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ON THE NON-COMMUTATIVE

NEUTRIX PRODUCT OF x�+ AND x���r+

Brian Fisher and Fatma Al-Sirehy

Communicated by Michael Oberguggenberger

Abstract. The non-commutative neutrix product of the distributions x�+

and x���r
+

is evaluated for � 6= 0;�1;�2: . . .

In the following, we let �(x) be an in�nitely di�erentiable function having the
following properties:

(i) �(x) = 0 for jxj � 1, (iii) �(x) = �(�x),

(ii) �(x) � 0, (iv)
1R
�1

�(x) dx = 1.

Putting Æn(x) = n�(nx) for n = 1; 2; . . . , it follows that fÆn(x)g is a regular se-
quence of in�nitely di�erentiable functions converging to the Dirac delta-function
Æ(x).

Now let D be the space of in�nitely di�erentiable functions with compact
support and let D0 be the space of distributions de�ned on D. Then if f is an
arbitrary distribution in D0, we de�ne

fn(x) = (f � Æn)(x) = hf(t); Æn(x� t)i

for n = 1; 2; . . . . It follows that ffn(x)g is a regular sequence of in�nitely di�eren-
tiable functions converging to the distribution f(x).

A �rst extension of the product of a distribution and an in�nitely di�eren-
tiable function is the following, see for example [2].

De�nition 1. Let f and g be distributions in D0 for which on the interval
(a; b), f is the k-th derivative of a locally summable function F in Lp(a; b) and g(k)

AMS Subject Classi�cation (1991): Primary 46F10

Keywords: distribution, delta-function, neutrix, neutrix limit, neutrix product.



On the non-commutative neutrix product of x�
+
and x

���r

+
113

is a locally summable function in Lq(a; b) with 1=p + 1=q = 1. Then the product
fg = gf of f and g is de�ned on the interval (a; b) by

fg =

kX
i=0

�
k

i

�
(�1)i[Fg(i)](k�i):

The following de�nition for the neutrix product of two distributions was given
in [4] and generalizes De�nition 1.

De�nition 2. Let f and g be distributions inD0 and let gn(x) = (g�Æn)(x). We
say that the neutrix product f Æ g of f and g exists and is equal to the distribution
h on the interval (a; b) if

N { lim
n!1

hf(x)gn(x); '(x)i = hh(x); '(x)i

for all functions ' in D with support contained in the interval (a; b), where N is the
neutrix, see van der Corput [1], having domain N 0 = f1; 2; . . . ; n; . . . g and range
the real numbers, with negligible functions �nite linear sums of the functions

n� lnr�1 n; lnr n : � > 0; r = 1; 2; . . .

and all functions which converge to zero in the normal sense as n tends to in�nity.

It was proved in [4] that if the product fg exists by De�nition 1, then the
product f Æ g exists by De�nition 2 and the two are equal.

The following theorem was proved in [5].

Theorem 1. The neutrix product x�+ Æ x���1+ exists and

x�+ Æ x���1+ = x�1+ � [ + 1
2  (��) +

1
2  (�+ 1) + 2c(�)]Æ(x)

for � 6= 0;�1;�2; . . . , where  denotes Euler's constant and

 (�) =
�0(�)

�(�)
:

Before proving our main result we need the following de�nition of the Beta
function given in [6].

De�nition 3. The Beta function B(�; �) is de�ned for all �; � by

B(�; �) = N{ lim
n!1

Z 1�1=n

1=n

t��1(1� t)��1 dt:
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It was proved that if �; � 6= 0;�1;�2; . . . , then the above de�nition is in
agreement with the standard de�nition of the Beta function.

In particular, it was proved in [6] that

B(�r; �) =
(�1)r�(�)

r!�(� � r)
[�(r) �  �  (�� r)]

for r = 0; 1; 2; . . . and �; � 6= 0;�1;�2; . . . ; where

�(r) =

8<
:

rP
i=1

1=i; r = 1; 2; . . . ;

0; r = 0:

(1)

We now generalize theorem 1 in which the distribution x�r+ is de�ned by

x�r+ =
(�1)r�1

(r � 1)!
(ln x+)

r

for r = 1; 2; . . . and not as in Gel'fand and Shilov [7].

