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A FUNCTION FROM DIOPHANTINE APPROXIMATIONS
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Abstract. Some remarkable properties of a function de�ned from consider-
ation of Diophantine approximations are established. For example, the function is
continuous only at irrational points whose images are transcendental numbers, and
the range of the function has Hausdor� dimension 0.

1. A remarkable function. The number of integer points in an interval of
length � is either [�] or [�]+1, with the precise answer depending on the positions of
the end points of the interval. For a family of intervals associated with a parameter
the required analysis amounts to the study of the parameter for the condition under
which we should have f�1g+f�2g > 1; here f�g = �� [�] is the fractional part of �.
We consider such a problem by introducing a real function de�ned in an interval.

For 0 < � < 1 and m = 1; 2; . . . , we set

dm = dm(�) =

�
1 if fm=�g+ f1=�g � 1;

0 otherwise,
(1:1)

and de�ne a function f : (0; 1)! [0; 1) by letting (dm) to be the sequence of binary
digits for f(�), that is

f(�) =

1X
m=1

dm(�)

2m
: (1:2)

It follows almost immediately from (1.1) that (dm) is periodic if and only if � is
rational, so that f(�) is rational only for such �. As we shall see in Section 3, we
need only deal with the subdomain

I = f� : 12 < � < 1g; (1:3)
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wherein f is strictly decreasing. It turns out that f has some remarkable properties
similar to those possessed by what physicists call the devil's staircase associated
with the classical Cantor's ternary set; see, for example, [3, Chapter 13]. We shall
prove the following two theorems.

Theorem 1. The function f is strictly decreasing in I, and is continuous at

each irrational point. Furthermore, it has a jump discontinuity of 1=(2p � 1) at a
rational point p=q.

Theorem 2. The range of f has Hausdor� dimension 0. Furthermore, if �
is irrational, then f(�) is transcendental.

2. Notation and preliminary remarks. Except for functions and sets
of numbers, we use Roman and Greek letters to denote integers and real numbers,
respectively. Continued fractions play a dominating role in the analysis of f , and
we shall use the notation in [2], where proofs for the results used on such fractions
can be found. Thus, for an irrational � 2 I , we shall write

� = [1; a2; a3; . . . ]; (2:1)

where an is the n-th partial quotient for �. When � is rational, there are only
�nitely many such quotients, and we may choose to have either an odd or an even
number of them in the representation of � by making an appropriate adjustment
to the last partial quotient. We also write

�n = [1; a2; . . . an] =
pn
qn
; d(m;n) = dm(�n); (2:2)

so that �n is the n-th convergent for � in (2.1), and d(m;n) is the m-th digit
for f(�n).

For a �xed positive integer p, we let

r(x) = x�
hx
p

i
p; (2:3)

the remainder of x when divided by p. When � = p=q, we let r = r(q), s = r(�q)
and � = r(q)=r(�q), so that for 1 < p < q < 2p we have

r = q � p; s = 2p� q; � =
r

s
: (2:4)

In particular, when �n = pn=qn is the n-th convergent to � in (2.1), we let rn; sn
and �n be given by (2.4), so that the usual iterative formula un = anun�1 + un�2
holds when un is any of the terms pn; qn; rn; sn with their own initial values. In
fact 1=�n = [a3; a4; . . . ; an] when

1
2 < � < 2

3 , and we shall require

�n � �n�1 =
(�1)n
snsn�1

: (2:5)
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A rational number with denominator 2p has the terminating binary represen-
tation

P
m�p dm=2

m, to which we may attach the �nite string D = (d1d2 . . . dp).
Extra brackets may be inserted in between the digits dm, but all brackets are meant
to be ignored, so that we can concatenate such strings to form new strings. Thus, if
D0 = d01d

0
2 . . . d

0
q is another string, then we may writeDD0 = (d1d2 . . . dp)(d

0
1d
0
2 . . . d

0
q)

= d1d2 . . . dpd
0
1d
0
2 . . . d

0
q , and we also let Da = DDa�1 for a � 2. We call 0a a null-

string of length a, and all other strings, which must have at least one digit dm = 1,
are said to be positive.

The range of f in I will be denoted by R, and we let �(n) be Euler's totient
function, which counts the integers a � n that are coprime with n. The proof of
the second part of Theorem 2 requires the following theorem, the proof of which
can be found in [1].

