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ASYMPTOTIC EXPANSIONS FOR DIRICHLET SERIES
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Andreas Guthmann
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Abstract. We prove an asymptotic expansion of Riemann-Siegel type for
Dirichlet series associated to cusp forms. Its derivation starts from a new integral
formula for the Dirichlet series and uses sharp asymptotic expansions for partial
sums of the Fourier series of the cusp form.

0. Introduction

Since its publication in 1932 [16] the Riemann-Siegel formula has become a
fundamental and indispensable tool in the theory of the zeta function. This formula
yields an arbitrary sharp approximation for �(s) if s tends to in�nity in a vertical
strip. To be more precise, let s = �+ it, �0 � � � �1, where �0; �1 are �xed, t � t0
is suÆciently large, and N = [( t

2� )
1
2 ]. Then

�(s) =

NX
n=1

n�s + 2s�1�s�(s)�1 sec(�s2 )
NX
n=1

ns�1

� (�1)N (2�) s+12 �(s)�1t
s�1
2 e�is�

it
2
��i

8 S (0.1)

for t ! +1. The two sums of length [( t
2� )

1
2 ] are to be considered as the main

approximation, while the third term is given as an asymptotic series of the shape

S =

��1X
k=0

ak
X

0�2r�k
bkrF

(k�2r)(Æ) +O
�
(3n=t)

�
6

�
: (0:2)

Here ak, bkr are certain complex numbers, ak = O(t�
k
6 ), � is a positive integer not

exceeding 2 � 10�8t, Æ =
p
t � (N + 1

2 )
p
2�, and F denotes the function F (z) =
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cos(z2+ 3�
8 )= cos(

p
2�z). Despite its quite complicate structure, the Riemann-Siegel

formula has found numerous applications, most notably by Levinson on zeros of the
zeta function [11]. For further information the reader should consult the book of
Ivi�c [7]. In view of these facts, it is quite natural to ask whether similar asymptotic
expansions can be given for other types of Dirichlet series. Not surprisingly, this is
the case for Dirichlet L functions, as shown by Siegel some years later [17] and by
Deuring [2]. Afterwards, the entire subject fell into some kind of slumber, and it
is only recently that Motohashi in his deep work found an analogue for �2(s) [12,
13]. His argument depends on another version of the Riemann-Siegel formula and
properties of the divisor function.

In the present paper we shall derive a formula of Riemann-Siegel type for a
large class of Dirichlet series, namely for those associated to cusp forms for the
modular group. Hitherto the only result in this direction is due to Jutila [8], who
found the analogue of the approximate functional equation for �(s) (see also [4]).
Our result allows arbitrary sharp approximations, like (0.1) and (0.2), but is less
complicated. For example, a condition like � � 2 � 10�8t is not required. Apart
from its theoretical value, the explicit form of the �nal result suggests applications
to numerical purposes as well.

We �x some notation to be maintained throughout the paper. Let k be a
positive even integer, H = fz 2 Cj Im(z) > 0g the upper half plane, and denote
by Sk the C vector space of cusp forms of weight k for the modular group SL2(Z).
Thus f 2 Sk precisely if the following conditions are satis�ed:

i) f : H ! C is holomorphic.

ii) The function f satis�es f(az+bcz+d ) = (cz + d)kf(z) for (a bc d ) 2 SL2(Z).
iii) f admits a Fourier expansion of the shape

f(z) =

1X
n=1

a(n)e2�inz; Im(z) > 0: (0:3)

The most prominent example of such a cusp form is the discriminant

�(z) = e2�iz
1Y
n=1

(1� e2�inz)24

of weight 12. Its Fourier coeÆcients in �(z) =
P1
n=1 �(n)e

2�inz are given by
Ramanujan's tau function.

The analytical foundations of the theory were mainly laid by Hecke in his
classical works on Dirichlet series satisfying certain functional equations [5, 6].
Thus to each f 2 Sk with Fourier series (0.3) one associates a Dirichlet series

'(s) =

1X
n=1

a(n)n�s; s = � + it; (0:4)
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via its Mellin transform, i.e.

(2�)�s�(s)'(s) =
Z 1

0

f(ix)xs�1dx: (0:5)

From Hecke's theory it also follows that the Fourier coeÆcients do not grow too
fast. The estimates

ja(n)j = O(n
k
2 ); A(x) :=

X
n�x

a(n) = O(x
k
2 ); (0:6)

are classical and are easily proved from the properties of f . We shall also assume
that f is an eigenfunction of the Hecke algebra. This is no restriction since Sk has
a basis of such functions, and it has the advantage that we may employ Deligne's

result ja(n)j � d(n)n
k�1
2 [1], d(n) denoting the divisor function. Although it is

not absolutely necessary to use this inequality, most of our proofs concerning con-
vergence of series involving a(n) are considerably simpli�ed. As a matter of fact,
Hecke's classical formulas are always suÆcient, yielding the same results in a more
roundabout way.

It now follows that the series in (0.4) converges absolutely for � > k+1
2 .

Moreover, Property ii) above implies f(� 1
z ) = zkf(z), which in turn gives the

functional equation

'(s) = (2�)2s�k
�(k � s)

�(s)
'(k � s):

We have thus a situation completely analogous to that of the Riemann zeta function.
The \critical strip" is given by k�1

2 � � � k+1
2 .

Despite of much research being done on the entire subject no analogue of
the Riemann-Siegel formula was known before, apart form Jutila's approximate
functional equation [8, 4]. The success of our approach depends on some new ideas.
Starting from an integral representation for '(s) proved earlier [3, 4], we employ the
usual saddle point method. It will be seen that certain types of \incomplete" cusp
forms appear naturally in the analysis. The success of the method then depends
on a remarkable asymptotic expansion of these partial sums of the Fourier series
(0.3) (Theorem 2).

The contents of the paper are as follows. In Section 1 we derive some aux-
iliary results, mainly asymptotic expansions for various functions occurring later.
The next section contains our main formulas for the incomplete cusp forms men-
tioned above which are applied in Section 3 for the derivation of the Riemann-Siegel
formula. In the last section we �nally state some special cases of our asymptotic
formula and indicate various problems for further study.

1. Asymptotic Expansions of Integrals

In this section we collect some results that will be extensively used in the
sequel. The formulas derived here give asymptotic expansions of certain integrals.
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The application of the Voronoi summation formula in Section 2 leads in a natural
way to functions U(z; x) and V (z; x) (see (2.4), (2.5)) whose behaviour in turn is
determined by that of the integrals treated here. In our context z � 1 is a real
number, x is complex subject to suitable restrictions like Re(x) > 0 or j arg(x)j � �

4 .

We start with the fundamental

Lemma 1. Let � 2 N, h; k; �1; �2 be �xed real numbers satisfying the inequal-

ities

0 < h � 1; �1 > 0; �2 > 0; maxf�1; �2g < h: (1:1)

Set s1 = i + �1e
��i

4 , s2 = i � �2e
��i

4 . For z � 1 real and complex x such that

jx� ij � h de�ne

~Ik� (z; x) =

Z s2

s1

ez(s�
1
s )s�k

ds

(x � s)�
:

Then for each �xed M 2 N0 we have

~Ik�(z; x) = �e2izz� 1
2 i�ke�

�i
4 (x� i)��

(
M�1X
m=0

�m(x)�(m + 1
2 )z

�m +O(z�M )

)

uniformly in x. The coeÆcients �m(x) are given by the formula

�m(x) = e
�im
2

2mX
�=0

���
�

��
m� k + 1

2

2m� �

�
i��(x � i)��:

They are rational functions of x having a pole of order 2m at x = i. Moreover, the

inequality

j�m(x)j � h�2m
2mX
�=0

����
���
�

��
m� k + 1

2

2m� �

�����
is satis�ed.

Proof. We proceed along standard lines using the saddle point method. We
shall, however, be very careful because of the dependency of the integrand on x.

