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ON THE NON-COMMUTATIVE
NEUTRIX PRODUCT OF z} AND a:_?f"

Brian Fisher and Fatma Al-Sirehy

Communicated by Michael Oberguggenberger

Abstract. The non-commutative neutrix product of the distributions xj‘_
and wa‘_r is evaluated for A # 0,41, +2....

In the following, we let p(z) be an infinitely differentiable function having the
following properties:
() pl)=0for|z[>1, (i) p(x)=p(—2)
1
(i) p(z) >0, (iv) [ plx)dz =

-1

1.
Putting é,(z) = np(nz) for n = 1,2,..., it follows that {d,(x)} is a regular se-
quence of infinitely differentiable functions converging to the Dirac delta-function
o(z).

Now let D be the space of infinitely differentiable functions with compact

support and let D' be the space of distributions defined on D. Then if f is an
arbitrary distribution in D’, we define

fn(m) = (f *6n)(x) = (f(t);(sn(x - t)>

forn =1,2,.... It follows that {f,(z)} is a regular sequence of infinitely differen-
tiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely differen-
tiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D’ for which on the interval
(a,b), f is the k-th derivative of a locally summable function F in L?(a,b) and g(*)
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is a locally summable function in L?(a,b) with 1/p 4+ 1/¢ = 1. Then the product
fg=gf of f and g is defined on the interval (a,b) by

k

fa=3 () v,

=0
The following definition for the neutrix product of two distributions was given
in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D' and let g, (x) = (g*d,)(z). We
say that the neutrix product fog of f and g exists and is equal to the distribution
h on the interval (a,b) if

n—oo

for all functions ¢ in D with support contained in the interval (a, b), where N is the
neutrix, see van der Corput [1], having domain N’ = {1,2,... ,n,...} and range
the real numbers, with negligible functions finite linear sums of the functions

)\l r—1

n*ln"""n, In"n: A>0, r=1,2,...

and all functions which converge to zero in the normal sense as n tends to infinity.

It was proved in [4] that if the product fg exists by Definition 1, then the
product f o g exists by Definition 2 and the two are equal.

The following theorem was proved in [5].
THEOREM 1. The neutriz product xi o a:j:‘*l exists and
ozt =2l — [y + Lo(=A) + LA+ 1) + 2e(p)}6(2)

for A #0,+1,£2, ..., where v denotes Fuler’s constant and

Before proving our main result we need the following definition of the Beta
function given in [6].

Definition 3. The Beta function B(A, ) is defined for all A, u by
1-1/n

B(\, ) = N-lim A1 = )P dt,

n—o0 1/TL
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It was proved that if \,u # 0,—1,—2,..., then the above definition is in
agreement with the standard definition of the Beta function.

In particular, it was proved in [6] that

(=D

B(=rA) = riD(A —7)

forr=0,1,2,... and \,u #0,—1,—2,..., where

We now generalize theorem 1 in which the distribution 2" is defined by

2y = ((r 1_)7;) (Inzy)"

for r =1,2,... and not as in Gel’fand and Shilov [7].

A—r

THEOREM 2. The neutriz product a:j‘_ o, exists and
) o a:_T_A_r =z"+ a6V (z), (2)
where
D)y +2e(p) + 1A+ 1) +3p(-A—r+1)—p(r—1
oy = VB 260 £ 300+ 436N —r 1) = olr 1))

(=D

M

(A +1) « 2</\+1?—1> (=1)

2F)\+7“ J=0 r—j—1

forr=1,2,... and A #0,£1,+2,....

Proof. We first of all suppose that —1 < A < 0 and put

(a:;A ’")n—x;A " % 0p(x)
—DrlD(A+ 1) [Yn .
( )F(H(T)Jr )/1/ (@ —t) 1oy~ (t) dt, z>1/n,

={ (=) IT(A+1) [® o ) A—1g0D) n < N
T\ +7) /1/n( )" o (t)dt, —1/n<z<1/n,

0, z < —1/n.
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Then
(=D)"'CA+7) [P n o ae
oty /L, T M et du
l/n x
/ / (= £)==160=1) () dt da
1/n
1/n
/ / )AL= (1) dt da
1/n 1/n
1/n
+/ Srh(t )/ @ — ) drdt (3)
0 t
0 1 )
+/ 5;;—1>(t)/ Mz —t) "N de dt
—1/n 0

1 n
— nrfifl / p(rfl)(,u)/ ’LI,)‘Jri(’u, _ U)f)\fl du dv
0 v
1 n
— (=1)rprt / P (v) / uM i (u +v) ™A dudo,
0 0

where the substitutions nt = v and nz = u have been made in the first integral
and nt = —v and nz = u in the second integral.