Thue-Siegel-Roth Theorem. Let � be a real irrational algebraic number,

and � > 0. Then there are only �nitely many fractions u=v such that

����� u

v

��� < 1

v2+�
:

3. The image of f at a rational point. Let � = p=q, where p; q are
coprime integers satisfying 1 � p < q. With r(x) de�ned by (2.3), the condition
in (1.1) for dm = 1 becomes r(mq) + r(q) � p. Since r(mq) = r(m0q) whenever
m � m0 (mod p), it follows that the sequence (dm) is periodic with period p. Note
also that (dm) depends on q only to the extend that it actually depends on r(q), so
that we need only study the case kp < q � (k + 1)p for one particular value of k,
which we now choose to be 1. It is clear that f( 12 ) = 0, so that we may restrict
ourselves to 1 < p < q < 2p, that is the study of f(�) with � 2 I , the interval given
by (1.3). With the notation in (2.3) and the introduction of r and s in (2.4), the
condition (1.1) for dm = 1 can now be rewritten as

r(mq) � s: (3:1)

We set

Æ = Æ(�) =
X
m�p

dm
2m

; Q = Q(�) =
X
m�p

dm2
p�m; (3:2)

so that Q = 2pÆ. From the periodicity of (dm) and (1.2) we �nd that

f(�) = Æ
�
1 +

1

2p
+

1

22p
+ � � �

�
=

Æ2p

2p � 1
=

Q

P
; P = 2p � 1; (3:3)

so that f(�) is completely speci�ed by the string attached to Æ, namely

D = d1d2 . . . dp: (3:4)
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We now call D the string associated with �, and our immediate task is to �nd an
explicit formula for the digits dm. Such a stringD always ends with the digits (10) =
(1)(0), that is dp�1 = 1, dp = 0, and it turns out that r and s in (2.4) are precisely
the numbers of digits in D taking the values 1 and 0, respectively.

Lemma 1. Let D = d1d2 . . . dp be the string associated with � = p=q. Then

dp�1 = 1, and

� dm = 1 when m = `+
hs`
r

i
; 1 � ` < r;

dm = 0 when m = `+
hr`
s

i
; 1 � ` � s:

(3:5)

Proof. If m = p� 1, then mq � �q � s (mod p) by (2.4), so that r(mq) = s
and hence dp�1 = 1 by (3.1). Now let m be one of the values given by the �rst
formula in (3.5), with 1 � ` < r. Since p = r + s, we have m = [p`=r], and we may
now write p` = mr + b, where 1 � b < r. From r(mq) � mq � mr � �b (mod p),
we deduce that r(mq) = p� b > p� r = s, so that dm = 1 by (3.1).

Similarly, let m be one of the values given by the second formula in (3.5),
with 1 � ` � s. On writing p` = ms+ b, where 0 � b < s, we �nd that r(mq) = b
and hence dm = 0 by (3.1). Lemma 1 is proved.

It follows from Lemma 1 and (3.2) that Q � 2 (mod 4), and we shall see
later that P;Q are coprime, so that the representation of f(�) in (3.3) is already
in lowest fraction. We also remark that if �0 = p=q0, where q0 + q = 3p, then
dm(�) + dm(�

0) = 1 for 1 � m < p� 1, and Q(�) +Q(�0) = 2p, giving

f(�) + f(�0) = 1 +
1

P
; P = 2p � 1:

This follows from (3.2) and (3.3) together with the observation that s = r(q0)
by (2.4).

4. Iterative formulae for Dn. In order to study the local behaviour for f at
a point �, we need to consider the rational approximations to �. From the reciprocal
relationship giving the values for dm in (3.5), we see that the natural approach is to
use continued fractions. For our purpose, we need to �nd the relationship between
Dn and Dn+1, the strings associated with �n and �n+1, the successive convergents
for �. By (2.2) and (3.4),

Dn = d1d2 . . . dp; dm = d(m;n); p = pn: (4:1)

Since a1 = 1, the �rst convergent is �1 = 1, so that p1 = q1 = 1, and hence D1 is
the null-string which corresponds to f(1) = 0. Next, if a2 = 1 also, then the second
convergent is �2 =

1
2 , so that D2 is also the null-string corresponding to f( 12 ) = 0,

but the third convergent �3 will have an associated string D3 which is positive.
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On the other hand, if a2 > 1 then D2 is already a positive string. We therefore
distinguish between the two cases depending on whether a2 = 1 or a2 > 1, which
corresponds to � < 2

3 or � > 2
3 , and we remark that f( 23 ) =

2
3 . It turns out that,

for either case, there is a rather simple relationship between Dn and Dn+1.

