j < a:

Then, according to [25, Theorem 5.5-2,(8)] it follows

�x2h0�F (�) = �2h0�F (�); j�j < a: (4.3)
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Since, for every � 6= 0, the function f(x) = x2+�2, x 2 (0;1), is a multiplier
in H� ([25, Lemma 5.3-1]) from (4.3) we infer that

hh0�F (�); �i =
D
(x2 + �2)h0�F (�);

�

x2 + �2

E
= 0; � 2 H� and 0 < � < a:

Hence F (�) = 0, 0 < j�j < a. From the representation (4.2) we conclude that
Lk = 0, k 2 N0 . Thus the uniqueness of the sequence fLkgk2N0 satisfying the
properties in (ii) is established.

(ii)) (i). Let fLkgk2N0 be a sequence in H
0
� satisfying the properties in (ii).

Let � 2 B�;b, where 0 < b < a, and let R 2 ( 1
a
; 1
b
). We can write

hh0�T; �i=hh
0
�(S

k
�Lk); �i=h(�x

2)kh0�Lk; �i=hR
�2kh0�Lk; (�1)

k(xR)2k�i; k 2 N0 :

Since �(x) = 0, x � b, being Rb < 1, (xR)�2k� ! 0, as k ! 1, in H�. Hence, by
taking into account that R�2kh0�Lk ! 0, as k !1, in the weak � topology of H 0

�,
it concludes that hh0�T; �i = 0, and the proof is completed. �
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