We have
/ u>\+i(u _ ,U)—A—l du — (—l)r/ uM—i(u + ,U)—A—l du =
v 0

n v
_ / (= )T = (1) (w4 o) du — (—1)" / Wi+ 0) 1 du
v 0
and it follows for the cases i = 0,1,...,r — 2 that

n n
N—lim n" ! [/ uM i (u —v) A du — (—1)’”/ M (u 4 v) A du} =
v

n—oo 0

=N-lim n"#1 / U)‘H[(U - v)#\fl —(=1)"(u+ v)i)\il] du

n— o0
“A—1 . Y AL

=N-lim n" "1 Z ( )[( 1) — (—1)7"]1)3/ Wit du

n—o0 ] 0 J v
— 2(_1)7‘ -A-1 ,Ur—l _ 2F(>‘ + T) ,Ur—l
Cr—i—1\r-1  r—i—1D(r-1DITA+1) '

It follows that )
: 1
o A= AT i - -
1\L_>1010m B oy (x )t da R — (4)
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fori=0,1,...,r — 2, since it is easily proved by induction that
1
/ v p (v) dv = $(=1)"rl.
0
When i = r — 1, we have on making the substitution u = v/y

n 1
/ UA—H‘—I(U _ U)—)\—l du = Ur—l/ y—r(l _ y)—A—l dy
v v

n
S inyr[a Sy g (7))
S / (L Z (7)) a
e () S
- (—:_—11) (—v)" Y(lnv —Inn).
It follows that
N lim vn W = ) A d = 0 B (= 41, —A) — <_:__11> (=) LIny
and 5o
N-lim 01 P D) [ ) dudo = 5)
=30t - 0B+ L= = ()= DB - ) + el
=31 = 1B+ 1,0 + SR g 1) 4 o)

since it is easily proved by induction that

/0 v Invp (v) dv = L(=1)"rl(r) + (=1)"rle(p).
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Further, making the substitution u = v(y~* — 1), we have

n 1
/ UA—H‘—I(U + U)—)\—l du = ,Ur—l / y—r(l _ y)A+r—1 dy
0 v/(n+v)

r—1

= [ a7 e o

v/(n+v) j=0 J

e () [
— L /1 y" [(1 — )Mo ri <>‘ e 1) (—y)j} dy+

v/(n+v) =0 J
)\—l-r—l 1—(nfv+1)r—i-t
o' 1
Z ( ) J—r+l1 "

It follows that

n

N-lim [ «™" Y u+v) tdu =" 'B(—r + 1,A 4+ 1)+
n—o0 0
Atr—1\ (=1) Ar—1 _
o' 1 —1)"" 11
g( j )r—y—1+< 1 >( Jor e

and so

n—o0

1 n
N-lim [ p" Y(v) / uMT (w4 0) ™A dudo
0 0

=i(-1)"'r=D!B(-r+1,A+r)

(M- nmer - et
=i(-1)""'r=1DB(-r+1,A+r)

+ 3= - 1)!702_:2 (“f‘ 1)&

= J r—j-1

It follows from equation (1) that
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(=1)"'T(A +7)
m[ﬂ?‘ 1) —y=9¢A+1)],

(=) 'T(=N)
(r=DIT(=A—-r+1)

__ T+r)
= mw(r—l)—v—d](—A—er)]

B(—r+1,A+r)=

B(-r+1,-X) = [p(r — 1) —y — (=X —r +1)]

and so
B(—r+1,-A) - (-1)"B(-r+ 1L,A+7r)=

ko -1 - 2= SO+ ) - w(A - D) (0
It now follows from equations (3), (5), (6) and (7) that
TA+r) [* L
N ﬁ /,l 2} (@) pa” e =
=L —DIB(—r+1,-A) = (=1)"B(~r + 1, A +7)]

) < [ A+r=1\ (=1)"7 T(A+r)
_5(r_1)!2::< ; >r—j—1_F()\+1)

[¢(r — 1) + 2¢(p)]

(=)= DIPA + 1)
B oy ®)
where
b()) = (=1)"[y + 2¢(p) + 2 (A + 1) + S p(=X —r +1)] .

(r=1!

i<>\+r_l>r(—_jl)—j1'

=0

<.

It was proved in [3] that
(z}", p(x)) =

00 (r—1) r—
/0 |: Z ()0 z Qpr — 1()0) .’L'r_lH(l—.’E):I dm+_qé7(_ — 1;') (p(’l"—l) (0)’

for all ¢ in D. In partlcular if the support of ¢ is contained in the interval [—1, 1],
we have

(7" () = ©
_ /01 [ Z w“) ] Z w(’) / b g ¢£T — ;)w(’““(o)

_ /01 - [@(m) - r—1 Lp(i? (0) xl] - r—2

M

7!
i=0 i=0

p0) ¢(r-1
dr—i—1) (r—1)
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Now let ¢ be an arbitrary function in D with support contained in the interval
[-1,1]. By the mean value theorem

@(0) , (r)
Z SO l QO (5.’1/') xr

r!

where 0 < £ < 1 and so

(@ (@) () = / @ nple) de
0

r—1 QO(Z) 0 1 1

L= AT 1 r(.—A-T r
AR GO W +F 2 M ()l (€x) dx

=0
Since the sequence of continuous functions {z" (a:_i_r}‘_’“)n} converges uniformly to the

continuous function z~* on the closed interval [0, 1], it follows on using equations
(4), (8) and (9) that
A— r)