Lemma 2. Let 1
2 < � < 2

3 . Then D1 = D2 = (0) and

D3 = (1a30); D4 = Da4�1
3 (1)D3; (4:2)

and, for n > 1,

D2n+1 = D2n�1D
a2n+1
2n ; D2n+2 = D

a2n+2
2n+1 D2n: (4:3)

If 2
3 < � < 1, then D1 = (0), D2 = (0a2�210), D3 = (0)Da3

2 , D4 = Da4
3 D2 and

(4:3) also holds.

Proof. Let 1
2 < � < 2

3 , so that � = [1; 1; a3; a4; . . . ]. From (2.2) and (2.4) we
�nd that r1 = r2 = 0 and

�
r3 = a3;

s3 = 1;

�
r4 = a4a3 + 1;

s4 = a4;
(4:4)

so that D1 = D2 = (0). By Lemma 1, we have d(m;n) = 0 when

m = `+ [�n`]; 1 � ` � sn: (4:5)

From (4.4) we see that d(m; 3) = 0 only when m = p3, so that D3 = 1a30. It also
follows from (4.4) that d(m; 4) = 0 when m = p4 and m = (a3+1)` for 1 � ` < a4,
which then gives D4 = Da4�1

3 1D3. Therefore (4.2) is proved.

Now let n � 5 be an odd number. We �rst show that

[�n`] = [�n�2`]; 1 � ` � sn�2: (4:6)

From (2.5) we have

�n = �n�1 � 1

snsn�1
= �n�2 +

1

sn�1sn�2
� 1

snsn�1
; (4:7)

which implies 0 < (�n � �n�2)` < 1=sn�1. Since the fractional part f�n�2`g �
1 � 1=sn�2, the required result (4.6) is established. It now follows from (4.5)
and (4.6) that

d(m;n) = d(m;n� 2); 1 � m � pn�2; (4:8)

which means that the �rst pn�2 digits for Dn are the same as those for Dn�2. Next,
we let 0 � a < an and consider the digits d(m;n) in the block pn�2+apn�1 < m �
pn�2 + (a+ 1)pn�1. Such digits take the value 0 when m has the form (4.5) with
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sn�2 + asn�1 < ` � sn�2 + (a+ 1)sn�1, and we now put ` = sn�2 + asn�1 + `0, so
that 1 � `0 � sn�1. From (4.7) we �nd that

�nsn�2 = rn�2+
1

sn�1
� sn�2
snsn�1

; a�nsn�1 = arn�1� 1

sn
; �n`

0 = �n�1`
0� `0

snsn�1
;

so that the relevant values for m are given by

m = pn�2 + apn�1 + `0 +
h
�n�1`

0 +
sn � `0 � sn�2

snsn�1

i
:

Observe that the �rst term inside the square bracket is short of an integer by at
least 1=sn�1, which exceeds the value for the remaining term. Therefore the value
of the square bracket is simply [�n�1`

0], and hence

d(pn�2 + apn�2 +m;n) = d(m;n� 1); 1 � m � pn�1; 0 � a < an:

Together with (4.8), we have established the formula Dn = Dn�2D
an
n�1.

We omit the similar proof of the remaining formula in (4.3) corresponding
to n being even. The case when 2

3 < � < 1 can be dealt with in the same way.
Lemma 2 is proved.

5. The images of f at successive convergents. For the convergent
�n = pn=qn for �, we now rewrite (3.2) as

Æn =
X
m�pm

dm
2m

; Qn = 2pnÆn; (5:1)

so that (3.3) becomes

f(�n) =
Qn

Pn
; Pn = 2pn � 1: (5:2)

Most of the properties for f can be derived from the following lemma.

