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CONVOLUTIONS OF FOURIER COEFFICIENTS

OF CUSP FORMS
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Communicated by Aleksandar Ivi�c

Abstract. Analogues of classical binary additive divisor problems for Fourier
coeÆcients of (holomorphic or non-holomorphic) cusp forms are discussed in a new
way by a variant of the circle method. The results are either new or coincide with
earlier ones.

1. Introduction

Our aim in this paper is to develop a new approach to analogues of binary
additive divisor problems for Fourier coeÆcients of cusp forms. We outlined the
underlying argument - a version of the circle method - in our recent paper [J4], and
the present application may serve as a test of its scope.

Recall that the binary additive divisor problems are concerned with sums of
the type

NX
n=1

d(n)d(n+ f) (f � 1);(1.1)

N�1X
n=1

d(n)d(N � n);(1.2)

where d(n) is the usual divisor function. The classical approach to these sums was
via Kloosterman's re�nement of the circle method leading ultimately to Klooster-
man sums, and if these are estimated by Weil's bound (best possible for individual
sums), then the error terms in the respective asymptotic formulae are O(N5=6+")
and O(N3=4+") (see [M1] for a discussion of the history of these problems).
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The signi�cantly improved error term O(N2=3+") for the sum (1.1) was ob-
tained by Deshouillers and Iwaniec [DI2] who introduced spectral methods into
this problematics. The main novelty was Kuznetsov's [K1] trace formula allowing
nontrivial summation of Kloosterman sums over the \denominators".

A uni�ed spectral theoretic treatment of both sums (1.1) and (1.2) was indi-
cated by Kuznetsov [K2]. A detailed and penetrating study of these topics with a
number of concrete results was recently carried out by Motohashi [M1].

The Fourier coeÆcients, say b(n), of a (holomorphic or non-holomorphic) cusp
form behave somewhat similarly to the divisor function, up to the positivity, so it
is natural to expect that estimates for the sums

NX
n=1

b(n)b(n+ f) (f � 1);(1.3)

N�1X
n=1

b(n)b(N � n)(1.4)

should be comparable with the error terms for the corresponding sums (1.1) and
(1.2). Another aspect of this analogy is methodical uni�cation of the treatment
of all the above sums. These are, all in all, of six types, for (1.3) and (1.4) are
subdivided into two cases according to the holomorphicity or non-holomorphicity
of the form in question.

The sums with a \shift", that is (1.1) and (1.3), are sum functions of certain
arithmetic functions, so it is immediate to invoke the generating Dirichlet series
method. A tool for the study of the sum (1.3) could thus be the Dirichlet series

1X
n=1

b(n)b(n+ f)(n+ f)�s;

and likewise for the sum (1.1), though the above mentioned works of Deshouillers-
Iwaniec, Kuznetsov and Motohashi on the latter sum followed di�erent lines of
argument. The sum (1.3) in the holomorphic case was treated in this way by Good
[G1-2] with a result comparable with that of Deshouillers and Iwaniec for the sum
(1.1). The last mentioned sum is also amenable to the Dirichlet series method, as
shown by Tahtadjan and Vinogradov [TV]. Recently, in [J2-3], we extended Good's
theory to non-holomorphic cusp forms, so after all a full analogy between the three
types of sums included in (1.1) and (1.3) is now established as to the results and
methods.

Consider next the \dual" sums (1.2) and (1.4). First note that the latter rep-
resents in the holomorphic case simply the Nth Fourier coeÆcient of the square of
our cusp form, so Deligne's estimate is applicable since the square of a holomorphic
cusp form is again a cusp form (with the weight doubled). On the other hand, the
same sum for non-holomorphic cusp forms is more problematic, and no nontriv-
ial estimate seems to be known at least in literature (though the classical method
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might work even in this context). Our main object is to �ll this gap on showing
that our variant of the circle method, in combination with Kuznetsov's trace for-
mula, yields the expected estimate for the sum (1.4). In other words, the estimate
will be of the same order as Motohashi's [M1] error term for the sum (1.2). The
same method applies to the sums (1.3) as well, and the results coincide with those
in [J2-3]. It is of methodical interest that the new approach dispenses with mean
value estimates for inner products of the square of our (�xed) cusp form agains
\variable" Maass forms; such estimates (see [G1], [J2-3]) played a crucial role in
the previous work on such sums. Unfortunately our method does not apply to the
classical sums (1.1) and (1.2) (the positivity of d(n) is an obstacle), so a perfect
methodical uni�cation still remains unattained. However, as far as the results are
concerned, the correspondence between binary additive divisor problems and their
cusp form analogues appears to be now quite satisfactory.

We are going to con�ne ourselves to the sums (1.3) and (1.4) for non-
holomorphic cusp forms. The latter sum will be discussed in more detail, and
after that the necessary modi�cations for dealing with the former sum are outlined
more brie
y.