N 11m(m+(m+ n, p(2)) =

@ (0 1 !
b ? —ATT 4 r —A—7 r
= 1\L_>lOo Z / i@ ) de + lim —'/_lmi[a: (z Ynlo'™ (Ez) da

n—oo ri

= ol
% 0 (p(r) (fl’) dr — Z % + (—l)rfle(A)(p(Tfl) (0)

1 -1 z) . r—2 @ (0 S(r—1) o,
I R S e e e e R0

i=0 =0
Qgﬁr__—l)?_@(,«_l)(o) + (=1 (V)"0 (0)

= (23", (@) + (1) "a, (N (0),

giving equation (1) on the interval [—1,1] when —1 < A < 0. However, since
xﬁ‘r.m;)‘*’" = z," on any closed interval not containing the origin, equation (1)
holds on the real line when —1 < A < 0.

Now suppose that equation (2) holds for some r and A\ # 0,+1,+2,.... This
is true for r = 1. It is also true for r + 1 when —1 < A < 0. Assume it is also true
for r + 1 when —k < A < —k + 1. Then if —k < A < —k + 1, equation (2) holds by
our assumption and differentiating this equation, we get

+

Ay oaTA T — (N r)ad oxM T =~ 4 ar(A\)8") ().

It follows from our assumptions that

A—r

Ay oa T = Ae T [N+ Par (V) + ar (V)]0 ().
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We have

Ot e )+ 0,0 = T AF D x4 L+ 1) 4 2e(0)
PO+ 1) S A+ (=17 (=)™ (A +1)g(r)
+2F(/\+r)jz%< J >r—j+ r!

N (7{—_1)1;![7+ LA —r+ 1) + LA+ 1) + 2¢(p)]
TA+1) X A+r=1\ (=17 (=1)7(r—1)
2F(A+r)j§%< j >T—j—1 (r=1t -

Noting that
A+r)Y(-A=r)=1+A+7r)Y(-A—r+1),
AMp(A+1) =1+ Ap(N),

r:: <>‘+7f_1>(__1)j:r1 </\-.H°> (—1){ +§<A+1?_1>7~(__]7'1)_j1’

J r=j S\

(]

j
it follows that

A+ 1)1 V) + ar(N) = Aay i1 (A= 1)
and we see that equation (2) holds when —k — 1 < A < —k.

Equation (2) therefore holds by induction for negative A # —1,—2,... and
r=1,2,.... A similar argument shows that equation (2) holds for positive A #
1,2.... This completes the proof of the theorem.

A—r

COROLLARY 2.1 The neutriz product 2 oz exists and

oz N =27 — (=1)"a, (A6 (2) (10)

for AN #0,+£1,£2,....
Proof. Equation (10) follows immediately on replacing x by —z in equation (2).

In the next corollary, the distribution (z + 40)* is defined by
(z +i0) = 2} + "2t
for A #0,£1,+2,... and

(=1)"im

o @), (11)

(x+140)""=2"" +

forr =1,2,..., see [7].
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COROLLARY 2.2 The neutriz product (x + i0)* o (x +140)"*" exists and
(z +1i0)* o (x +i0) " = (z +i0)"" (12)
for A#£0,£1,£2, ... andr =1,2,....
Proof . The neutrix product is distributive with respect to addition and so

(x4 i0)* o (z +i0)™ " = (13)
— 1‘:‘_ ° 1,+—>\—r + (_1)7“1,); o x:)\—r + (_1)7“671')\771,_)‘\_ o x:)\—r + ei)‘ﬁl’i ° m;A—r_

Further, it was proved in [4] that

mcosec(mA) (1)

W () (14)

mj\_ o x:A—r — (_l)rflw); ° ZU;A_T —

for A #0,+1,£2,.... It follows from equations (2), (10), (11), (13) and (14) that

(z+i0) o (x +i0) " =" + ((;1_)11)7: 6 (2) = (z +i0)7",

proving equation (12).

We finally note that the following results can be proved similarly.

|—)\—2r+1) — m—2r+1,

|z|* o (sgn x|z
7 cosec(mA)
(2r —1)!

[2* o (sgnale] *27) = sgnale| > + [202,(\) + [6Cr @),

(sgnm|m|>‘) o |x|—)\—2r+1 — 1,—2r+1,

7 cosec(mA)

(sgnz|z|*) o |z| 22" = sgnx|z| 2" + [2a2r(/\) - ]5(2’"*1)(33),

(2r —1)!
m cosec(mA
o o o] 22041 = o] 2 4[24 (1) - TR 2 o),

|£U|>‘ o |w|—)\—2r — m—Qr

7 cosec(mA)

2r —2)! ]5(2#2) (),

(sgnz|z|*) o (sgnz|z| A2 = |z 72T 4+ [2(12,,,1()\) +
(senala]*) o (sgnfe] 7)==

for \#£0,£1,+2,... and r =1,2,....
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