Lemma 3. For odd values of n > 1, we have

f(�n+1) = f(�n) +
Pn + 1

PnPn+1
= f(�n+2) +

Pn+2 + 1

Pn+1Pn+2
: (5:3)

Proof. By (5.2) the �rst equation in (5.3) amounts to

PnQn+1 � Pn+1Qn = Pn + 1; n odd. (5:4)

Let Tn denote the left hand side of this equation, which we proceed to establish by
�nding an iterative formula for Qn. For a �xed integer n write

a = an+1; � =
1

2pn
:
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From (4.3) we have Dn+1 = Da
nDn�1 for odd n, and (5.1) now gives

Æn+1 = Æn(1 + �+ � � �+ �a�1) + Æn�1�
a = Æn

1� �a

1� �
+ Æn�1�

a:

Since pn+1 = apn + pn�1, we have 2
pn+1 = 2apn2pn�1 = ��a2pn�1 , and hence

2pn+1Æn+1 = 2pn�1��1Æn
��a � 1

��1 � 1
+ 2pn�1Æn�1:

This then gives
Qn+1 = 2pn�1EnQn +Qn�1; n odd; (5:5)

where

En =
��a � 1

��1 � 1
=

2an+1pn � 1

2pn � 1
=

(Pn + 1)an+1 � 1

Pn
:

From 2pn�1EnPn = Pn+1 � Pn�1, we obtain

(Pn + 1)2pn�1EPn = Pn+1 � Pn�1 +
Pn+1 � Pn�1

Pn
;

so that

(Pn + 1)Qn+1 =
�
Pn+1 � Pn�1 +

Pn+1 � Pn�1
Pn

�
Qn + 2pnQn�1:

Therefore, for odd values of n, we have

PnQn+1 � Pn+1Qn = �Qn+1 �
�
Pn�1 � Pn+1 � Pn�1

Pn

�
Qn + 2pnQn�1

= �
�
2pn�1En + Pn�1 � Pn+1 � Pn�1

Pn

�
Qn +

�
2pn � 1

�
Qn�1

= �Pn�1Qn + PnQn�1:

Similarly, we �nd that

Qn+1 = 2apnQn�1 +EnQn; n even;

and from
(Pn + 1)Qn+1 = 2(a+1)pnQn�1 + 2pnEnQn

we obtain

PnQn+1 � Pn+1Qn = 2(a+1)pnQn�1 + 2pnEnQn �Qn+1 � Pn+1Qn

= 2(a+1)pnQn�1 +
�
2pnEnQn� Pn+1

�
Qn � 2apnQn�1 �EnQn

= 2apn
�
2pn � 1

�
Qn�1 + (PnEn � Pn+1)Qn

= 2apn
�
PnQn�1 � Pn�1Qn

�
;
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because �2apnPn�1 = 2apn � 2pn+1 = (Pn + 1)a � Pn+1 � 1 = PnEn � Pn+1.

We have therefore proved that Tn is �Tn�1 or �2an+1pnTn�1 depending on
whether n is odd or even, and hence

Tn = 2anpn�1Tn�2; odd n � 5:

Repeated application of this formula now gives Tn = 2AnT3 for odd n � 3, where

An = anpn�1 + an�2pn�3 + � � �+ a5p4

= (pn � pn�2) + (pn�2 � pn�4) + � � �+ (p5 � p3)

= pn � p3:

It remains to evaluate T3, and we now let � = 1=2p3 and a = a4. From D3 = 1a30,
we have Æ3 = 1� 2�, and hence Q3 = ��1Æ3 = 2p3 � 2 = P3 � 1. Again, from D4 =
Da�1
3 1D3, the argument leading to (5.5) now yields Æ4 = Æ3(1� �a)=(1� �) + �a

and P3Q4 = Q4(P3 � 1) + 2P3. Thus T3 = 2P3 �Q3 = P3 + 1 = 2p3 .

Therefore Tn = 2pn = Pn+1 for every odd n � 3, so that (5.4) is established.
The second equation in (5.3) can be proved in the same way. Lemma 3 is proved.