First let s = w + i and " = e
�i
4 . Then s� s�1 = s2�1

s = 2i� iw2

1�iw . Thus

~Ik� (z; x) = e2izi�k(x� i)��
Z �"�1�2

"�1�1

e�izw
2=(1�iw)(1� iw)�k

dw

(1� w
x�i )

�
:

Here i�k is de�ned by i�k = e�
�ik
2 . If w = "�1� , we now have

~Ik�(z; x) = �e2izi�k"�1(x � i)��
Z �1

��2
e�zf(�)h(�)d�; (1:2)
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where

f(�) =
�2

1� "�
; H(�) = (1� "�)�k(1� �"�1�)�� ; � =

1

x� i
: (1:3)

Using (1.1) we take �0 �xed such that maxf�1; �2g < �0 < h. This implies j� j �
�0 < 1, as well as j�� j � h�1�0 < 1 for j� j � �0. Consequently, the integrand in
(1.2) is holomorphic in the domain B := f� 2 C; j� j < �0g which contains the path
of integration.

Consider the function

g(�) = �(1� "�)�
1
2 ; j� j < 1: (1:4)

Here the principal value of the square root is taken. Obviously, g is holomorphic
in the interior of the unit circle and g2 = f from (1.3). Moreover it is easy to show
that g is conformal and schlicht there. In particular, g is schlicht in B = f� 2 C;
j� j � �0g. Let C = g(B) be the image of B under g. Hence g maps B bijectively
onto C. Therefore there exists the inverse map p : C ! B, which is also bijective
and holomorphic in the interior C of C . Explicitly, we get from (1.4)

p : C ! B; p(u) = u

�
1 +

i

4
u2
� 1

2

� "

2
u2: (1:5)

The integral (1.2) will now be transformed by the substitution � = p(u). We get
(u = g(�))

~Ik�(z; x) = �e2izi�k"�1(x� i)��
Z u1

u2

e�zu
2

H
�
p(u)

�
p0(u)du; (1:6)

where u2 = g(��2), u1 = g(�1). Here we have Re(u2) < 0, Re(u1) > 0, as follows
immediatley from (1.4). Explicitly

u2 = ��2(1� "�2)
� 1

2 ; u1 = �1(1� "�1)
� 1

2 : (1:7)

The path of integration from u2 to u1 lies entirely in C, even in C, since �1;��2 2 B
are no boundary points of B. The function H

�
p(u)

�
p0(u) is holomorphic in C (since

jp(u)j < �0 < h) so that we may write

H
�
p(u)

�
p0(u) =

1X
m=0

amu
m; u 2 C: (1:8)

For M 2 N0 de�ne

H
�
p(u)

�
p0(u) =

M�1X
m=0

amu
m + uMRM (u): (1:9)
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For each �xed M the remainder RM is bounded on C, since RM is holomorphic.
Thus jRM (u)j � c1 for each u 2 C . The value of the constant c1 depends on
M; �0; h but not on z or x. Inserting (1.9) with 2M + 1 instead of M into (1.6)
yields

~Ik� (z; x) = �e2izi�k"�1(x� i)��
Z u1

u2

e�zu
2

"
2MX
m=0

amu
m + u2M+1R2M+1(u)

#
du:

(1:10)
Using jR2M+1(u)j � c2 for u 2 C and a suitable constant c2, we see thatZ u1

u2

e�zu
2

u2M+1R2M+1(u)du = z�
1
2

Z u1
p
z

u2
p
z

e�t
2

�
tp
z

�2M+1

R2M+1

�
tp
z

�
dt

= O(z�M�1): (1.11)

Moreover Z u1

u2

e�zu
2

umdu = z�
m+1

2

Z u1
p
z

u2
p
z

e�t
2

tmdt

= z�
m+1

2

�Z 1

�1
e�t

2

tmdt+O(e�c3z)
�

(1:12)

with suitable c3 = c3(M; �0; h) > 0, which is independent from z and x. The
integrals vanish for m odd, while for m even they take the valueZ 1

�1
e�t

2

tmdt = 2

Z 1

0

e�t
2

tmdt = �

�
m+ 1

2

�
: (1:13)

Inserting (1.11), (1.12), (1.13) into (1.10) yields

~Ik� (z; x) = �e2izi�k"�1(x� i)��

8>><
>>:

2MX
m=0
2jm

am�(
m+1
2 )z�

m+1

2 +O(z�M�1)

9>>=
>>;

= �e�2izz� 1
2 i�k"�1(x� i)��

(
MX
m=0

a2m�(m+ 1
2 )z

�m + O(z�M� 1
2 )

)

= �e�2izz� 1
2 i�k"�1(x�i)��

(
M�1X
m=0

a2m�(m+ 1
2 )z

�m+O(z�M )

)
: (1:14)

This proves the existence of the asymptotic expansion and it remains to compute
the coeÆcients am from (1.8). To this end let  denote a simple closed curve
encircling the origin in the positive direction and which lies entirely in C. Then by
Cauchy's formula

am =
1

2�i

Z


H
�
p(u)

�
p0(u)

um+1
du:
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Here we substitute with the inverse function p : C ! B (i.e. p(u) = � , u = g(�)).
Then � = p() is a simple closed curve around the origin lying entirely in B.
Furthermore

am =
1

2�i

Z
�

H(�)p0(u)
g(�)m+1

g0(�)dt =
1

2�i

Z
�

H(�)

g(�)m+1
d�: (1:15)

By the residue theorem, the last integral equals the coeÆcient of ��1 in the power
series expansion of H(�)g(�)�m�1 (note that g(�) 6= 0 if � 6= 0). From (1.3), (1.4)
we obtain

H(�)g(�)�m�1 = (1� "�)�k+
m+1

2 (1� �"�1�)����m�1:

It follows that am is given as the coeÆcient of �m of (1�"�)�k+m+1

2 (1��"�1�)�� .
One readily computes

am = (�1)m"m
mX
�=0

���
�

��m+1
2 � k

m� �

�
"�2���:

Thus

�m(x) = a2m = e
�im
2

2mX
�=0

���
�

��
m� k + 1

2

2m� �

�
i����; � = (x � i)�1:

This completes the proof of the theorem as the remaining assertions are obvious.

In applications it should be noted that the parameters �, h, k, �1, and �2
must be �xed in advance. The asymptotic expansion then will hold for z ! 1
uniformly in x, as stated.

To derive our next result, we now de�ne a sequence of polynomials pl, ql, by

i�l(t� i)�l = (1 + it)�l =
pl(t) + iql(t)

(t2 + 1)l
; l � 0; t 2 R: (1:16)

The �rst few polynomials are p0(t) = 1, q0(t) = 0, p1(t) = 1, q1(t) = �t, p2(t) =
1� t2, and q2(t) = �2t. Clearly, if � � 1 then p� is even and q� is odd. Moreover,
the following recursions hold:

pl+1(t) = pl(t) + tql(t); ql+1(t) = ql(t)� tpl(t); l � 0:

Let z be real, x 2 C with jx� ij � h > 0. From

eiz(1 + ix)�l =
�
pl(x) cos z � ql(x) sin z + ipl(x) sin z + ql(x) cos z

�
(x2 + 1)�l
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we get the following inequalities:����pl(x) cos z � ql(x) sin z

(x2 + 1)l

���� = ��Re�eiz(1 + ix)�l
��� � h�l; (1:17)����pl(x) sin z + ql(x) cos z

(x2 + 1)l

���� = ��Im�eiz(1 + ix)�l
��� � h�l: (1:18)

Replacing x with �x, adding and subtracting, respectively, we similarly obtain���� pl(x)

(x2 + 1)l

���� � 2h�l;
���� ql(x)

(x2 + 1)l

���� � 2h�l; jx� ij � h; jx+ ij � h: (1:19)

The next formula is an easy corollary to Lemma 1. We use it in Section 2 to derive
the asymptotic expansion of the functions U and V as de�ned above.