Turning to the formulation of our results, we �rst recall some basic properties
of non-holomorphic cusp forms, or Maass (wave) forms, for the full modular group
�. Such a form u(z) = u(x + yi) is a �-invariant function in the upper half-plane
y > 0 which is an eigenfunction (for the eigenvalue 1=4+�2, say) of the hyperbolic
Laplacian �y2(@2x+@2y) and square integrable with respect to the invariant measure

dx dy=y2 over a fundamental domain of �. Moreover, we may suppose that u is an
eigenfunction of all Hecke operators Tn with respective eigenvalues t(n), and that
it is an even or odd function of x. Then t(n) is a multiplicative function. Our form
is represented by its Fourier series

(1.5) u(x+ yi) =
p
y
X
n6=0

�(n)Ki�(2�jnjy)e(nx);

whereKi�(� � � ) stands for a modi�ed Bessel function in the standard notation. Here
the coeÆcients satisfy

(1.6) �(n) = �(1)t(n); �(�n) = ��(n) (n � 1);

where � is the parity sign of the form (plus for even, minus for odd). Let uj
(j = 1; 2; . . . ) be an orthonormal system of Maass forms with respect to the Pe-
tersson inner product. The indexing of these forms together with the related coef-
�cents �j(n) and tj(n) corresponds to the indexing of the respective parameters �j
arranged into a non-decreasing sequence.

As to the order of the coeÆcients t(n), let � be a constant such that

(1.7) t(n)� n�+" for all n � 1;

where the implied constant depends only on " > 0 (but not on the form). It is known
[BDHI] that � � 5=28, and it is a famous conjecture that � = 0 is admissible.
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The sums (1.3) and (1.4) for Maass forms now amount to

T (N ; f) =

NX
n=1

t(n)t(n+ f);(1.8)

T (N) =

N�1X
n=1

t(n)t(N � n);(1.9)

respectively. More generally, we are going to investigate sums

Tg(N ; f) =
NX
n=1

t(n)t(n+ f)g
� n
N

�
;(1.10)

Tg(N) =

N�1X
n=1

t(n)t(N � n)g
� n
N

�
(1.11)

involving a smooth weight function g. We suppose that g is a C1 function in the
interval (0,1) such that

(1.12) jg(�)(x)j � c(�)(min(x; 1� x))�� ; � = 0; 1; . . .

for certain positive numbers c(�).

Theorem. For any �xed " > 0, we have

Tg(N ; f)� N2=3+" (1 � f � N2=3);(1.13)

Tg(N)� N1=2+�+";(1.14)

where the implied constants depend only on " and c(�) for � � �(").

Corollary. We have

T (N ; f)� N2=3+" (1 � f � N2=3)(1.15)

T (N)� N1=2+�+":(1.16)

Remark 1. The estimate (1.15) is contained in the corollary of Theorem 3 in
[J2]. The right hand side in (1.14) and (1.16) is of the same order as the error term
in Motohashi's [M1] asymptotic formula for the sum (1.2).

Remark 2. The argument of the proof of our theorem applies to holomorphic
cusp forms as well with obvious modi�cations. Let a(n) run over the Fourier coeÆ-
cients of a holomorphic cusp form of weight k, and let ~a(n) = a(n)n�(k�1)=2 be the
\normalized" coeÆcients (comparable with d(n)). Then the estimates (1.13){(1.16)
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remains true if the coeÆcients t(n) are replaced by ~a(n). Returning to original co-
eÆcients, let A(N) stand for a sum similar to T (N) with t(n) replaced by a(n) in
(1.9). Then, as an analogue of (1.16), we have

A(N)� Nk�1=2+�+":

However, since the sums A(N) are actually Fourier coeÆcients of a holomorphic
cusp forms of weight 2k, Deligne's theorem implies the above estimate with � = 0!
This means that as to the order of A(N), the hypothesis � = 0 is of the same
consequence as Deligne's theorem. Nevertheless, though our bound for A(N) is
thus weaker than what is known otherwise, the analogue of (1.14) for holomorphic
cusp forms seems to be new.

The scheme of the proof of the theorem is as follows. In Sec. 2, we apply our
variant of the circle method to the sum Tg(N), and single out for that a certain
explicit expression involving exponential sums. These are transformed in Sec. 3 by
use of the �-invariance of Maass forms. At this stage, Kloosterman sums emerge.
Next, in Sec. 4, Kuznetsov's trace formula is applied to sums of Kloosterman sums,
and the resulting expression is estimated by Iwaniec's spectral large sieve to com-
plete the proof of (1.14). Finally, in Sec. 6, the preceding argument is adapted to
the sum Tg(N ; f).

Notation. The parameter � will be �xed throughout, so the constants implied
by the symbol � and O(� � � ) will depend possibly on �, and also on ", a small
positive number, whenever it occurs in an inequality. The meaning of " is not
necessarily the same at each occurrence. Moreover, constants may occasionally
depend on �nitely many �rst constants c(�) introduced in (1.12); the number of the
relevant indices � may depend on ". The possible dependence of implied constants
on other parameters is indicated by subscripts, say �� . We write A � B to
mean that A and B are positive numbers of the same order of magnitude, thus
A� B � A.

We are going to encounter frequently \smooth" functions whose actual def-
inition is irrelevant. Therefore, following [I1], we adopt a common notation
v(x1; . . . ; xr) for such functions. Here the variables xi lie respectively in intervals
of length � Xi, and we suppose that for any r-tuple (�1; . . . ; �r) of nonnegative
integers and any " > 0 it holds

(1.17)
@�1+���+�rv

@x�11 � � �@x�rr
� X��1

1 � � �X��r
r N";

the implied constant depending on the r-tuple and ".