6. Proof of Theorem 1. Let � be an irrational number given by (2.1).
From Lemma 2, we see that f(�n+1) and f(�n+2) must have the same �rst pn
binary digits, and that these same digits are also the initial digits for f(�) itself.
It follows from (1.2) that f(�n) ! f(�) as n ! 1. Although this does not
immediately imply that f is continuous at �, we can deduce that f is monotonic
�rst. We certainly have f(�2n�1) < f(�2n+1) < f(�2n+2) < f(�2n) by (5.3) so
that f(�2n�1) < f(�) < f(�2n). Now let 1

2 < � < � < 1. By considering the
continued fraction expansions for � and �, we can �nd �n = [1; a2; a3; . . . ; an] such
that � < �n�1 < �n < �n�2 < �, and hence, by what we have just established,
f(�) > f(�n) > f(�). Therefore f is strictly decreasing in I .

Again, let � be an irrational point given by (2.1). Since f is monotonic, in the
evaluation of the limit of f(�) as � ! �, we may let � = �n = [1; a2; a3; . . . ; an]
and n!1. In fact, � ! �+ and � ! �� now correspond to the restrictions that
n be odd and even respectively. For odd n, we have f(�n+2) < f(�) < f(�n+1)
and, by (5.3),

f(�n+1)� f(�n+2) =
Pn+2 + 1

Pn+1Pn+2
! 0 as n!1;

and the same conclusion also holds when n is even. Therefore f(�) ! f(�) as
� ! � when � is irrational, so that f is continuous at each irrational point.

Now let � = [1; a2; a3; . . . ; an] be rational, so that n is �xed, except that we
may choose to have it being odd or even. Since f is monotonic, in considering the
limit of f(�) as � ! �, we may assume that � = [1; a2; a3; . . . ; an; an+1], where
an+1 ! 1. In fact we then have � ! �� or � ! �+ depending on whether we
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choose n to be odd or even in the representation of �. Note that Pn stays �xed
with n, but Pn+1 !1 as an+1 !1. For odd n, we see from (5.3) that

f(�) = f(�) +
Pn + 1

PnPn+1
! f(�) as � ! ��;

so that f is continuous from the left at each rational point �. On the other hand,
when n is even, we �nd from (5.3) that

f(�) = f(�)� Pn+1 + 1

PnPn+1
! f(�)� 1

Pn
as � ! �+:

Therefore, as � ! � = p=q from the right, there is a jump discontinuity of 1=P =
1=(2p � 1) at f(�). Theorem 1 is proved.

7. Proof of Theorem 2. For 1 < p < q < 2p, (p; q) = 1, let J(p; q) denote
the interval (Q� 1)=P � � < Q=P , where Q and P are de�ned by (3.2) and (3.3).
By Theorem 1, the range R of f does not contain any point in J(p; q), and in fact
R = (0; 1) n J , where J is given by the following union:

J =
[
N�2

JN ; JN =
[

1<p�N

J(p); J(p) =
[

p<q<2p
(q;p)=1

J(p; q):

The montonicity of f implies that the intervals J(p; q) are disjoint, so that the
Lebesgue measure of J is given by

�(J) =
1X
p=2

1

P

X
p<q<2p
(q;p)=1

1 =
1X
p=2

�(p)

2p � 1
:

Thus

1 + �(J) =

1X
p=1

�(p)

1X
k=1

1

2kp
=

1X
m=1

1

2m

X
djm

�(d) =

1X
m=1

m

2m
= 2;

so that �(J) = 1 and hence �(R) = 0.

Essentially the same argument shows that R has Hausdor� dimension 0. Let

�N =
X

1�p�N

�(p);

and we remark that �N � 6N2=�2 asN !1, although the trivial bound �N � N2

suÆces for our purpose. We considerR = \RN , where RN is the complement of JN .
Thus RN [ f0g is made up of �N intervals of the form c=Um < � � d=Un, where
Um = 2m � 1, and cUn � dUm = 1, with m;n � N , m+ n > N , (m;n) = 1. These
intervals therefore have lengths 1=UmUn which are bounded by 1=2

N�1, and there is
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an apparent relationship between them and the Farey sequence of order N , namely
by having Um as denominator instead of m � N . We can obtain RN from RN�1
by the removal of the �(N) intervals that make up J(N). For example, R5 is the
union of the 10 intervals (0; 1

31 ), [
2
31 ;

1
15 ), [

2
15 ;

1
7 ), [

2
7 ;

9
31 ), [

10
31 ;

1
3 ), [

2
3 ;

21
31 ), [

22
31 ;