Lemma 2. Let k > 0 be an even integer, h > 0 real. Assume z � 1, and let

x be complex, such that jx� ij � h and jx� ij � h. Then

~Ik+1;1(z; x)� ~Ik+1;1(z; x) = �(�1) k2 2iz�1
2

M�1X
m=0

�m(z; x)z
�m +O(z�M� 1

2 )

for each M � 0, uniformly in x. The coeÆcients �m are given by

�m(z; x) =

�(m+ 1
2 )

2mX
�=0

(�1)�
�
m� k � 1

2

2m� �

�
p�+1(x) sin(2z + cm) + q�+1(x) cos(2z + cm)

(x2 + 1)�+1
;

where cm = �m
2 � �

4 , and the polynomials p�+1; q�+1 are de�ned by (1:16). More-

over, �m(z; x) is uniformly bounded for the values of z and x permitted.

Proof. The �rst two formulas follow at once from Lemma 1 with k+1 instead
of k and � = 1, since

~Ik+1;1(z; x) = �z� 1
2

M�1X
m=0

�(m+ 1
2 )e

2iz��ik
2
+�im

2
��i

4 z�m

�
2mX
�=0

(�1)�
�
m� k � 1

2

2m� �

�
p�+1(x) + iq�+1(x)

(x2 + 1)�+1
:

The remaining assertions are obvious from the properties of �m(x), pl(x), and ql(x)
stated above.
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2. Incomplete Cusp Forms

It will be seen later that a major role in the derivation of the Riemann-Siegel
formula is played by truncations of the Fourier series of the underlying cusp form.
Let f 2 Sk with Fourier series (0.3). We shall �nd it convenient in the sequel to
work in the right half plane, and hence we de�ne

 (x) = f(ix) =

1X
n=1

a(n)e�2�nx; Re(x) > 0: (2:1)

Then  (x) = (�1) k2 x�k ( 1x ), which shows that  (x) decays rapidly at x = 0. This
fact will be used below.

The partial sums of  (x) to be considered here depend on two parameters,
� > 0 real, x complex, and are de�ned by

 1(�; x) =
X
n>�

a(n)e�2�nx; Re(x) > 0; (2:2)

and
 �1(�; x) =

X
n��

a(n)e2�nx: (2:3)

Obviously,  �1(�; �) is an entire function, while  1(�; �) has the line Re(x) = 0
as a natural boundary. For our purpose we need asymptotic expansions of these
functions for large � and x restricted to the sector j arg(x)j � �

4 . In this respect,
the behaviour for x! 0 is important. A �rst approximation is clearly given by

 �1(�; x) �
X
n��

a(n); x! 0;

and by

 1(�; x) =
X
n>�

a(n)e�2�nx =  (x) �
X
n��

a(n)e�2�nx � �
X
n��

a(n);

x! 0; Re(x) > 0:

Here it has been used that  (x) vanishes exponentially for x! 0. For our purposes,
however, these formulas are much too crude, and we are going to replace them by
much sharper ones. Our �nal goal is to obtain the remarkable approximations
furnished by Theorem 2, which appear to be of independent interest and may have
other applications.

To investigate the functions  1 and  �1 further, we use a variant of the well
known Voronoi summation formula [9]. In a natural way we are thus led to the
functions

U(z; x) = ezx
Z 1

z

Jk(
p
t)t

k
2 e�xtdt; Re(x) > 0; (2:4)

V (z; x) = e�zx
Z z

0

Jk(
p
t)t

k
2 extdt: (2:5)
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Employing the results of Section 1, it is an easy task to derive sharp asymptotic
expansion for U(z; x), V (z; x), when z is large and x is allowed to vary in the sector
j arg(x)j � �

4 (see Theorem 1). First we transform  �1 using explicit formulas of
Voronoi type. Thus let

A(x) =
X
n�x

a(n); A1(x) =

Z x

0

A(t)dt =
X
n�x

a(n)(x � n): (2:6)

For the latter sum we only need the explicit formula

A1(x) = (�1) k2 1

2�
x
k+1
2

1X
n=1

a(n)n�
k+1
2 Jk+1(4�

p
nx); (2:7)

which can be proved by elementary means [9]. The series is absolutely convergent,

as follows from Deligne's estimate ja(n)j � n
k�1
2 d(n) [1] and well known properties

of the Bessel function Jk+1.

Lemma 3. Let � > 0, x complex. For the functions  1 and  �1 de�ned by

(2:2) and (2:3) we have

e�x 1

�
�;

x

2�

�
= �A(�) + �1(�; x); Re(x) > 0;

e��x �1
�
�;

x

2�

�
= A(�)���1(�; x);

where

�1(�; x) = (�1) k2 (4�)�k�2x
1X
n=1

a(n)n�k�1U(�n; xn);

��1(�; x) = (�1) k2 (4�)�k�2x
1X
n=1

a(n)n�k�1V (�n; xn);

and �n = 16�2n�, xn = x
16�2n .

Proof. Assume � > 0, Re(x) > 0. By partial summation

 1

�
�;

x

2�

�
=
X
n>�

a(n)e�nx = �A(�)e��x + x

Z 1

�

A(t)e�xtdt:

The integral equalsZ 1

�

e�xtdA1(t) = �A1(�)e
��x + x

Z 1

�

A1(t)e
�xtdt:

Inserting the expression (2.7) for A1(t) and interchanging the order of integration
and summation then yields

x

Z 1

�

A1(t)e
�xtdt =

(�1) k2 x

2�

1X
n=1

a(n)n�
k+1
2 (16�2n)�1�

k+1
2

Z 1

�n

u
k+1
2 Jk+1(

p
u)e�xnudu:
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From the familiar di�erential equation of the Bessel function we deduce
d
du [u

k
2 Jk(

p
u)] = 1

2u
k�1
2 Jk�1(

p
u). Thus integration by parts shows that

x

Z 1

�

A1(t)e
�xtdt = (�1) k2 x

2�

1X
n=1

a(n)n�
k+1
2 (16�2n)�1�

k+1
2 �

�
�
�
k+1
2

n Jk+1(
p
�n)

e�xn�n

xn
+

1

2xn

Z 1

�n

u
k
2 Jk(

p
u)e�xnudu

�

= (�1) k2 x

2�
�
k+1
2
e��x

x

1X
n=1

a(n)n�
k+1
2 Jk+1(4�

p
n�)+

+(�1) k2 1

4�

1X
n=1

a(n)n�
k+1
2 (16�2n)�

k+1
2

Z 1

�n

u
k
2 Jk(

p
u)e�xnudu

= e��xA1(�) + (�1) k2 (4�)�k�2e��x
1X
n=1

a(n)n�k�1U(�n; xn):

Altogether we have

x

Z 1

�

A(t)e�xtdt = (�1) k2 x(4�)�k�2e��x
1X
n=1

a(n)n�k�1U(�n; xn):

This immediately implies the assertion for  1. Similarly we proceed in the case of
 �1. Summation by parts and then integration by parts yields

 �1
�
�;

x

2�

�
= A(�)e�x �A1(�)xe

�x + x2
Z �

0

A1(t)e
xtdt:

Here

Z �

0

A1(t)e
xtdt = (�1) k2 1

2�

1X
n=1

a(n)n�
k+1
2 (16�2n)�1�

k+1
2

Z �n

0

u
k+1
2 Jk+1(

p
u)exnudu:

Integrating by parts, we see

Z �n

0

u
k+1
2 Jk+1(

p
u)exnudu = �

k+1
2

n Jk+1(
p
�n)

e�nxn

xn
� 1

2xn

Z �n

0

u
k
2 Jk(

p
u)exnudu:

Consequently,

x2
Z �

0

A1(t)e
xtdt = xe�xA1(�)� (�1) k2 x

4�

1X
n=1

a(n)n�
k+1
2 (16�2n)�

k+1
2 e�xV (�n; xn);

and this completes the proof of the lemma.
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After this preliminary transformation, showing the appearance of U(z; x) and
V (z; x), we are now prepared to �nd asymptotic expansions for these functions,
which are de�ned by (2.4) and (2.5), respectively. In fact, the de�ning integrals can

be expressed in terms of the integral ~Ik+1;1 introduced in Section 1. To show this,

we use the familiar formulas Jk(t) =
1
2

�
H

(1)
k (t) + H

(2)
k (t)

�
and H

(2)
k (t) = H

(1)
k (t)

[19, p. 74]. Then

U(z; x) =
1

2

�
exz

Z 1

z

t
k
2H

(1)
k (

p
t)e�xtdt+ exz

Z 1

z

t
k
2H

(1)
k (

p
t)e�xtdt

�
; (2:8)

and

V (z; x) =
1

2

�
e�xz

Z z

0

t
k
2H

(1)
k (

p
t)extdt+ e�xz

Z z

0

t
k
2H

(1)
k (

p
t)extdt

�
: (2:9)

The two relevant integrals occurring here are treated in the next two lemmata.