2. The circle method with overlapping intervals

The basic idea of this method, explained in [J4], is approximating the char-
acteristic function of the unit interval by a linear combination of characteristic
functions of neighbourhoods related to a system of rationals (in their lowest terms)
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a=q 2 [0; 1] with q of a given order. These neighbourhoods overlap with a variable
multiplicity, which turns out to be mostly not far from its expectation; this is a
consequence of a certain well-distribution property of rational numbers [J1]. There
is no distinction between "major arcs" and \minor arcs" and no \levelling prob-
lem", because the denominators are all of the same order and the subintervals are
chosen to be of the same length. The following lemma (corollary to Lemma 1 in
[J4]) estimates the approximation error in the mean square.

Lemma 1. Let �a=q(x) denote the characteristic function of the interval [a=q� Æ;
a=q + Æ], let w(q) 2 [0; 1] for q 2 [Q; 2Q], write � = 2ÆL with

L =
X

Q�q�2Q

w(q)'(q);

and de�ne

~�(�) = ��1
X

Q�q�2Q

w(q)

qX�

a=1

�a=q(�);

where the asterisk indicates the coprimality condition (a; q) = 1. Let �(�) be the
characteristic function of the interval [0; 1]. Then, if L� Q2 and Q�2 � Æ � Q�1,
we have Z

(�(�) � ~�(�))2 d�� (ÆQ2)�1Q":

In the sequel, frequent use will be made of the following estimates involving
the Hecke eigenvalues t(n) for a form related to the parameter �:

X
x�n�x+y

t2(n)�" (y + x3=5)x" (0 < y � x);(2.1)

X
n�x

t2(n)�" x�
";(2.2)

X
n�x

t(n)e(n�)� �x1=2 log(2x):(2.3)

The short-interval result (2.1) is a consequence of an asymptotic sum formula of
the Rankin type, the spectrally uniform estimate (2.2) is due to Iwaniec [I3], and
(2.3) (see [I4, Theorem 8.1]) is an analogue of the corresponding classical estimate
of Wilton for holomorphic cusp forms.

Consider now the sum Tg(N) de�ned in (1.11). To begin with, we split
it up into subsums, in each of which n is restricted to an interval of the form
[M; 2M ]. It is easy to see that there are � logN nonnegative C1 functions 'i
satisfying the smoothness condition (1.12), having support in an interval [�i; 2�i]
with 0 < �i � 1=3, and giving a \decomposition of unity" in an interval relevant
for the sum Tg(N):X

i

('i(x) + 'i(1� x)) = 1 for 1=N � x � 1� 1=N:
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The functions 'i may be chosen in such a way that the graphs of 'i and 'i+1 di�er
only by the scale in the direction of the x-axis. Therefore we may suppose that
(1.12) for 'i holds uniformly in i for any given �. Consequently, the sum Tg(N)
can be decomposed into a sum of � logN analogous sums with g(x) replaced
by the smooth function g(x)'i(x) or g(x)'i(1 � x), and the constants c(�) in
(1.12) for these functions are independent of i. By symmetry, it suÆces to consider
the sum related to the �rst mentioned function, which we denote again by g for
simplicity. Then the function g(x=N) vanishes outside a certain interval [M; 2M ]
with M � N=3.

We may suppose that

(2.4) N1=2+" �M � N=3:

For if M < N1=2+", then
Tg(N)� N1=2+�+"

by (1.7), Cauchy's inequality, and (2.2).

For the sake of formal symmetry, we prefer to consider sums of the shape

T = Tg1;g2(N) =
N�1X
n=1

t(n)t(N � n)g1
� n
N

�
g2

�
N � n
N

�

in place of Tg(N). If the functions gi satisfy the smoothness condition (1.12), this
sum is just a special case of Tg(N). Suppose that the supports of the functions
g1 and g2 lie, respectively, in the intervals [M=N; 2M=N ] and [1 � (5=2)(M=N);
1 � (1=2)(M=N)] with M as in (2.4). Then, if we specify g1 = g and choose g2
so that g2((N � x)=N) = 1 for M � x � 2M , then the above sum T amounts to
Tg(N).

De�ne now the exponential sums

(2.5) Sj(�) =
X
n

t(n)gj(n=N)e(n�); j = 1; 2:

Then

T =

Z 1

0

S1(�)S2(�)e(�N�) d�:

By periodicity, we may replace � here by �+ � for any real �, so

(2.6) T =

Z 1

0

S1(�+ �)S2(�+ �)e(�N(�+ �)) d�;

this shifting device will be motivated in the next section.

