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Abstract. We give a K-theoretic proof of the estimate for the maximum
dimension of real vector spaces of nonsingular matrices of order n over the �eld of
real, complex numbers and quaternions.

1. Introduction

In [ALP] the authors have discussed the following problem: For a given n,
what is the maximum dimension over R of a vector space of matrices of order n in
which every non-zero matrix is nonsingular. Matrices may have their components
in R, C, or H, where by H we denote the skew �eld of quaternions. In that paper
and [ALP1], the authors, using the results from [A1], gave the following answer

Theorem 1. If, by R(n), C(n), H(n) we denote the maximum dimension

mentioned above, for matrices over R, C, H respectively, then

R(n) = �(n); C(n) = 2�2(n) + 2; H(n) = �(n=2) + 4:

This theorem requires a short remark. First, �(n) denotes the Hurwitz{Radon
number de�ned by:

�(n) = �(24a+b(2m+ 1)) = 8a+ 2b;

where n = 24a+b(2m+ 1), a � 0, 0 � b � 3 are integers, while �2(n) is the highest
power of 2 dividing n. Also, if n is odd then �(n=2) = 0. It is mentioned in [ALP1]
that it remains interesting to what topological phenomena this algebraic result is
related.
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It is the purpose of this paper to give a K-theoretic proof of the following

Theorem 2. We have

R(n) � �(n); C(n) � �2(n) + 2; H(n) � �(n=2) + 4:

We use real, complex and symplectic K-theory respectively, and, since sym-
plectic and real K-theory are directly related via the Bott periodicity, this shows
how the Bott periodicity is connected to this result. Let us emphasize also, that
we use only the additive structure of K-groups (no operations are involved) and
therefore the proof is more simple than the proof related to �(n) in [A1]. There, the
author has proved that the largest possible number of linearly independent vector
�elds on Sn�1 is �(n) � 1 (problem about matrices corresponds to linear vector
�elds).

In the next section, we give the necessary results concerning K-theory, and
then, in the last section, prove Theorem 2.

2. K-theory

The results we need from K-theory concern the K-groups of real projective
spaces. Let us �rst give some notation.

�(n) := #fk 2 N j 1 � k � n; k � 1; 2; 4; 8 (mod 8)g;

 (n) := #fk 2 N j 1 � k � n; k � 4; 5; 6; 8 (mod 8)g:

Here, #A, for a �nite set A, stands for the number of elements in that set.

c :gKO(X)!gKU(X);

q :gKU(X)! gKSp(X);

c0 : gKSp(X)!gKU(X);

t :gKU(X)!gKU(X);

are group homomorphisms induced by complexi�cation, quaternionization, forget-
ting the quaternion structure, complex conjugation, respectively (see [A2, pp. 27{
28]). We have

qc0 = 2; c0q = 1 + t; tc = c

(see [A2]). If �n stands for the canonical (Hopf) line bundle over RPn, we use the
following notation

�n = �n � 1 2gKO(RPn);

�n = c�n 2gKU(RP
n);

�n = q�n 2 gKSp(RP
n):
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Theorem 3. We have

a) gKO(RPn) �= Z=2�(n), generated by �n;

b) gKU(RPn) �= Z=2[n=2], generated by �n;

c) gKSp(RPn) �= Z=2 (n), generated by �n.

Proof. Of course, a) and b) are very well known (see, e.g. [A1]). For c),
one may observe that the isomorphism in question follows from Bott periodicity|

gKSp
�

(X) �=gKO
��4

(X) (see, e.g. [Sw, pp. 214{217]) and the results from [Fu], where

the groupsgKO
�

(RPn) have been calculated. But, rather than trying to identify
the generator given in [Fu] with our generator, we give a direct proof of this result.