Lemma 4. Let z � 1, j arg(x)j � �
4 . Then

exz
Z 1

z

t
k
2H

(1)
k (

p
t)e�xtdt = z

k+1
2

2

�i
~Ik+1;1

�
1

2

p
z; 2x

p
z

�
+O(e�

p
z=10)

uniformly in x. Moreover, the parameters in ~Ik+1;1 can be chosen according to

h = 1p
2
, �1 =

p
2

1+tan Æ1
, �2 =

p
2

cot Æ2�1 , where Æ1 =
3�
8 , Æ2 =

�
12 .

Proof. Assume �rst Re(x) � 1. We use Schl�ai's integral for the Hankel

function H
(1)
� in the form [19, p. 179]

H(1)
� (w) = (2w)��

1

�i

Z i1

0

ew
2s� 1

4s s���1ds; w > 0; � > 0:

The path of integration is chosen so as to run from 0 to 1
2 i along the half-circle

s = 1
4 (i + ei ), ��

2 �  � �
2 , and then from 1

2 i to i1 on the positive imaginary
axis. The integral is absolutely convergent at both limits of integration. Note that
Re(s) � 1

4 on the path and hence Re(x� s) � 3
4 . Writing the above expression for

H
(1)
k in the form

t
k
2H

(1)
k (

p
t) = 2�k

1

�i

Z i1

0

ets�
1
4s s�k�1ds; t � 0; k > 0; (2:10)

we get

exz
Z 1

z

t
k
2H

(1)
k (

p
t)e�xtdt = 2�kexz

1

�i

Z i1

0

e�
1
4s s�k�1

Z 1

z

e�t(x�s)dtds

= 2�k
1

�i

Z i1

0

ezs�
1
4s s�k�1

ds

x� s
:
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The interchange of the order of integration is permitted by absolute convergence.
Substituting s

2
p
z
for s yields

exz
Z 1

z

t
k
2H

(1)
k (

p
t)e�xtdt = z

k+1
2

2

�i

Z i1

0

e
1
2

p
z(s� 1

s )s�k�1
ds

2x
p
z � s

: (2:11)

Our initial restriction Re(x) � 1 can now be relaxed to j arg(x)j � �
4 by analytic

continuation. Let s1 = i + �1e
��i

4 , s2 = i � �2e
��i

4 . Then s1; s2 are the points

of intersection of the line s = i+ �e�
�i
4 (� real) with the rays �eiÆ1 and �ei(

�
2
+Æ2)

(� � 0), respectively. Moreover,

�1 := js1j = 1

sin Æ1 + cos Æ1
; �2 := js2j = 1

cos Æ2 � sin Æ2
=
p
2:

Numerical values, rounded to three decimal places, are �1 = 0:414, �2 = 0:518,
�1 = 0:765, �2 = 1:414. Therefore the conditions of Lemma 1 are satis�ed. With
these parameters we de�ne a path P = P0 [ P1 [ P2 consisting of straight line
segments P0, P1, P2, connecting the points 0, s1, s2, and 1ei(

�
2
+Æ2). By Cauchy's

theorem, the path of integration in (2.11) can be replaced by P . Hence

exz
Z 1

z

t
k
2H

(1)
k (

p
t)e�xtdt = z

k+1
2

2

�i

Z
P

e
1
2

p
z(s� 1

s )s�k�1
ds

2x
p
z � s

; j arg(x)j � �

4
:

(2:12)
Thus the lemma is proved if we show that the integrals along P0 and P2 are suÆ-
ciently small. Consider �rstZ
P0

ez(s�
1
s )s��

ds

x� s
=

Z s1

0

ez(s�
1
s )s��

ds

x� s
; z � A > 0; � > 0; j arg(x)j � �

4
;

(2:13)
where A is a �xed positive number. Let s = �eiÆ1 , 0 � � � �1. If u;  are real,
u � 0, j j � �, then j1� uei j � j sin j. Thus for x = rei , r � 0, j j � �

4 ,

jx� sj = jrei � �eiÆ1 j = �

����1� r

�
ei( �Æ1)

���� � �j sin( � Æ1)j � � sin
�

8
:

We also have Re(s� s�1) = (�� ��1) cos Æ1. Therefore,����
Z
P0

ez(s�
1
s )s��

ds

x� s

���� � csc
�

8

Z �1

0

exp
�
z(�� ��1) cos Æ1

�
����1d�

�
Z 1

��1
1

exp
��z(u� u�1) cos Æ1

�
u��1du

�
Z 1

��1
1

exp
��zu(1� �21) cos Æ1

�
u��1du

� exp
��z(��11 � �1) cos Æ1

� Z 1

0

exp
��zu(1� �21) cos Æ1

�
u��1du

� e�c1z; c1 = (��11 � �1) cos Æ1; (2:14)
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since z � A > 0. Finally we consider

Z
P2

ez(s�
1
s )s��

ds

x� s
=

Z 1ei 

s2

ez(s�
1
s )s��

ds

x� s
; z � A > 0; j arg(x)j � �

4
:

(2:15)
Here we have set  = �

2 +Æ2 = arg(s2) for brevity. We have now jx�sj � jRe(s)j �
jRe(s2)j = j�2 cos j = (cos Æ2 � sin Æ2)

�1 sin Æ2. Using the parametrization s =
�ei , � � �2, we have Re(s� s�1) = �(�� ��1) sin Æ2 and jsj > 1. Thus

����
Z
P2

ez(s�
1
s )s��

ds

x� s

���� � (cos Æ2 � sin Æ2) csc Æ2

Z 1

�2

exp
��z(�� ��1) sin Æ2

�
d�

� (cot Æ2 � 1)

Z 1

�2

exp
��z�(1� ��22 ) sin Æ2

�
d�

� e�c2z; c2 = �2 � ��12 : (2:16)

From the values given above we compute c1 = 0:207 . . . , c2 = 2�
1
2 . By (2.14) and

(2.16) we thus have proved

Z
P0[P2

ez(s�
1
s )

ds

x� s
= O(e�0:207z); z � A > 0; j arg(x)j � �

4
;

uniformly in x, and this completes the proof of the lemma.

Lemma 5. Let z � 1, j arg(x)j � �
4 . Then

e�xz
Z z

0

t
k
2H

(1)
k (

p
t)extdt = �z k+12 2

�i
~Ik+1;1

�
1

2

p
z;�2xpz

�

+
2i

�
e�xz

Z 1

0

u
k
2Kk(

p
u)e�xudu+O(e�

p
z=10)

uniformly in x. Moreover, the parameters in ~Ik+1;1 can be chosen according to

h = 1p
2
, �1 =

p
2

1+tan Æ1
, �2 =

p
2

cot Æ2�1 , where Æ1 =
3�
8 , Æ2 =

�
12 .