Let �(�) and ~�(�) be as in Lemma 1 with

(2.7) Q =MN�"; Æ = 1=Q:
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Further, let w(x) be a smooth function of support in [Q; 2Q] such that 0 � w(x) � 1
and X

q

w(q)'(q) � Q2:

Then, by Lemma 1, we have

(2.8)

Z
(�(�) � ~�(�))2 d�� Q�1+":

The integral (2.6) is now decomposed as follows:

(2.9) T =

Z
~�(�)S1(�+ �)S2(�+ �)e(�N(�+ �)) d�

+

Z
(�(�) � ~�(�))S1(�+ �)S2(�+ �)e(�N(�+ �)) d� = T1 + T2:

To estimate the \error term" T2, note that S1(�) � M1=2+" by (2.3) and
partial summation, and similarly S2(�) � N1=2+". Thus, by Cauchy's inequality,
(2.8), and (2.7), we obtain

(2.10) T2 � N1=2+":

This is of admissible order, so it remains to estimate the term T1 in (2.9).

By de�nition,

T1 = ��1
X
q

w(q)

qX�

a=1

Z �+Æ

��Æ

S1

�
a

q
+ �

�
S2

�
a

q
+ �

�
e

�
�N

�
a

q
+ �

��
d�;

where � � Q. Therefore

(2.11) T1 �M�2+" max
j���j�Æ

j�(�)j;

where

(2.12) �(�) =
X
q

w(q)

qX�

a=1

S1

�
a

q
+ �

�
S2

�
a

q
+ �

�
e

�
�Na

q

�
:

Finally, we specify

(2.13) � = 3=Q = 3N"=M:

The rest of the proof will consist in the estimation of �(�). The variable �
will be �xed during the following discussion with the understanding that all the
estimations will be uniform in �.
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3. Transformation of exponential sums

As the �rst step in our analysis of the sum �(�) in (2.12), we are going to
transform the exponential sums Sj(�) by use of the automorphy of the form u.
Let (a; q) = 1, a�a � 1 (mod q), and apply the M�obius transform with the matrix�

�a (1� a�a)=q
�q a

�
; then

(3.1) u

�
a

q
+ �

�
= u

�
��a

q
� 1

q2�

�
for Im � > 0:

The sums Sj can be written in terms of u(z) by a simple Fourier analysis of
the Fourier series (1.5). Recall some properties of the K-Bessel functions occurring
in that series. By de�nition,

Ki�(x) =
�

2

I�i�(x) � Ii�(x)
i sinh��

for x > 0

with

I�(x) =

1X
n=0

(x=2)2n+�

n!�(n+ 1 + �)
:

This is an appropriate representation if x is bounded, and otherwise a suitable
integral representation, say (see [L, Eq. (5.10.23)])

Ki�(x) =

Z 1

0

e�x cosh t cos(�t) dt

shows thatKi�(x) decays exponentially as x increases; in fact,Ki�(x)�
� �
2x

�1=2
e�x

as x!1.

Let now y1 = b=M , y2 = b=N , where b is a suÆciently large constant (de-
pending on �). Then Ki�(2�nyj) is bounded away from zero if n lies in the support
of gj(x=N). Hence the Fourier transforms

(3.2) Bj(�) =

Z
gj(�=N)Ki�(2��yj)

�1e(���) d� (j = 1; 2)

are smooth functions, and

(3.3) Sj(�) = y
�1=2
j �(1)�1

Z 1

�1

u(�+ � + yji)Bj(�) d�

by (1.5), (1.6), (2.5), and the Fourier inversion.

Repeated integration by parts in (3.2) shows that

Bj(�)�� M
1�� j�j�� ; � = 0; 1; . . . :
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Hence, letting v(�) be a suitable smooth bounded weight function of support in
the interval [��0; �0] with

(3.4) �0 = 1=Q =M�1N";

we may truncate the integral (3.3) as follows:

(3.5) Sj(�) = y
�1=2
j �(1)�1

Z
u(�+ � + yji)v(�)Bj(�) d� +OA(N

�A)

for any �xed A > 0. The main term on the right is substituted into (2.12), and the
error term can be ignored.

The Maass form in (3.5) for � = a=q + � is next transformed by (3.1) and
(1.5). Write � = �+� noting that � � Q�1 for j�j � �0 (we speci�ed the parameter
� as in (2.13) in order to stabilize the order of �). Then

u

�
a

q
+ � + yji

�
= u

�
�a

q
� 1

q2(� + yji)

�

=
y
1=2
j

q(�2 + y2j )
1=2

X
n 6=0

�(n)Ki�

 
2�jnjyj

q2(�2 + y2j )

!
e

�
�n�a
q

�
e

 
� n�

q2(�2 + y2j )

!
:

The last oscillating factor here is approximately e(�nq�2��1), so we write

(3.6) u

�
a

q
+ � + yji

�
= y

1=2
j

X
n6=0

�(n)e

�
�n�a
q

�
e(�nq�2��1)'j(n; q; �);

where

(3.7) 'j(n; q; �) = q�1(�2 + y2j )
�1=2Ki�

 
2�jnjyj

q2(�2 + y2j )

!
e

 
ny2j

q2(�2 + y2j )�

!
:

Equipped with a smooth weight function of n with support in the range n � y�1j ,

this becomes a smooth function of the type v(n; q; �) in the sense of (1.17). We
show next that such a truncation of the n-sum is indeed admissible.