5
7 ),

[ 67 ;
13
15 ), [

14
15 ;

29
31 ), [

30
31 ; 1), and R6 is obtained from R5 by replacing the �rst and last

intervals by the four intervals (0; 1
63 ), [

2
63 ;

1
31 ), [

30
31 ;

61
63 ), [

62
63 ; 1). For the Hausdor�

dimension of R, we consider the � -cover of RN (see, for example, [3, Chapter 13])
for some parameter � > 0, which is given by the sum

X
m;n�N
m+n>N
(m;n)=1

�
1

UmUn

��
� �N

2�(N�1)
� N2

2�(N�1)
! 0 as N !1:

Since this holds for every � > 0, the required Hausdor� dimension has the value 0.

Now let � = [1; a2; a3; . . . ] be irrational, and write

� = f(�) = [1; b2; b3; . . . ]; �n = [1; b2; b3; . . . ; bn] =
Un
Vn

; (7:1)

so that �n is the n-th convergent for �. We proceed to prove that � is transcendental
by showing that, for in�nitely many n, the convergents �n are unusually good
rational approximations to �.

There is a close relationship between �n and f(�n), and in fact �n�1 =
f(�n) � cn=Pn, where cn = 0 or 1 corresponding to n � 1 or 0 (mod 2). In other
words,

Vn�1 = Pn; Un�1 = Qn � cn: (7:2)

This can be proved as follows. By Lemma 2, if n is odd then at least the �rst
M = 2pn+1 digits in the string Dn+2 are the same as those in D3

n. Consequently,
we have

0 < f(�)� f(�n) <
1

2M
<

1

2P 2
n

;

and since Pn is the denominator of f(�n) it follows from Legendre's theorem (see
[2, Theorem 184]) that f(�n) is a convergent from below to � = f(�). Thus
�n�1 = f(�n) and (7.2) holds when n is odd. The case when n is even can be
deduced from (5.3) together with UnVn+1 � Un+1Vn = (�1)n+1. It also follows
from (7.1) and (5.3) that

bn =
Pn+1 � Pn�1

Pn
=

2pn�1
�
(Pn + 1)an � 1

�
Pn

: (7:3)

Thus bn = 2pn�1 if an = 1, and bn > Pn if an > 1. Suppose now that there are
in�nitely many n such that

an+2 � 2 (7:4)
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in � = [1; a2; a3; . . . ]. Then Vn+1 = Pn+2 = 2pn+2�1 � 22pn+1�1 � (2pn+1�1)2 =
P 2
n+1 = V 2

n and hence (see [2, Theorem 164])

���� � Un
Vn

��� < 1

VnVn+1
� 1

V 3
n

: (7:5)

On the other hand, if (7.4) fails to hold for in�nitely many n, then an = 1 for all
large n, so that pn+1 = pn + pn�1, and hence pn � �pn+1 as n!1, where

� = lim
n!1

pn
pn+1

=

p
5� 1

2
= [1; 1; 1; . . . ]: (7:6)

Now �x any � in 1 < � < 1=�, so that pn+2 > �pn+1, and hence Vn+1 > 2�pn+1�1 >
(2pn+1 � 1)� = V �

n . In place of (7.5) we now have, for all large n,

���� � Un
Vn

��� < 1

VnVn+1
<

1

V 1+�
n

: (7:7)

Thus, either (7.5) holds for in�nitely many n, or else (7.7) holds for all large n.
Since 1+� > 2, the transcendence of � follows from the Thue-Siegel-Roth theorem,
and Theorem 2 is proved.

We conclude with the following remarks. If � = �, the golden ratio given
in (7.6), then (pn) = (1; 1; 2; 3; 5; 8; 13; . . . ) is the Fibonacci sequence, and f(�) =
[1; 2; 2; 4; 8; 32; 256; . . . ] is transcendental. Here the partial quotients are given by
bn = 2pn�1 for n > 1 according to (7.3), so that log log bn > n=10 for all large n.
Moreover, for any � 2 I , the sequence of partial quotients for the image f(�) must
increase at least at fast as this particular sequence (bn) corresponding to � = �.
Indeed, it is clear from the derivation of (7.5) from (7.4) that the measure of
transcendence for f(�) can be estimated or computed from the upper limit of the
sequence of partial quotients (an) for �.
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