Proof. First let Re(x) � 1. Using the asymptotic expansion of the Hankel
function, namely [10, 19]

H
(1)
k (w) =

�
2

�w

� 1
2

eiw�
�ik
2
��i

4

�
1 +O(w�1)

�
; j arg(w)j � � � Æ < �;

we can write

Z z

0

t
k
2H

(1)
k (

p
t)extdt =

�Z 1e�i

0

�
Z 1e�i

z

�
t
k
2H

(1)
k (

p
t)extdt:
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Here the paths of integration remain entirely in the upper half plane. Let t = e�iu.

Since H
(1)
k (we

�i
2 ) = 2

�ie
��ik

2 Kk(w) [10, p. 109], we obtain

Z 1e�i

0

t
k
2H

(1)
k (

p
t)extdt =

2i

�

Z 1

0

u
k
2Kk(

p
u)e�xudu:

To treat the second integral from z to 1e�i we again use Schl�ai's representation
(2.10). From Re(x+ s) � 1 we get

Z 1e�i

z

t
k
2H

(1)
k (

p
t)extdt = 2�k

1

�i

Z i1

0

e�
1
4s s�k�1

Z 1e�i

z

et(x+s)dtds

= �2�kexz 1
�i

Z i1

0

esz�
1
4s s�k�1

ds

x+ s
:

Hence

e�xz
Z z

0

t
k
2H

(1)
k (

p
t)extdt =

z
k+1
2

2

�i

Z i1

0

e
1
2

p
z(s� 1

s )s�k�1
ds

2x
p
z + s

+
2i

�
e�xz

Z 1

0

u
k
2Kk(

p
u)e�xudu:

The �rst integral is now taken along the path P , as de�ned in the proof of the
previous lemma. By analytic continuation, the formula then holds for j arg(x)j � �

4 .
The contribution over the paths P0 and P2 is estimated as before, the result beingZ

P0[P2
e
1
2

p
z(s� 1

s )s�k�1
ds

2x
p
z + s

= O(e�
p
z=10)

uniformly in x. But sinceZ
P1

e
1
2

p
z(s� 1

s )s�k�1
ds

2x
p
z + s

= �~Ik+1;1

�
1

2

p
z;�2xpz

�

the assertion follows.

It is now an easy task to derive asymptotic expansions for U(z; x), V (z; x),
and certain related functions. We summarize the formulas in the following

Theorem 1. Let z � 4, j arg(x)j � �
4 . Then

U(z; x) = �(�1) k2 2 3
2��1z

k
2
+ 1

4

M�1X
m=0

�m

�
1

2

p
z; 2x

p
z

��z
4

��m
2

+O(z
k
2
+ 1

4
�M

2 );

V (z; x) = (�1) k2 2 3
2��1z

k
2
+ 1

4

M�1X
m=0

�m

�
1

2

p
z;�2xpz

��z
4

��m
2

+O(z
k
2
+ 1

4
�M

2 );
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for each �xed M � 0, uniformly in x. The coeÆcients �m are given by

�m(z; x) =

�(m+ 1
2 )

2mX
�=0

(�1)�
�
m� k � 1

2

2m� �

�
p�+1(x) sin(2z + cm) + q�+1(x) cos(2z + cm)

(x2 + 1)�+1
;

where cm = �m
2 � �

4 and the polynomials pl; ql are given by (1:16). Moreover,

�m(z; x) is uniformly bounded for z � 1 and complex x with j arg(x)j � �
4 .

Proof. To derive the result for U(z; x), use (2.8) and Lemma 4. Accordingly

U(z; x) =
z
k+1
2

�i

�
~Ik+1;1

�
1

2

p
z; 2x

p
z

�
� ~Ik+1;1

�
1

2

p
z; 2x

p
z

��
+O(e�

p
z=10);

uniformly in x. Then the formula stated follows from Lemma 2. Similarly, (2.9)
and Lemma 5 show that

V (z; x) = �z
k+1
2

�i

�
~Ik+1;1

�
1

2

p
z;�2xpz

�
� ~Ik+1;1

�
1

2

p
z;�2xpz

��
+O(e�

p
z=10);

since the two in�nite integrals coming from Lemma 5 cancel. This completes the
proof of our assertion.

We apply the previous result to Lemma 3. With �n = 16�2n�, xn = x
16�2n ,

we get

U(�n; xn) = �(�1) k2 2 5
2��

1
2 (4�)k(n�)

k
2
+ 1

4

M�1X
m=0

�m

�
2�
p
n�;

x

2�

p
�=n

�
(4�2n�)�

m
2

+O
�
(n�)

k
2
+ 1

4
�M

2

�
;

V (�n; xn) = (�1) k2 2 5
2��

1
2 (4�)k(n�)

k
2
+ 1

4

M�1X
m=0

�m

�
2�
p
n�;� x

2�

p
�=n

�
(4�2n�)�

m
2

+O
�
(n�)

k
2
+ 1

4
�M

2

�
:

Here �m(z; �) are the rational functions de�ned in Lemma 2. Their only poles occur
at x = �i. Inserting these formulas into those of Lemma 3 we get the main result
of the present section.

Theorem 2. Let � � 1, x complex such that j arg(x)j � �
4 . De�ne the

functions �1 and ��1 as in Lemma 3. Then

�1(�; x) =

� 2�
3
2��

5
2 x�

k
2
+ 1

4

M�1X
m=0

(4�2�)�
m
2

1X
n=1

a(n)n�
k
2
� 3

4
�m

2 �m

�
2�
p
n�;

x

2�

p
�=n

�

+O(jxj� k2+ 1
4
�M

2 );
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��1(�; x) =

2�
3
2��

5
2 x�

k
2
+ 1

4

M�1X
m=0

(4�2�)�
m
2

1X
n=1

a(n)n�
k
2
� 3

4
�m

2 �m

�
2�
p
n�;

x

2�

p
�=n

�

+O(jxj� k2+ 1
4
�M

2 );

for each integerM � 0, uniformly in x. The in�nite series are absolutely convergent
and uniformly bounded for the permissible values of � and x. The coeÆcients �m
are as in Theorem 1.

Proof. It is only necessary to insert the above formulas for U(�n; xn) and

V (�n; xn) into Lemma 3. Since ja(n)j � d(n)n
k�1
2 , absolute convergence is ensured

by the boundedness of the coeÆcients �m. This proves the theorem.

As a special case we note

�1(�; x) = O(jxj� k2+ 1
4 ); ��1(�; x) = O(jxj� k2+ 1

4 ); (2:17)

subject to � � 1 and j arg(x)j � �
4 .

In the next section we also need the two functions �(+), �(�), de�ned by

�(�)(�; x) = �1(�; x) ���1(�; x); � > 0; Re(x) > 0: (2:18)

Using the previous result it is a trivial matter to derive formulas of the above type

for �(�). With �m(z; x) as in Lemma 2, let �
(�)
m (z; x) = 1

2

�
�m(z; x)� �m(z;�x)

�
.

Using the fact that pl is even, ql is odd, we thus get

�(+)m (z; x)=�(m+ 1
2 ) sin(2z+

�m
2 � �

4 )

2mX
�=0

(�1)�
�
m�k� 1

2

2m� �

�
p�+1(x)

(x2+1)1+�
; (2:19)

�(�)m (z; x)=�(m+ 1
2 ) cos(2z+

�m
2 � �

4 )
2mX
�=0

(�1)�
�
m�k� 1

2

2m� �

�
q�+1(x)

(x2+1)1+�
: (2:20)

We then have

Theorem 3. Let � � 1, x complex such that j arg(x)j � �
4 . De�ne the

functions �(+) and �(�) by �(�)(�; x) = �1(�; x)���1(�; x), where ��1 are de�ned
in Lemma 3. Then

�(�)(�; x) =

� 2�
1
2��

5
2x�

k
2
+ 1

4

M�1X
m=0

(4�2�)�
m
2

1X
n=1

a(n)n�
k
2
� 3

4
�m

2 �(�)m

�
2�
p
n�;

x

2�

p
�=n

�

+O(jxj� k2+ 1
4
�M

2 );
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for each integerM � 0, uniformly in x. The in�nite series are absolutely convergent
and uniformly bounded for the permissible values of � and x.