Substitute (3.6) into (3.5), where � = a=q+ � and Bj(�) is written according
to its de�nition (3.2). Then the integral over � amounts to the integrals

(3.8)

Z �+�0

���0

v(� � �)'(n; q; �)e(��� � nq�2��1) d�

for di�erent values of n. This exponential integral may have a saddle point only if
n � �, that is for n �M if j = 1, and for n � N if j = 2. These conditions mean
that n � y�1j . On the other hand, if n > cy�1j or n < (cyj)

�1 for a suÆciently
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large positive constant c, then there is no saddle point, and repeated integration by
parts shows that the integral (3.8) is very small. Moreover, the function 'j(n; q; �)

decays exponentially as n exceeds y�1j . Thus we are left with a sum over the critical

range n � y�1j , which may be equipped by a smooth weight.

To summarize, we may write (3.5) as follows:

Sj

�a
q
+ �
�
=

Z X
n�1=yj

t(n)e

�
�n�a
q

�Z �+�0

���0

v(n; q; �; �)e(��� � nq�2��1) d� d�
+OA(N

�A);

where the range for � is the support of the function gj(�=N); thus it runs over an
interval of length �M in a neighbourhood of M or N .

We treat the integral over � following [DI2], Sec. 7. In the variable

� = �(�) =
p
���

p
n

q
p
�
;

this integral can be written as

Q�1=2y
1=2
j e

 
�2
p
n�

q

!Z
v(n; q; �; �)e(��2) d�:

Here the range for � is � � (Qyj)
�1=2, but the integral converges rapidly for j�j > 1

owing to the oscillatory nature of the function e(��2), so it de�nes a function of
the type v(n; q; �).

The resulting transformation formula for Sj can be written into the form

Sj

�
a

q
+ �

�
= Q�1=2y

1=2
j

X
n�1=yj

t(n)e

�
�n�a
q

�Z
e

 
�2
p
n�

q

!
v(n; q; �) d�

+OA(N
�A);

where � �M for j = 1 and N � � �M for j = 2.

Note that the factor e(�2
p
n�=q) can be included into the v-function for

j = 1, while for j = 2 we may replace the same factor by e(�2
p
nN=q), the

approximation error being again absorbed into the respective v-function. Then,
integrating over �, we obtain

S1

�
a

q
+ �

�
=
X
m�M

t(m)e

�
�m�a

q

�
v(m; q) +OA(N

�A);

(3.9)

S2

�
a

q
+ �

�
= (M=N)1=2

X
n�N

t(n)e

�
�n�a
q

�
e

 
�2
p
nN

q

!
v(n; q) +OA(N

�A):
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When the above expressions for S1 and S2 are substituted into (2.12), the
sum over a produces Kloosterman sums S(m + n;N ; q), and we end up with the
formula

�(�) = �1(�) +OA(N
�A);

where

�1(�) = (M=N)1=2
X
q�Q

X
m�M

X
n�N

t(m)t(n)S(m+ n;N ; q)

� e
 
�2
p
(m+ n)N

q

!
v(m;n; q);

here we replaced n by m + n under the root sign and included the error into the
v-factor.

4. Application of Kuznetsov's trace formula

The sum over Kloosterman sums in (3.10) is now translated into the language
of the spectral theory by means of the following identity due to Kuznetsov [K1] (for
a neat proof, see [M2, Theorem 2.3]). Let the functions

1X
n=1

�j;k(n)n
(k�1)=2e(nz) (1 � j � #(k))

constitute an orthonormal basis for the holomorphic cusp forms of weight k, and
put ak = 22�2k��k�1(k � 1)!. As usual, write ��(n) =

P
djn d

�.

Lemma 2. Let  (x) 2 C3(0;1), and suppose that for � = 0; 1; 2; 3

 (�)(x)�
�

x1=2��+" as x! +0;

x�1���" as x!1;

where " is an arbitrarily small positive number. Then, for any integers m;n � 1,
we have

(4.1)

1X
q=1

q�1S(m;n; q) 

�
4�
p
mn

q

�

=

1X
j=1

�j(m)�j(n)

cosh��j
 ̂(�j) +

1

�

Z 1

�1

�2ir(m)�2ir(n)

(mn)irj�(1 + 2ir)j2  ̂(r) dr

+
1X
k=1

ak

#(k)X
j=1

�j;k(m)�j;k(n) ̂((1� k)i=2);
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where

(4.2)  ̂(r) =
�i

2 sinh�r

Z 1

0

(J2ir(x)� J�2ir(x)) (x)dx
x
:

In the case of the sum (3.10), the function  (x) involves the oscillating factor
e�ix and a smooth factor. In the next lemma, we estimate the corresponding

transform  ̂(r). Actually, with a proof of the estimate (1.13) also in mind, we take
the oscillating factor in the more general form e�iax, where a > 0 is a parameter.
To avoid repetition, we state the result only in the case where r is real; the values

 ̂((1� k)i=2) occurring in (4.1) can be estimated completely analogously.

Lemma 3. Let
 (x) = e�iaxC(x);

where a > 0 and C(x) is a function supported in the interval [X; cX ], where c > 1
is a constant and X is a positive parameter such that aX is large. Suppose that

(4.3) C(�)(x)�� X
�� ; � = 0; 1; . . .

