PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 65 (79), 1999, 109–111

A NOTE ON TWO INDICES OF SEMIGROUP ELEMENTS

Vladimir Rakočević

Communicated by Žarko Mijajlović

Abstract. We answer some questions from a recent paper by Kečkić [3].

Let us recall that Drazin [1] has introduced and investigated a generalized inverse (he called it *pseudoinverse*) in associative rings and semigroups, i.e., if S is an algebraic semigroup (or associative ring), then an element $a \in S$ is said to have a *Drazin* inverse if there exists an $x \in S$ such that

(1) $a^m = a^{m+1}x$ for some non-negative integer m,

(2)
$$x = ax^2$$
 and $ax = xa$.

If a has a Drazin inverse, then the smallest non-negative integer m in (1) is called the *index* (*Drazin index*) i(a) of a. It is well known that there is at most one xsuch that equations (1) and (2) hold. The unique x is denoted by a^D and called the *Drazin* inverse of a.

Following [3], for some integer k > 1, $a \in S$ let us consider the following systems:

$$(S_k) a^{k+1}x = a^k, ax = xa,$$

and

$$(\Sigma_k) \qquad \qquad axa = a, \qquad a^k x = xa^k.$$

If k is the smallest positive integer such that (S_k) is consistent, we say that the S-index of a is k and we write $i_S(a) = k$. Similarly, if k is the smallest positive

AMS Subject Classification (1991): Primary 20M05

Supported by the Science Fund of Serbia, grant 04M03, through Matematički institut

Rakočević

integer such that (Σ_k) is consistent, we say that the Σ -index of a is k and we write $i_{\Sigma}(a) = k$. Kečkić [3, A.2 and E.2] has proved that if the system (Σ_k) is consistent, then the system (S_k) is also consistent, and the converse is not true in general.

For the sake of completness let us recall that Kečkić [3], among other things, asked the following questions:

Question 1. Is there a semigroup in which, for some k > 2, both systems (Σ_k) and (S_{k-1}) are consistent, while (Σ_{k-1}) is inconsistent?

Question 2. Describe the semigroups in which $i_S(a) = k \Leftrightarrow i_{\Sigma}(a) = k$.

To give the answers to these questions, we start with the following well-known auxiliary result (see e.g. [2, p. 190, Proof of (A)]).

Lemma 1. Let S be a semigroup, and $a \in S$. Then the system (S_k) is consistent if and only if the the system $(S_k) \wedge ax^2 = x$ is consistent. In that case a is Drazin invertible and $i_S(a) = i(a)$.

Now we shall prove that the answer to the Question 1 is negative.

THEOREM 1. Let S be a semigroup, $a \in S$, and k > 2. If both systems (Σ_k) and (S_{k-1}) are consistent, then the system (Σ_{k-1}) is also consistent.

Proof. Suppose that both systems (Σ_k) and (S_{k-1}) are consistent. As the system (Σ_k) is consistent, there is an $x \in S$ such that

$$axa = a, \qquad a^k x = xa^k.$$

Furthermore, as the system (S_{k-1}) is consistent, by Lemma 1, a is Drazin invertible and $i_S(a) = i(a) \leq k-1$. Now (see [1]) a^k is Drazin invertible, $(a^k)^D = (a^D)^k$, and

(4)
$$(a^k)^D (a^k x) = (a^k x)(a^k)^D = (xa^k)(a^k)^D.$$

Taking into account that a and a^D are commuting and $a^D a$ is an idempotent, we obtain

(5)
$$a^D a x = x a a^D$$

Multiplying (5) by a and taking into account (3) we get

(6)
$$a^D a = a^D (axa) = (a^D ax)a = (xaa^D)a = xa^2 a^D,$$

i.e.,

(7)
$$a^D a = x a^2 a^D$$

Multiplying (7) by a^{k-1} we get

$$a^D a^k = x a^2 a^D a^{k-1},$$

110

i.e.,

$$(9) a^{k-1} = xa^k$$

Finally by (3) we have

(10)
$$a^{k-1}x = (xa^k)x = x(a^kx) = x(xa^k) = xa^{k-1}$$

i.e., we prove that the system (Σ_{k-1}) is consistent.

Concerning Question 2, by Theorem 1 and [3, A.3] we get the following corollaries

COROLLARY 1. Let S be a semigroup and $a \in S$. If a is Drazin invertible with the Drazin index i(a) = n, and if the system (Σ_k) , $k \ge n$ is consistent, then $i_{\Sigma}(a) = i(a)$.

COROLLARY 2. Let S be a semigroup and $a \in S$. If the system (Σ_k) is consistent, then we know that by [3, A.2] the system (S_k) is consistent, and we have $i_{\Sigma}(a) = i_S(a) = i(a)$.

Proof. By Lemma 1 and Corollary 1.

Hence Corollary 2 is an answer to Question 2, under the restriction that for each $a \in S$ the system (Σ_k) is consistent.

References

- 1. M.P. Drazin, *Pseudoinvese in associative rings and semigroups*, Amer. Math. Monthly **65** (1958), 506–514.
- M.P. Drazin, Extremal Definitions of Generalized Inverses, Linear Algebra Appl. 165 (1992), 185–196.
- J. Kečkić, Some remarks on possible generalized inverses in semigroups, Publ. Inst. Math. (Beograd) 61(75) (1997), 33-40.

(Received 18 05 1998)

Filozofski fakultet 18000 Niš Serbia, Yugoslavia vrakoc@bankerinter.net vrakoc@archimed.filfak.ni.ac.yu