3. The Riemann-Siegel Formula

We are now ready to derive our main results on the asymptotic expansion of
'(s), i.e. the analogue of the Riemann-Siegel formula. We take f 2 Sk and de�ne
 (x) = f(ix) as in (2.1)

Let s = � + it. We shall assume in the sequel 0 < �0 � � � �1, where �0; �1
are �xed, t � 2�, and we de�ne � = t

2� . As we have shown elsewhere [3, 4], '(s)
is determined by

T (s) = (2�)s�(s)�1
Z 1

0

 (x)(i+ x)s�1dx; (3:1)

in virtue of the formula

'(s) = T (s) + (�1) k2X(s)T (k � s); X(s) = (2�)2s�k
�(k � s)

�(s)
: (3:2)

Hence we seek an asymptotic expansion for T (s) and our main result is Theorem
4 below. We �rst require some preliminary work transforming T (s).

Write  (x) =  �1(�;�x)+ 1(�; x), where  �1 are the incomplete cusp forms,
as de�ned in Section 2. The integral involving  �1 is transformed according toZ 1

0

 �1(�;�x)(i+ x)s�1dx =

Z i+1

i

 �1(�;�x)xs�1dx

=

�Z i

0

+

Z i+1

i

�
 �1(�;�x)xs�1dx

=
X
n��

a(n)

Z 1

0

e�2�nxxs�1dx�
Z i

0

 �1(�; w � i)(i� w)s�1dw

= (2�)�s�(s)
X
n��

a(n)n�s �
Z i

0

 �1(�; x)(i � x)s�1dx:

We therefore have

T (s) = (3.3)X
n��

a(n)n�s + (2�)s�(s)�1
�Z 1

0

 1(�; x)(i + x)s�1dx�
Z i

0

 �1(�; x)(i � x)s�1dx
�
:

Next, the functions ��1 from Lemma 3 are used, namely

 1(�; x) = e�2��x
��A(�) + �1(�; 2�x)

�
;

 �1(�; x) = e2��x
�
A(�) ���1(�; 2�x)

�
:

(3.4)
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HenceZ 1

0

 1(�; x)(i+ x)s�1dx�
Z i

0

 �1(�; x)(i � x)s�1dx

= �A(�)
�Z 1

0

e�2��x(i+ x)s�1dx+
Z i

0

e2��x(i� x)s�1dx
�

+

Z 1

0

e�2��x(i+ x)s�1�1(�; 2�x)dx+

Z i

0

e2��x(i� x)s�1��1(�; 2�x)dx:

Since Z i

0

e2��x(i� x)s�1dx = e2�i�
Z i

0

e�2��xxs�1dx;

Z 1

0

e�2��x(i+ x)s�1dx = e2�i�
Z i+1

i

e�2��xxs�1dx;

we see that the bracketed term in (3.3) equals �A(�)e2�i�(2��)�s�(s). Inserting
this into (3.3), and observing 2�� = t, we obtain

T (s) =
X
n��

a(n)n�s �A(�)eit��s+

+(2�)s�(s)�1
� Z 1

0

e�tx(i+ x)s�1�1(�; 2�x)dx

+

Z i

0

etx(i� x)s�1��1(�; 2�x)dx
�
: (3:5)

We proceed to show that the main contribution to the last two integrals comes from

the part where jxj � 1
2 . Consider �rst the �nite integral. Let x1 =

1
2e

�i
4 =

p
2
4 (1+i).

ThenZ i

x1

etx(i�x)s�1��1(�; 2�x)dx = eit
Z i�x1

0

e�txxs�1
�
A(�)�e�it+tx �1(�;�x)

�
dx;

on using (3.4). Let Æ = arg(i � x1) = � � arctan 4�p2p
2
, and x = �eiÆ , 0 � � �

ji� x1j = 1
2 (5� 2

p
2)

1
2 . HenceZ i�x1

0

e�txxs�1dx = eiÆs
Z ji�x1j

0

exp
��t��cos Æ + i sin Æ

��
�s�1d�;

and consequently����
Z i�x1

0

e�txxs�1dx
���� � e�Æt

Z ji�x1j

0

exp
��t� cos Æ����1d�

� exp
��Æt� tji� x1j cos Æ

� Z ji�x1j

0

���1d�

� ji� x1j���1 exp
��Æt� tji� x1j cos Æ

�
:
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The same inequality holds for t replaced by 2�n, since 2�n � 2�� � t in the sum

for  �1. Noting that ji� x1j cos Æ = Re(i� x1) = �
p
2
4 , we thus �nd

����
Z i

x1

etx(i� x)s�1��1(�; 2�x)dx
����

�
�
jA(�)j+

X
n��

ja(n)j
�
ji� x1j���1 exp

��Æt� tji� x1j cos Æ
�

� tCe�
�t
2
�c1t; c1 = Æ �

p
2
4 � �

2 = 0:1469 . . . (3:6)

In the last equation C denotes a suitable positive constant. Next we consider
the in�nite integral in (3.5). We shall show that the contribution of the part

where jxj � 1
2 is negligible. Again let x1 = 1

2e
�i
4 . Turning the line of integration

appropriately, we have

Z 1

x1

e�tx(i+ x)s�1�1(�; 2�x)dx = eit
Z 1eiÆ

i+x1

e�txxs�1�1

�
�; 2�(x� i)

�
dx;

where Æ = arg(i + x1) = arctan 4+
p
2p

2
. The new integral can be parametrized by

x = eiÆu, with u � ji+ x1j = 1
2 (5 + 2

p
2)

1
2 . Using (3.4)

Z 1

x1

e�tx(i+ x)s�1�1(�; 2�x)dx = eit
Z 1eiÆ

i+x1

e�txxs�1
�
A(�) + etx�it 1(�; x)

�
dx:

(3:7)
Now let c > 0 be arbitrary. Then

����
Z 1eiÆ

i+x1

e�cxxs�1dx
���� =

����eiÆs
Z 1

ji+x1j
exp(�ceiÆu)us�1du

���� � e�Æt
Z 1

ji+x1j
e�cu cos Æu��1du

= e�Æt(c cos Æ)���(�; ji+ x1jc cos Æ);

where �(�; z) =
R1
z
e�uu��1du denotes the incomplete gamma function. If � is

�xed it is well known [14] that �(�; z) = e�zz��1[1 + O(z�1)] for z � 1. Since

ji+ x1j cos Æ = Re(i+ x1) =
p
2
4 , we �nd thus

����
Z 1eiÆ

i+x1

e�cxxs�1dx
����� c�1e�Æt�c

p
2=4 � e�Æt�c

p
2=4; c � 2

p
2:

We employ this in (3.7) with c = t � 2�, and c = 2�n � 2�, to get����
Z 1

x1

e�tx(i+ x)s�1�1(�;2�x)dx

����� jA(�)je�Æt�t
p
2=4 +

X
n>�

ja(n)je�Æt��n
p
2=2

� tCe�
�t
2
�c2t; c2 = Æ +

p
2
4 � �

2 = 0:09805 . . . (3:8)
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for a suitable C > 0. Using estimates (3.6) and (3.7) together with Stirling's

formula in the form j�(s)j�1 � p2�e�t2 t 12�� , t!1, we obtain from (3.5)

T (s) =
X
n��

a(n)n�s �A(�)eit��s + (2�)se
�i
2
(s�1)�(s)�1�

�
�Z x1

0

e�tx(1�ix)s�1�1(�; 2�x)dx+

Z x1

0

etx(1+ix)s�1��1(�; 2�x)dx
�
+O(e�t=11):

(3.9)

After these preparations we now arrived at the central problem, viz. the asymptotic
expansion of the integrals in (3.9). With f(x) = x� i log(1� ix) they can both be
written as Z x1