Then, for all real r, we have

(4.4)  ̂(r)� min
�
X�1=2; X�1ja2 � 1j�1=2

�
(aX)":

Moreover, for any �xed positive A, we have

(4.5)  ̂(r)� (jrj + aX)�A

if

(4.6) jrj � max
�
X1=2; X

p
ja2 � 1j

�
(aX)";

and also if

(4.7) a � 1�X"�1:

Proof. We modify the argument of the proof of Lemma 7.1 in [DI1]. The J-Bessel
functions occurring in (4.2) may be given by the integral representation (see [L,
p. 139])

(4.8)
J2ir(x) � J�2ir(x)

sinh�r
=

4

�i

Z 1

�1

cos(x cosh �) cos(2r�) d�: (r 6= 0; x > 0):

Thus

 ̂(r) = 2

Z 1

�1

Z
C(x)x�1e�iax cos(x cosh �) cos(2r�) dx d�:
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Here the x-integral is small as a smooth oscillatory integral unless cosh � lies near
a. This cannot happen in the case (4.7). Then (4.5) is easily veri�ed by repeated
integration by parts over x, and also over � if jrj � X . Otherwise we extract those
values of � with

cosh � = a+O(X�1(aX)");

and the extracted part is understood as a weighted integral.

The remaining part is small, namely of the order of the right hand side of
(4.5). Indeed, in view of (4.3), repeated integration by parts suÆciently times with
respect to x saves as high a power of aX as we wish. Moreover, if jrj exceeds aX ,
repeated integration by parts over � saves any power of r.

It remains to estimate the contribution of the critical range of � extracted
above. First, to prove (4.4), we observe that the length of this range is of the order
of the right hand side in (4.4), and estimate both integrals trivially. Alternatively,
if r satis�es (4.6), we �rst integrate by parts with respect to the factor cos(2r�)
suÆciently many times getting again the estimate (4.5).

For the convenience of reference, we state separately the case a = 1 of Lemma 3.

Corollary. Let  (x) = e�ixC(x), where C(x) satis�es the conditions of Lemma 3
for a large parameter X . Then, for all real r, we have

 ̂(r)� X�1=2+";

and also
 ̂(r)� jrj�A for jrj � X1=2+":

Remark 1. To deal with the transforms  ̂((1�k)i=2), we may use the integral
representation (see [L, Eq. (5.10.8)])

Jk�1(x) =
1

�

Z �

0

cos((k � 1)� � x sin �) d�;

which implies that

�i

2 sinh((1� k)�i=2)(Jk�1(x)� J�(k�1)(x)) =
Z �=2

��=2

sin((k � 1)� � x cos �) d�:

This is analogous to (4.8), and the resulting estimates for  ̂((1� k)i=2) are similar
to those in lemma 3, with k playing the same role as r.

Remark 2. The \opposite-sign" case of Kuznetsov's trace formula reads

1X
q=1

q�1S(m;�n; q) 
�
4�
p
mn

q

�

=
1X
j=1

�j(m)�j(�n)
cosh��j

 �(�j) +
1

�

Z 1

�1

�2ir(m)�2ir(n)

(mn)irj�(1 + 2ir)j2 
�(r) dr
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where

 �(r) = 2 cosh(�r)

Z 1

0

K2ir(x) (x)
dx

x

(see [M2, Theorem 2.5]). The assumptions on the function  are as in Lemma 2.
The appropriate integral representation for the K-Bessel function here is ( [W], p.
183)

cosh(�r)K2ir(x) =

Z 1

0

cos(x sinh �) cos(2r�) d�:

The estimate corresponding to (4.4) is now

 �(r) � ((a+ 1)X)�1+";

and the stronger estimate of the type (4.5) holds for jrj � ((a+ 1)X)1+".

5. Estimation of the sum Tg(N)

Returning to the sum (3.10), we rewrite it as follows:
(5.1)

�1(�) = (M=N)1=2Q
X
m�M

X
n�N

t(m)t(n)
X
q�Q

q�1S(m+ n;N ; q)e�ixv(x;m; n);

where x = 4�
p
(m+ n)N=q. Then x � N=Q � N1+"=M , so X � N" in the

Corollary of Lemma 3.

The sum over q in (5.1) is now transformed by Lemma 2, and �(�) is decom-
posed accordingly:

(5.2) �1(�) = �
(d)
1 (�) + �

(c)
1 (�) + �

(h)
1 (�):

The treatment of these ingredients will be analogous, so let us consider �
(d)
1 (�), the

contribution of the discrete spectrum, as an example. The Corollary of Lemma 3
shows that the relevant range for �j is

(5.3) �j � K = (N=M)1=2N";

and then  ̂(�j) � (M=N)1=2N". This transform is again a smooth function of m
and n. Therefore, putting �j = j�j(1)j2= cosh��j , we have

(5.4) �
(d)
1 (�) =M2N�1

X
m�M

X
n�N

t(m)t(n)
X
�j�K

�jtj(m+n)tj(N)vj(m;n)+O(1);

where the vj are smooth functions in the same sense as before.