Theorem 2. The neutrix product x�+ Æ x���r+ exists and

x�+ Æ x���r+ = x�r+ + ar(�)Æ
(r�1)(x); (2)

where

ar(�) =
(�1)r[ + 2c(�) + 1

2  (�+ 1) + 1
2  (��� r + 1)� �(r � 1)]

(r � 1)!
+

+
�(�+ 1)

2�(�+ r)

r�2X
j=0

�
�+ r � 1

j

�
(�1)j

r � j � 1
;

for r = 1; 2; . . . and � 6= 0;�1;�2; . . . :

Proof. We �rst of all suppose that �1 < � < 0 and put

(x���r+ )n = x���r+ � Æn(x)

=

8>>>>><
>>>>>:

(�1)r�1�(�+ 1)

�(�+ r)

Z 1=n

�1=n

(x� t)���1Æ
(r�1)
n (t) dt; x > 1=n;

(�1)r�1�(�+ 1)

�(�+ r)

Z x

�1=n

(x� t)���1Æ
(r�1)
n (t) dt; �1=n � x � 1=n;

0; x < �1=n:
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Then

(�1)r�1�(�+ r)

�(�+ 1)

Z 1

�1

x�+(x
���r
+ )nx

i dx

=

Z 1=n

0

x�+i
Z x

�1=n

(x� t)���1Æ(r�1)n (t) dt dx

+

Z 1

1=n

x�+i
Z 1=n

�1=n

(x� t)���1Æ(r�1)n (t) dt dx

+

Z 1=n

0

Æ(r�1)n (t)

Z 1

t

x�+i(x� t)���1 dx dt (3)

+

Z 0

�1=n

Æ(r�1)n (t)

Z 1

0

x�+i(x� t)���1 dx dt

= nr�i�1
Z 1

0

�(r�1)(v)

Z n

v

u�+i(u� v)���1 du dv

� (�1)rnr�i�1
Z 1

0

�(r�1)(v)

Z n

0

u�+i(u+ v)���1 du dv;

where the substitutions nt = v and nx = u have been made in the �rst integral
and nt = �v and nx = u in the second integral.

We have

Z n

v

u�+i(u� v)���1 du� (�1)r
Z n

0

u�+i(u+ v)���1 du =

=

Z n

v

u�+i[(u� v)���1 � (�1)r(u+ v)���1] du� (�1)r
Z v

0

u�+i(u+ v)���1 du

and it follows for the cases i = 0; 1; . . . ; r � 2 that

N { lim
n!1

nr�i�1
hZ n

v

u�+i(u� v)���1 du� (�1)r
Z n

0

u�+i(u+ v)���1 du
i
=

= N{ lim
n!1

nr�i�1
Z n

v

u�+i[(u� v)���1 � (�1)r(u+ v)���1] du

= N{ lim
n!1

nr�i�1
1X
j=0

�
��� 1

j

�
[(�1)j � (�1)r]vj

Z n

v

ui�j�1 du

=
2(�1)r

r � i� 1

�
��� 1

r � 1

�
vr�1 = �

2�(�+ r)

(r � i� 1)(r � 1)!�(�+ 1)
vr�1:

It follows that

N { lim
n!1

Z 1

�1

x�+(x
���r
+ )nx

i dx = �
1

r � i� 1
(4)
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for i = 0; 1; . . . ; r � 2, since it is easily proved by induction that

Z 1

0

vr�(r)(v) dv = 1
2 (�1)

rr!:

When i = r � 1, we have on making the substitution u = v=y

Z n

v

u�+r�1(u� v)���1 du = vr�1
Z 1

v=n

y�r(1� y)���1 dy

= vr�1
Z 1

v=n

y�r
h
(1� y)���1 �

r�1X
j=0

�
��� 1

j

�
(�y)j

i
dy

+ vr�1
r�1X
j=0

(�1)j
�
��� 1

j

�Z 1

v=n

yj�r dy

= vr�1
Z 1

v=n

y�r
h
(1� y)���1 �

r�1X
j=0

�
��� 1

j

�
(�y)j

i
dy

+ vr�1
r�2X
j=0

(�1)j
�
��� 1

j

�
1� (n=v)r�j�1

j � r + 1

�

�
��� 1

r � 1

�
(�v)r�1(ln v � lnn):