The second term in the Atiyah{Hirzebruch spectral sequence for symplectic
K-theory of RPn is

Ep;�q2 = ~Hp(RPn;gKSp
�q
)

It converges to gKSp
�

(RPn). If we look at the terms

Eq;�q2 = ~Hq(RPn;gKSp
�q
)

which correspond to gKSp
0
(RPn) = gKSp(RPn), we �nd, using the fact that the

coeÆcients for gKSp
�

are given by

n (mod 8) 1 2 3 4 5 6 7 8

gKSp
�n

0 0 0 Z Z=2 Z=2 0 Z

(see [Sw, p. 216]), that there are exactly  (n) non-zero terms and that they are all

Z=2. This means that the order of the group gKSp(RPn) is at most 2 (n). On the
other hand,

c0(�n) = c0qc�n = (1 + t)c�n = (c+ tc)�n = (c+ c)�n = 2c�n = 2�n:

Now, let us suppose �rst that n � 2; 3 or 4 (mod 8). Then we have the following
table

n 8k + 2 8k + 3 8k + 4
 (n) 4k 4k 4k + 1
[n=2] 4k + 1 4k + 1 4k + 2

So, in these cases  (n) = [n=2]�1. Since, for c0 : gKSp(RPn)!gKU(RPn) we
have c0(�n) = 2�n, it follows that !(2�n) divides !(�n), (where for a 2 A, where A
is an abelian group, we denote by !(a) the order of that element in that group) and

therefore 2[n=2]�1 = 2 (n) divides !(�n). Since #gKSp(RP
n) � 2 (n), we conclude

that !(�n) = 2 (n) and gKSp(RPn) is cyclic, generated by �n.

We now show that if the result is true for RPn, it is also true for RPn�1.
Let us look at the Atiyah-Hirzebruch spectral sequences for RPn and RPn�1.
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One can check easily that the E2-terms of these spectral sequences of total degree
0 agree except at En;�n2 . Now, since RPn�1 is the (n� 1)st skeleton of RPn and
the way Atiyah-Hirzebruch spectral sequence is constructed (using skeletons of the
space and for these two space the skeletons are equal, except for the last one), we
conclude that, since all di�erentials relevant to degree zero vanish for RPn (if the
result is true for RPn, then every element of total degree zero in E2 must survive

till E1), they must also vanish for RPn�1. So, the group gKSp(RPn�1) has the
correct order and we are only left with the group extension problem|is this group
really cyclic?

Let us look at the homomorphism i� induced by the inclusion

i : RPn�1 ,! RPn:

We have the following exact sequence

gKSp(RPn=RPn�1)! gKSp(RPn)
i�
! gKSp(RPn�1):

Now, RPn=RPn�1 = Sn�1 and let us make the following table

n gKSp(Sn)  (n)  (n� 1)

8k + 1 0 4k 4k
8k + 2 0 4k 4k
8k + 3 0 4k 4k
8k + 4 Z 4k + 1 4k
8k + 5 Z=2 4k + 2 4k + 1
8k + 6 Z=2 4k + 3 4k + 2
8k + 7 0 4k + 3 4k + 2
8k + 8 Z 4k + 4 4k + 3

For n of the form 8k+1, 8k+2, 8k+3 or 8k+7 we see that our homomorphism
is mono and, since i�(�n) = i�(�n�1), we have the result for n of that form. Now,

suppose that n � 4; 5; 6 or 8 (mod 8) and that the group gKSp(RPn�1) is not cyclic.
This means that !(�n�1) � 2 (n�1)�1 and from the isomorphism

gKSp(RPn)=Ker(i�) �= Im(i�);

and the fact that Im(i�) is cyclic generated by �n�1, we get that

#Ker(i�) =
#gKSp(RPn)

# Im(i�)
� 2 (n)� (n�1)+1 � 22:

But, from the spectral sequence for RPn we know that Ker(i�) is either 0 or
Z=2 (everything survives till E1 and the �ltration in the spectral sequence is

given by F pgKSp(X) = Ker(gKSp(X) ! gKSp(Xp�1)); therefore we must have
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FngKSp(RPn)=Fn+1gKSp(RPn) = Ker(i�)=0 = Ker(i�)). Consequently !(�n�1) =
2 (n�1) and this concludes the proof of Theorem 3.

3. Spaces of nonsingular matrices

We now use the results concerning K-groups of projective spaces from the
previous section to prove theorem 2. The following construction was introduced for
the �rst time in [S] for the complex case and used in [W], [Mesh], [LY], [P], [R], for
the real and complex case. Suppose we have matrices A1; . . . ; Ar of order n over
R, C or H. We de�ne a bundle map

n�
0

r�1
f
! �n

where �
0

r�1 stands for the Hopf bundle overRP
r�1 in the real case and its complex-

i�cation (quaternionization) in the complex (quaternion) case (always over RPn)
while �n stands for the trivial n-dimensional bundle over the same space. This map
is de�ned by

f([x];�1x; . . . ; �nx) = ([x]; [�1; . . . ; �n](A1x1 + � � �+Arxr));

where [x] is the class of x = (x1; . . . ; xr) 2 S
r�1 in RP r�1 and �i, for all i belong

to the �eld in question.