The spectral sum in (5.4), like analogous expressions related to the continuous
spectrum or holomorphic cusp forms, are now estimated by use of the spectral large
sieve due to H. Iwaniec [I1-2] (see also [M2, Sec. 3.5], for a simpli�ed approach to
this topic).
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Lemma 4. Let K � 1, N � 1=2, " > 0, and let bn for N < n � 2N be any
complex numbers. Then the expressions

X
k�K

ak

#(k)X
j=1

���� X
N<n�2N

bn�j;k(n)

����
2

;

X
�j�K

�j

���� X
N<n�2N

bntj(n)

����
2

;

Z K

�K

���� X
N<n�2N

bn�2ir(n)n
�ir

����
2

dr

are all majorized by

� (K2 +N1+")
X

N<n�2N

jbnj2:

Before applying this to the sum (5.4), it is convenient to separate the variables
m and n in the functions vj(m;n) by partial summation. In practice this means
elimination of these functions, so we end up with the sum

(5.5) M2N�1
X
�j�K

jtj(N)j
����X
p�N

bptj(p)

����;
where

(5.6) bp =
X

m+n=p

t(m)t(n)

with m and n running over similar intervals as before.

We still need an estimate for bp in mean square.

Lemma 5. Let M;N � 1, and let bp be as in (5.6) with m �M , n � N . ThenX
p

jbpj2 � (MN)1+":

This is \dual" to Lemma 3 in [J4], and the proof, based on the estimate (2.3)
for exponential sums, is closely analogous.

We are now in a position to complete the estimation of the sum (5.5). Since
there are O(K2) numbers �j � K, this sum is by Cauchy's inequality and (1.7) at
most

�M2N�1+�+"K

vuutX
�j�K

����X
p�N

bptj(p)

����
2

:

By Lemmas 4 and 5, this is � KM5=2N�+", or �M2N1=2+�+" by (5.3), which is

our estimate for �
(d)
1 (�). The same holds for the other terms in (5.2), too, thus for

�1(�) (and �(�)) as well.

Returning to (2.12), we observe by the preceding estimation that T1 �
N1=2+�+". Together with (2.10) and (2.11), this entails the same estimate for
our sum T , and the proof of the estimate (1.14) is complete.
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6. Estimation of the sum Tg(N ; f)

Let S1(�) and S2(�) be de�ned as in (2.5), and consider the sums
(6.1)

NX
n=1

t(n)t(n+ f)gj

� n
N

�
gj

�
n+ f

N

�
=

Z 1

0

Sj(�+ �)Sj(� + �)e(�f(�+ �)) d�:

Since f � N2=3 by assumption, it is easy to see, by (2.1), that the sum Tg(N ; f)

can be written as a sum of� logN sums of the type (6.1) with an error� N2=3+".
The parameter M may be restricted to the interval

(6.2) N2=3 �M � N=3:

Let us consider the sum (6.1) for j = 2, the case j = 1 being similar but
easier. Indeed, in the latter case, the argument leads to sums of Kloosterman sums
with a smooth stationary weight, and following [J4], we end up with the estimate
� N1=2+"f�. This is � N2=3+" with the choice � = 1=4.

Denote the sum (6.1) for j = 2 by T again, and decompose it to the sum
T1 + T2 as in Sec. 2. Then

(6.3) T2 � N1+"M�1=2 � N2=3+"

by previous arguments and (6.2).

The \main term" T1 is estimated as in (2.11):

(6.4) T1 �M�2+" max
j���j�Æ

j�(�)j;

where

�(�) =
X
q

w(q)

qX�

a=1

S2

�
a

q
+ �

�
S2

�
a

q
+ �

�
e

�
�fa
q

�
:

Next we substitute the expression (3.9) for S2 transforming thus �(�) into
(6.5)

�1(�) =
M

N

X
q�Q

X
m;n�N

t(m)t(n)S(m � n; f ; q)e
 
�2(

p
m�pn)pN

q

!
v(m;n; q);

up to a negligible error. This is analogous to (3.10).

The diagonal terms involve Kloosterman (actually Ramanujan) sums S(0; f ; q)
and the contribution of these terms to �1(�) is � M2N" by straightforward esti-
mations.

The non-diagonal part of (6.5) contains two types of terms as to the sign of
m � n. If m � n > 0, then the q-sum can be transformed by Lemma 2. On the
other hand, if m � n < 0, then the formula given in Remark 2 in Sec. 4 is to be
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applied. Since the latter \opposite-sign" case does not present any new problems,
we may con�ne ourselves to the \equal-sign" case.

We gather in (6.5) those terms with m � n = p > 0 and restrict p for a
moment to the range p � P for some P � N . The sum over p can be equipped
with a smooth weight. Then the corresponding part of �1(�), say �2(�), can be
written as

(6.6) �2(�) =
MQ

N

X
q�Q

q�1
X
p�P

X
n�N

t(n)t(n+ p)S(p; f ; q)e�ia(n=p)xv(n; p; x)

with
x = 4�

p
pf=q;

a(y) =
p
N=f(

p
y + 1�py):

We may suppose that

(6.7) P � QN";

for otherwise the factor e�ixa(n=p) in (6.6) is essentially stationary and can be
absorbed into the function v(n; p; x). Then, arguing as in [J4] and using its lemmas
3 and 4, we get the estimate �2(�) �M2N1=2f�N" giving a contribution � N2=3

to T1.