It follows that

N { lim
n!1

Z n

v

u�+r�1(u� v)���1 du = vr�1B(�r + 1;��)�

�
��� 1

r � 1

�
(�v)r�1 ln v

and so

N { lim
n!1

Z 1

0

�(r�1)(v)

Z n

v

u�+r�1(u� v)���1 du dv = (5)

= 1
2 (�1)

r�1(r � 1)!B(�r + 1;��)�

�
��� 1

r � 1

�
(r � 1)![ 12 �(r � 1) + c(�)]

= 1
2 (�1)

r�1(r � 1)!B(�r + 1;��) +
(�1)r�(�+ r)

�(� + 1)
[ 12 �(r � 1) + c(�)]

since it is easily proved by induction that

Z 1

0

vr ln v�(r)(v) dv = 1
2 (�1)

rr!�(r) + (�1)rr!c(�):
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Further, making the substitution u = v(y�1 � 1), we have

Z n

0

u�+r�1(u+ v)���1 du = vr�1
Z 1

v=(n+v)

y�r(1� y)�+r�1 dy

= vr�1
Z 1

v=(n+v)

y�r
h
(1� y)�+r�1 �

r�1X
j=0

�
�+ r � 1

j

�
(�y)j

i
dy+

+ vr�1
r�1X
j=0

(�1)j
�
�+ r � 1

j

�Z 1

v=(n+v)

yj�r dy

= vr�1
Z 1

v=(n+v)

y�r
h
(1� y)�+r�1 �

r�1X
j=0

�
�+ r � 1

j

�
(�y)j

i
dy+

+ vr�1
r�2X
j=0

(�1)j
�
�+ r � 1

j

�
1� (n=v + 1)r�j�1

j � r + 1
+

It follows that

N { lim
n!1

Z n

0

u�+r�1(u+ v)���1 du = vr�1B(�r + 1; �+ r)+

+ vr�1
r�2X
j=0

�
�+ r � 1

j

�
(�1)j

r � j � 1
+

�
�+ r � 1

r � 1

�
(�1)rvr�1 ln v

and so

N { lim
n!1

Z 1

0

�(r�1)(v)

Z n

0

u�+r�1(u+ v)���1 du dv

= 1
2 (�1)

r�1(r � 1)!B(�r + 1; �+ r)

+ 1
2 (�1)

r�1(r � 1)!

r�2X
j=0

�
�+ r � 1

j

�
(�1)j

r � j � 1

�

�
�+ r � 1

r � 1

�
(r � 1)![ 12 �(r � 1) + c(�)]

= 1
2 (�1)

r�1(r � 1)!B(�r + 1; �+ r)

+ 1
2 (�1)

r�1(r � 1)!

r�2X
j=0

�
�+ r � 1

j

�
(�1)j

r � j � 1

�
�(�+ r)

�(�+ 1)
[ 12 �(r � 1) + c(�)]: (6)

It follows from equation (1) that



118 Fisher and Al-Sirehy

B(�r + 1; �+ r) =
(�1)r�1�(�+ r)

(r � 1)!�(�+ 1)
[�(r � 1)�  �  (�+ 1)];

B(�r + 1;��) =
(�1)r�1�(��)

(r � 1)!�(��� r + 1)
[�(r � 1)�  �  (��� r + 1)]

=
�(�+ r)

(r � 1)!�(�+ 1)
[�(r � 1)�  �  (��� r + 1)]

and so

B(�r + 1;��)� (�1)rB(�r + 1; �+ r) =

�(�+ r)

(r � 1)!�(�+ 1)
[2�(r � 1)� 2 �  (�+ 1)�  (��� r + 1)]: (7)

It now follows from equations (3), (5), (6) and (7) that

N { lim
n!1

�(�+ r)

�(�+ 1)

Z 1

�1

x�+(x
���r
+ )nx

r�1 dx =

= 1
2 (r � 1)![B(�r + 1;��)� (�1)rB(�r + 1; �+ r)]

� 1
2 (r � 1)!

r�2X
j=0

�
�+r�1

j

�
(�1)r�j

r�j�1
�

�(�+ r)

�(�+ 1)
[�(r � 1) + 2c(�)]