Proof of Theorem 2. For real case, the reader may consult [P] or [R]. We
give here the proof for the complex case (which is the easiest of all) and for the
quaternion case (which appears to us the most interesting since it gives a link
between this result and Bott periodicity via K-theory).

Suppose that C(n) � 2�2(n) + 3. The bundle map

n�
0

2�2(n)+2
f
! �n

constructed using as A1; . . . ; A2�2(n)+2 matrices of a basis of a space of dimension
C(n), will then be an isomorphism due to the nature of that space (every non-zero

matrix in that space is nonsingular). So, ingKU(RP 2�2(n)+2)

n(�
0

2�2(n)+2
� 1) = 0

or, since �
0

2�2(n)+2
� 1 = �2�2(n)+2,

n� = 0: (1)

We put � instead for �2�2(n)+2 to simplify the expression. On the other hand

gKU(RP 2�2(n)+2) �= Z=2�2(n)+1; (2)
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generated by �. From (1)

2�2(n)(2m+ 1)� = 0

and since the group in question is a 2-group, we get

2�2(n)� = 0

and this is false since the order of � is, by (2) 2�2(n)+1.

For the quaternion case, let us suppose �rst that n is odd. We have to prove
that H(n) � 4. Suppose that H(n) � 5. As in the previous case, we get

n� = 0 (3)

in gKSp(RP 4). But, gKSp(RP 4) = Z=2 amd � is a generator. Since n is odd, (3)
gives that � = 0 and that is impossible.

In case n is even, n = 2l, we get (assuming that H(n) � �(n=2) + 5)

2l� = 0 (4)

in gKSp(RP �(l)+4) �= Z=2 (�(l)+4). Let us determine the number  (�(l) + 4). If
l = 24a+b(2m + 1), where a � 0, 0 � b � 3, then �(l) = 8a + 2b and we have

 (�(l) + 4) = 4a+ b+2. So the order of � in gKSp(RP �(l)+4) is 24a+b+2. But from
(4) we get that 24a+b+1� = 0 and therefore we must have H(n) � �(n=2) + 4.

References

[A1] J. F. Adams, Vector �elds on spheres, Ann. of Math. 75 (1962), 603{632.

[A2] J. F. Adams, Lectures on Lie groups, Lecture Note in Mathematics, W. A. Benjamin, 1969.

[ALP] J. F. Adams, P. Lax and R. Phillips, On matrices whose real linear combinations are
non-singular, Proc. Amer. Math. Soc. 16 (1965), 318{322.

[ALP1] J. F. Adams, P. Lax and R. Phillips, Correction to \On matrices whose real linear combi-
nations are non-singular", Proc. Amer. Math. Soc. 17 (1966), 945{947.

[Fu] M. Fujii, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141{149.

[LY] K. Y. Lam and P. Yiu, Linear spaces of real matrices of constant rank, Linear Algebra
Appl. 195 (1993), 69{79.

[Mesh] R. Meshulam, On k-spaces of real matrices, Linear and Multilinear Algebra 26 (1990),
801{803.

[P] Z. Z. Petrovi�c, On spaces of matrices satisfying some rank conditions, Thesis, The Johns
Hopkins University, Baltimore, 1996.

[R] E. G. Rees, Linear spaces of real matrices of given rank, Contemporary Mathematics 188
(1995), 219{229.

[S] J. Sylvester, On the dimension of spaces of linear transformations satisfying rank condi-
tions, Linear Algebra Appl. 78 (1986), 1{10.

[Sw] R. M. Switzer, Algebraic Topology|Homotopy and Homology, Springer-Verlag, 1975.

[W] R. Westwick, Spaces of matrices of �xed rank, Linear and Multilinear Algebra 20 (1987),
171{174.

Matemati�cki fakultet (Received 08 02 1998)
Studentski trg 16
11001 Beograd, p.p. 550
Yugoslavia