0

e�tf(�x)(1� ix)��1��1(�; 2�x)dx: (3:10)

Since f(x) = � i
2x

2 for x ! 0, it is reasonable to put f(x) = � i
2x

2 + g(x), i.e.

g(x) = x+ i
2x

2 � i log(1� ix), and hence

Z x1

0

e�tf(�x)(1� ix)��1��1(�; 2�x)dx =

Z x1

0

e
it
2
x2G(�x)��1(�; 2�x)dx; (3:11)

where G(x) = e�tg(x)(1� ix)��1. Formally, we may proceed as follows. Let G(x) =P1
l=0 l(�; t)x

l be the Taylor series of G around 0. We then expect

Z x1

0

e
it
2
x2G(�x)��1(�; 2�x)dx �

1X
l=0

(�1)ll(�; t)
Z 1e�i=4

0

e
it
2
x2xl��1(�; 2�x)dx

=

1X
l=0

(�1)ll(�; t)
�
2i

t

� l+1
2
Z 1

0

e�u
2

ul��1(�; 2u
p
�i=�)du

to be the correct asymptotic expansion of the integral (3.10). Finally, using the
results from Section 2 we complete our task by deriving explicit formulas for the
in�nite integrals involving ��1. In order to validate this procedure, the function
G has to be investigated more closely, and in particular its dependency on � and
t. We introduce the remainder RL through

G(x) =

L�1X
l=0

l(�; t)x
l + xLRL(x); jxj < 1; L � 0:

We then have

Lemma 6. Assume 0 < �0 � � � �1, where �0; �1 are �xed, and t � 2�. For
x complex, jxj < 1, de�ne

g(x) = x+ i
2x

2 � i log(1� ix); G(x) = e�tg(x)(1� ix)��1;
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and let RL be given as above. If jxj � 1
2 , then RL(x) = O(t

L+1
3 e

2
5
tjxj2) uniformly

in �; t, and x.

Proof. By Cauchy's formula

RL(x) =
1

2�i

Z
C(�)

G(w)

w � x
w�Ldw; jxj < � < 1;

where C(�) denotes a circle of radius � around the origin. Hence

jRL(x)j � ��L
�
�� jxj��1M�; M� = max

�jG(w)j; jwj = �
	
: (3:12)

Since jG(w)j = je�tg(w)(1� iw)��1j � etjg(w)j if jwj � 9
10 , we need an estimate for

g(w) = w + i
2w

2 � i log(1� iw) = i

1X
�=3

(iw)�

�
:

If � = jwj, then clearly jg(w)j � �2H(�), where

H(�) = �

1X
�=0

��

� + 3
=

1

�2
�� log(1� �)� �� 1

2�
2
�
: (3:13)

Thus jG(w)j � et�
2H(�) and M� � et�

2H(�), provided � = jwj � 9
10 . To prove the

lemma, assume �rst 1
2 t
� 1

3 � jxj � 1
2 . Choose � =

11
10 jxj, so that � � 9

10 holds. Since
H 0(�) > 0 (see (3.13)), H is monotonically increasing and we get from (3.12)��RL(x)��� jxj�L�1e121tjxj2H(11=20)=100 � t

L+1
3 e

2
5
tjxj2 ;

using H( 1120 ) = 0:321 (to three decimal places). For the remaining values of jxj, i.e.
0 � jxj < 1

2 t
� 1

3 , we simply take � = t�
1
3 . Then

jg(w)j �
1X
�=3

��

�
< 1

3�
3
1X
�=0

�� = 1
3

�3

1� �
= 1

3

t�1

1� 1
2 t
�1=3 � 2

3 t
�1:

This yields jG(w)j � etjg(w)j � 1 and hence M� � 1. From (3.12) we conclude��RL(x)��� t
L
3

�
t�

1
3 � 1

2 t
� 1

3

��1 � t
L+1
3 � t

L+1
3 e

2
5
tjxj2 :

This completes the proof of the lemma.

Lemma 7. Assume t � 2�, and let � = t
2� , x1 =

1
2e

�i
4 . Then for �xed, non

negative integers L; lZ x1

0

e
it
2
x2xLRL(x)��1(�; 2�x)dx = O

�
t
k
2
�L

6
� 5

12

�
;Z x1

0

e
it
2
x2xl��1(�; 2�x)dx = O

�
t
k
2
� l

2
� 3

4

�
:
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Proof. Write x = e
�i
4 u, 0 � u � 1

2 . By the previous lemma and (2.17)����
Z x1

0

e
it
2
x2xLRL(x)��1(�; 2�x)dx

���� =
����
Z 1

2

0

e�
t
2
u2uLRL

�
e
�i
4 u
�
��1

�
�; 2�e

�i
4 u
�
du

����
� t

L+1
3

+ k
2
+ 1

4

Z 1
2

0

e�
t
2
u2+ 2t

5
u2uL+1du

� t
L+1
3

+ k
2
+ 1

4

Z 1

0

e�
t
10
u2uL+1du

=
1

2

�
10

t

�1+L
2

t
L+1
3

+ k
2
+ 1

4�(L2 +1)� t
k
2
�L

6
� 5

12 :

This proves the �rst formula. For the second we similarly �nd����
Z x1

0

e
it
2
x2xl��1(�; 2�x)dx

����� t
k
2
+ 1

4

Z 1
2

0

e�
t
2
u2ul+1du� t

k
2
� l

2
� 3

4 :

This �nishes the proof of the assertion.

From the last result we now deduceZ x1

0

e
it
2
x2G(�x)��1(�; 2�x)dx =

=

L�1X
l=0

(�1)ll(�; t)
Z x1

0

e
it
2
x2xl��1(�; 2�x)dx+O

�
t
k
2
�L

6
� 5

12

�

=

L�1X
l=0

(�1)ll(�; t)
�
2i

t

� l+1
2
Z 1

0

e�u
2

ul��1
�
�; 2�u

p
i=��

�
du+O

�
t
k
2
�L

6
� 5

12

�
:

Thus we can write, using the de�nition (2.18) of �(�)(�; x)Z x1

0

e
it
2
x2G(x)�1(�; 2�x)dx+

Z x1

0

e
it
2
x2G(�x)��1(�; 2�x)dx = (3:14)

=

L�1X
l=0

l(�; t)

�
2i

t

� l+1
2
Z 1

0

e�u
2

ul�(�)(�; 2"u
p
�=�)du+O(t

k
2
�L

6
� 5

12 );

where here, and in what follows, the upper sign applies for l even, and the lower
sign for l odd. To complete our task we now show how to get explicit expressions
for the last type of integrals. First note that Theorem 3 gives

�(�)(�; 2"u
p
�=�) =

� 2
1
2��2"u�

k
2
� 1

4

M�1X
m=0

(4�2�)�
m
2

1X
n=1

a(n)n�
k
2
�m

2
� 3

4�(�)m

�
2�
p
n�;

"up
�n

�

+O
�juj� k2� 1

4
�M

2

�
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for �xed M � 0, uniformly in u. Hence on integrating (note our sign convention)Z 1

0

e�u
2

ul�(�)(�; 2"u
p
�=�)du =

�2 1
2 ��2"�

k
2
� 1

4

M�1X
m=0

(4�2�)�
m
2

1X
n=1

a(n)n�
k
2
�m

2
� 3

4

Z 1

0

e�u
2

ul+1�(�)m

�
2�
p
n�;

"up
�n

�
du

+O
�
�
k
2
� 1

4
�M

2

�
:

These formulas suggest the following de�nitions. Let

Wlm(n) =

2mX
�=0

(�1)�
�
m� k � 1

2

2m� �

�Z 1

0

e�u
2

ul+1
q�+1("u=

p
�n)

(1 + iu2=�n)�+1
du; l even; (3:15)

Wlm(n) =
2mX
�=0

(�1)�
�
m� k � 1

2

2m� �

�Z 1

0

e�u
2

ul+1
p�+1("u=

p
�n)