=
(�1)r�1(r � 1)!�(�+ r)

�(�+ 1)
br(�); (8)

where

br(�) =
(�1)r[ + 2c(�) + 1

2  (�+ 1) + 1
2  (��� r + 1)]

(r � 1)!
+

+
�(�+ 1)

2�(�+ r)

r�2X
j=0

�
�+ r � 1

j

�
(�1)j

r � j � 1
:

It was proved in [3] that

hx�r+ ; '(x)i =
Z
1

0

x�r
h
'(x)�

r�2X
i=0

'(i)(0)

i!
xi�

'(r�1)(0)

(r � 1)!
xr�1H(1�x)

i
dx+�

�(r � 1)

(r � 1)!
'(r�1)(0);

for all ' in D. In particular, if the support of ' is contained in the interval [�1; 1],
we have

hx�r+ ; '(x)i = (9)

=

Z 1

0

x�r
h
'(x) �

r�1X
i=0

'(i)(0)

i!
xi
i
dx�

r�2X
i=0

'(i)(0)

i!

Z
1

1

x�r+i dx�
�(r � 1)

(r � 1)!
'(r�1)(0)

=

Z 1

0

x�r
h
'(x) �

r�1X
i=0

'(i)(0)

i!
xi
i
dx�

r�2X
i=0

'(i)(0)

i!(r � i� 1)
�
�(r � 1)

(r � 1)!
'(r�1)(0):
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Now let ' be an arbitrary function in D with support contained in the interval
[�1; 1]. By the mean value theorem

'(x) =
r�1X
i=0

'(i)(0)

i!
xi +

'(r)(�x)

r!
xr;

where 0 < � < 1 and so

hx�+(x
���r
+ )n; '(x)i =

Z 1

0

x�(x���r+ )n'(x) dx

=

r�1X
i=0

'(i)(0)

i!

Z 1

0

x�+i(x���r+ )n dx+
1

r!

Z 1

0

x�[xr(x���r+ )n]'
(r)(�x) dx:

Since the sequence of continuous functions fxr(x���r+ )ng converges uniformly to the

continuous function x�� on the closed interval [0; 1], it follows on using equations
(4), (8) and (9) that

N { lim
n!1

hx�+(x
���r
+ )n; '(x)i =

= N{ lim
n!1

r�1X
i=0

'(i)(0)

i!

Z 1

�1

x�+i+ (x���r+ )n dx+ lim
n!1

1

r!

Z 1

�1

x�+[x
r(x���r+ )n]'

(r)(�x) dx

=
1

r!

Z 1

0

'(r)(�x) dx �

r�2X
i=0

'(i)(0)

i!(r � i� 1)
+ (�1)r�1br(�)'

(r�1)(0)

=

Z 1

0

x�r
h
'(x) �

r�1X
i=0

'(i)(0)

i!
xi
i
dx�

r�2X
i=0

'(i)(0)

i!(r � i� 1)
�
�(r � 1)

(r � 1)!
'(r�1)(0)

+
�(r � 1)

(r � 1)!
'(r�1)(0) + (�1)r�1br(�)'

(r�1)(0)

= hx�r+ ; '(x)i + (�1)r�1ar(�)'
(r�1)(0);

giving equation (1) on the interval [�1; 1] when �1 < � < 0. However, since

x�+:x
���r
+ = x�r+ on any closed interval not containing the origin, equation (1)

holds on the real line when �1 < � < 0.

Now suppose that equation (2) holds for some r and � 6= 0;�1;�2; . . . . This
is true for r = 1. It is also true for r + 1 when �1 < � < 0. Assume it is also true
for r +1 when �k < � < �k +1. Then if �k < � < �k+1, equation (2) holds by
our assumption and di�erentiating this equation, we get

�x��1+ Æ x���r+ � (�+ r)x�+ Æ x���r�1+ = �rx�r�1+ + ar(�)Æ
(r)(x):

It follows from our assumptions that

�x��1+ Æ x���r+ = �x�r�1+ + [(�+ r)ar+1(�) + ar(�)]Æ
(r)(x):
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We have

(�+ r)ar+1(�) + ar(�) =
(�1)r�1(�+ r)

r!
[ + 1

2  (��� r) + 1
2  (� + 1) + 2c(�)]

+
�(�+ 1)

2�(�+ r)

r�1X
j=0

�
�+ r

j

�
(�1)j

r � j
+

(�1)r(�+ r)�(r)

r!

+
(�1)r

(r � 1)!
[ + 1

2  (��� r + 1) + 1
2  (�+ 1) + 2c(�)]

+
�(�+ 1)

2�(�+ r)

r�2X
j=0

�
�+r�1

j

�
(�1)j

r � j � 1
�

(�1)r�(r � 1)

(r � 1)!
:

Noting that

(�+ r) (�� � r) = 1 + (�+ r) (�� � r + 1);

� (� + 1) = 1 + � (�);

r�1X
j=0

�
�+ r � 1

j

�
(�1)j

r � j
=

r�1X
j=0

�
�+ r

j

�
(�1)j

r � j
+

r�2X
j=0

�
�+ r � 1

j

�
(�1)j

r � j � 1
;

it follows that
(�+ r)ar+1(�) + ar(�) = �ar+1(�� 1)

and we see that equation (2) holds when �k � 1 < � < �k.

Equation (2) therefore holds by induction for negative � 6= �1;�2; . . . and
r = 1; 2; . . . . A similar argument shows that equation (2) holds for positive � 6=
1; 2 . . . . This completes the proof of the theorem.

Corollary 2.1 The neutrix product x�
�
Æ x���r

�
exists and

x�
�
Æ x���r

�
= x�r

�
� (�1)rar(�)Æ

(r�1)(x) (10)

for � 6= 0;�1;�2; . . . .

Proof. Equation (10) follows immediately on replacing x by �x in equation (2).

In the next corollary, the distribution (x+ i0)� is de�ned by

(x + i0)� = x�+ + ei��x�
�

for � 6= 0;�1;�2; . . . and

(x+ i0)�r = x�r +
(�1)ri�

(r � 1)!
Æ(r�1)(x); (11)

for r = 1; 2; . . . , see [7].
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Corollary 2.2 The neutrix product (x+ i0)� Æ (x+ i0)���r exists and

(x+ i0)� Æ (x+ i0)���r = (x+ i0)�r (12)

for � 6= 0;�1;�2; . . . and r = 1; 2; . . . .

Proof . The neutrix product is distributive with respect to addition and so

(x+ i0)� Æ (x + i0)���r = (13)

= x�+ Æ x ���r+ + (�1)rx�
�
Æ x���r

�
+ (�1)re�i��x�+ Æ x���r

�
+ ei��x�

�
Æ x���r+ :

Further, it was proved in [4] that

x�+ Æ x���r
�

= (�1)r�1x�
�
Æ x���r+ = �

� cosec(��)

2(r � 1)!
Æ(r�1)(x) (14)

for � 6= 0;�1;�2; . . . . It follows from equations (2), (10), (11), (13) and (14) that

(x+ i0)� Æ (x+ i0)���r = x�r +
(�1)ri�

(r � 1)!
Æ(r�1)(x) = (x+ i0)�r;

proving equation (12).

We �nally note that the following results can be proved similarly.

jxj� Æ (sgnxjxj���2r+1) = x�2r+1;

jxj� Æ (sgnxjxj���2r) = sgnxjxj�2r +
h
2a2r(�) +

� cosec(��)

(2r � 1)!

i
Æ(2r�1)(x);

(sgnxjxj�) Æ jxj���2r+1 = x�2r+1;

(sgnxjxj�) Æ jxj���2r = sgnxjxj�2r +
h
2a2r(�)�

� cosec(��)

(2r � 1)!

i
Æ(2r�1)(x);

jxj� Æ jxj���2r+1 = jxj�2r+1 +
h
2a2r�1(�)�

� cosec(��)

(2r � 2)!

i
Æ(2r�2)(x);

jxj� Æ jxj���2r = x�2r;

(sgnxjxj�) Æ (sgnxjxj���2r+1) = jxj�2r+1 +
h
2a2r�1(�) +

� cosec(��)

(2r � 2)!

i
Æ(2r�2)(x);

(sgnxjxj�) Æ (sgnxjxj���2r) = x�2r

for � 6= 0;�1;�2; . . . and r = 1; 2; . . . .
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