(1 + iu2=�n)�+1
du; l odd: (3:16)

From (1.19) we see that

jWlm(n)j � 2

2mX
�=0

����
�
m� k � 1

2

2m� �

����� 2�+12
Z 1

0

e�u
2

ul+1du; (3:17)

which is less than a constant depending only on l and m (and k, of course). With
these coeÆcients let then

�lm(�) =

1X
n=1

a(n)n�
k
2
�m

2
� 3

4Wlm(n) cos(4�
p
n� + �m

2 � �
4 ); l even; (3:18)

�lm(�) =

1X
n=1

a(n)n�
k
2
�m

2
� 3

4Wlm(n) sin(4�
p
n� + �m

2 � �
4 ); l odd: (3:19)

Furthermore, if we de�ne Dl(�) by the equationZ 1

0

e�u
2

ul�(�)(�; 2"u
p
�=�)du = �2 1

2 ��2"�
k
2
� 1

4Dl(�); (3:20)

then Dl(�) has an asymptotic expansion of the form

Dl(�) =

M�1X
m=0

�(m+ 1
2 )(4�

2�)�
m
2 �lm(�) +O(��

M
2 ): (3:21)

In particular, we deduce Dl(�) = O(1) for � � 1. It is plain that (3.14) and (3.20)
then yieldZ x1

0

e
it
2
x2G(x)�1(�; 2�x)dx+

Z x1

0

e
it
2
x2G(�x)��1(�; 2�x)dx =

= �2i��2t� 1
2 �

k
2
� 1

4

L�1X
l=0

l(�; t)

�
2i

t

� l
2

Dl(�) +O(t
k
2
�L

6
� 5

12 ): (3:22)
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With these de�nitions we �nally arrive at the following result, giving the asymptotic
expansion for the fundamental function T (s) from (3.1).

Theorem 4. Let t � 2�, � = t
2� . Then

T (s) =
X
n��

a(n)n�s �A(�)eit��s�

� 2��2(2�)s+
1
2 e

�is
2 �(s)�1�

k
2
� 3

4

L�1X
l=0

l(�; t)

�
2i

t

�l
2

Dl(�) +O(t
k
2
��+ 1

12
�L

6 )

for each �xed integer L. Moreover, Dl(�) can be asymptotically approximated by

(3:21) above.

Proof. By (3.9)

T (s) =
X
n��

a(n)n�s �A(�)eit��s

+(2�)se
�i
2
(s�1)�(s)�1

�Z x1

0

e
it
2
x2G(x)�1(�; 2�x)dx+

Z x1

0

e
it
2
x2G(�x)��1(�; 2�x)dx

�
+O(e�t=11):

Replacing the bracketed factor by (3.22) and using je�is2 �(s)�1j = O(t
1
2
��) then

yields the assertion, q.e.d.

This result may be considered as our main theorem. In fact, it yields the as-
ymptotic expansion of the function T (s) occurring in (3.2), and it is our analogue of
the Riemann-Siegel formula (0.1), (0.2). By reordering the terms involving l(�; t)

and t�
l
2 one gets an asymptotic series consisting of powers of t�

1
2 . The coeÆcients

of each term t�
m
2 are linear combinations of the Dl(�) from (3.21) which are uni-

formly bounded for � � 1. In the �nal section we shall write up some special cases
in order to show the result more explicitly.

4. Some Special Cases and Further Problems

In this �nal section we shall consider some special cases of Theorem 4. For
the present purpose we �rst need a bit more information on the Taylor coeÆcients
l(�; t) of the function G(x) in Lemma 6. From the di�erential equation

G0(x)(1� ix) = �G(x)�tx2 + i(� � 1)
�

we get the recursion formula

(l + 1)l+1 = �tl�2 + i(l + 1� �)l; l � 2; (4:1)
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with the starting values 0 = 1, 1 = i(1� �), and 2 = � 1
2 (1� �)(2� �). It then

follows easily by induction that l(�; t) is a polynomial in � and t, having t degree
at most [ l3 ]. Hence

l(�; t)t
� l

2 = O(t[
l
3
]� l

2 ) = O(t�
l
6 ) (4:2)

uniformly in � and t.

We now derive the asymptotic expansion of T (s), including all terms up to

order t
k
2
��� 3

4 . Further approximations are obviously possible in the same way.
Take L = 6 in Theorem 4. Since Dl(�) = O(1), we �nd

5X
l=0

l(�; t)
�2i
t

� l
2

= 0(�; t)D0(�) + 1(�; t)

�
2i

t

� 1
2

D1(�) + 3(�; t)

�
2i

t

� 3
2

D3(�) +O(t�1)

= D0(�) + i(2i)
1
2 (1� �)t�

1
2D1(�)� 1

3 (2i)
3
2 t�

1
2D3(�) +O(t�1);

where (4.2) has been employed. Using (3.21) with M = 2 for D0(�) and M = 1 for
D1(�); D3(�), we obtain

5X
l=0

l(�; t)

�
2i

t

� l
2

=

�
1
2�00(�) +

�
2�

3
2�01(�) + i(2�i)

1
2 (1��)�10(�)� 1

3 (2i)
3
2�

1
2�30(�)

�
t�

1
2 +O(t�1):

We further need the asymptotic expansion of �(s)�1 for t ! +1. This can be
accomplished using Stirling's formula [14], and the �nal result may be written in
the form

(2�)se
�is
2 �(s)�1 � eit+

�i
4

�
t

2�

� 1
2
�s 1X

l=0

Æl(�)t
�l; (4:3)

with coeÆcients Æl(�) being independent of t. In particular, Æ0(�) = 1. Inserting
these formulas into Theorem 4, we �nd

T (s) =
X
n��

a(n)n�s �A(�)eit��s �
�
2

�

� 3
2

eit+
�i
4 �

k
2
�s� 1

4S; (4:4)

with

S = �
1
2�00(�)+

�
2�

3
2�01(�)+i(2�i)

1
2 (1��)�10(�)� 1

3 (2i)
3
2 �

1
2�30(�)

�
t�

1
2+O(t�

11
12 ):
(4:5)

Omitting the term involving S we have the special case

T (s) =
X
n��

a(n)n�s �A(�)eit��s +O(t
k
2
��� 1

4 ):
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If the Fourier coeÆcients a(n) are real and � = k
2 we thus get by (3.2)

'(k2 + it) =
X
n��

a(n)n�
k
2
�it + (�1) k2X(k2 + it)

X
n��

a(n)n�
k
2
+it

� 2A(�)��
k
2 cos(t� t log �) +O(t�

1
4 ):

This formula shows that the error term in the approximate functional equation for
'(k2 + it) is essentially determined by the behaviour of the sum function A(�) =P
n�� a(n). The well known results [15, 18]

A(�) = O(�
k
2
� 1

6
+"); A(�) = 
(�

k
2
� 1

4 );

then yield upper and lower bounds for this error term. Moreover, it is possible to
derive mean value results in the usual way.

The series (3.18), (3.19) which occur in our formula are in a certain sense the

analogue of the function F (z) = cos(z2 + 3�
8 )= cos(

p
2�z) and its derivatives from

the introduction. It might be of interest to �nd another representation for �lm(�)
or to estimate mean values like

Z T

1

�lm(u)du;

Z T

1

j�lm(u)jjdu; j 2 N0; T !1:

For numerical purposes it is also important to have an e�ective method of
computing �lm(�).

In conclusion, we mention that our main result can be generalized twofold.
First, instead of (3.1) a more general integral can be used, where i is replaced
by ipq for positive, coprime integers p; q (see [3]). This will eventually yield an

\unsymmetric" form of the approximate functional equation, where sums of length
� pq and � qp occur. Secondly, the whole theory can be extended to include cusp

forms for an arbitrary congruence subgroup of SL2(Z). In particular, L functions
of certain elliptic curves can be treated in the same way. We shall return to these
matters elsewhere.
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