Next we reformulate (6.6) by a shifting device on replacing n by n + ` with
` � L, where

(6.8) L = N1�"Q=P:

Then, estimating partial derivatives, we �nd that e�ixa((n+`)=p)v(n + `; p; x) can
be written as e�ixa(n=p)v`(n; p; x) for a suitable new v-function v`. Moreover, v`
is a stationary function of `, that is its derivative with respect to ` is a function
of the type L�1v`. Finally we average the resulting formula for �2(�) over the
parameter `. Since v` is stationary in `, its dependence on ` can be eliminated
by partial summation. In addition, we may separate the variables in v(n; p; x) on
expressing this as a Fourier integral in the variables n and p for given x. In practice
this means that v(n; p; x) can be written, with a negligible error, as the integral of
e(�1n+�2p)V (�1; �2;x) with V standing for the Fourier transform and the variables
running over the ranges �1 � N�1+", �2 � P�1N". Since the integration over the
�'s will be estimated trivially in the end, we may �x these henceforth. Then, in
place of (6.6), we have to deal with an expression of the type

�3(�) =
MQ

LN

X
n�N

e(�1n)
X
p�P

e(�2p)

 X
`�L

t(n+ `)t(n+ `+ p)

!
�

�
X
q�Q

q�1S(p; f ; q)e�ixa(n=p)v(x):
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By Lemma 2, this can be decomposed into �
(d)
3 (�) + �

(c)
3 (�) + �

(h)
3 (�) as in

(5.2). Let us consider the most signi�cant term �
(d)
3 (�) in more detail. We have

(6.9) �
(d)
3 (�) =

MQ

LN

X
p�P

e(�2p)
X
n�N

e(�1n)�

�
 X
`�L

t(n+ `)t(n+ `+ p)

!
1X
j=1

�jtj(p)tj(f) ̂(�j ; n=p);

where  ̂(r; y) is the transform (in the sense (4.2)) of  (x; y) = e�ia(y)xv(x) as a
function of x for given y.

Lemma 3 is now applicable to the last mentioned transform. Indeed, in the
notation of that lemma, we have X � pPf=Q and a �pP=f , whence aX � P=Q
is large by our assumption (6.7). Moreover, a(y) is large by our assumptions on P
and f (the " in (6.7) should be taken bigger than that in (2.3)), so Lemma 3 gives

(6.10)  ̂(r; y)� (Q=P )1�"

for all real r and the relevant values of y, while this transform is very small for
jrj � (P=Q)1+". Therefore the spectral sum in (6.9) can be truncated to �j � K
with

(6.11) K = (P=Q)1+":

Following the argument of the preceding section, we next apply the spectral
large sieve to the sum (6.9). However, it is a new complication that the transform

 ̂(�j ; y) depends on y in an oscillatory way. Indeed, as an easy generalization of
(6.10), we have

@� ̂(�j ; y)

@y�
��

�
Q

P

��
P 2

NQ

��
N":

Therefore we may express  ̂(�j ; y) in any y-interval of length � N1�"Q=P 2 around
a given value y0 � N=P by a Taylor polynomial of bounded degree in y � y0
with a negligible error. If any one of the terms of this polynomial is taken into
consideration, then the variables �j and y will be separated. The constant term
dominates in the polynomial, so let us estimate its contribution.

Fixing an y-interval of the above type for a moment, we sum �rst over those
pairs (p; n) in (6.9) for which y = n=p lies in our interval. These pairs can be
subdivided into subsets consisting of pairs (p; n(p)), where n = n(p) is assigned
to p somehow among � N1�"Q=P = L possible choices. The contribution of one
such subset is estimated by Cauchy's inequality and Lemma 4. Next we sum over
the subsets just described, and �nally sum over the y-intervals, again by Cauchy's
inequality. To complete the estimations, we need two auxiliary results. The �rst of
these is following spectral mean value estimate:X

�j�K

�jt
2
j (f)� K2 + f1=2+";
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which is a weakened version of a theorem of N. V. Kuznetsov [K1]. Secondly, we
need the following lemma for the purpose of estimating the `-sums in (6.9) in mean.
Its proof, based on the estimate (2.3) for exponential sums, is analogous to that of
Lemma 3 in [J4].

Lemma 6. For N;P � 1 and 1 � L � N , we have

X
0�p�P

X
1�n�N

������
X

1�`�L

t(n+ `)t(n+ p+ `)

������
2

� (N + P )1+"NL:

We now put everything together, recalling (6.10) and estimating the fourfold
sum in (6.9) as indicated above. In this way, we obtain

�
(d)
3 (�)� (MQ=LN)(Q=P )L1=2(N=L)1=2(K2 + P )1=2(N2+"L)1=2(K2 + f1=2)1=2:

In view of the choices (2.7), (6.8), and (6.11) of Q, K, and L, this is

�M2(PM�1=2 +M1=2f1=4)N" �M2(NM�1=2 +M1=2f1=4)N":

The contribution of this to T1 in (6.4) is � N2=3+". Since the other ingredients of
T1 can be estimated in the same way, we have T1 � N2=3+". Finally, combining
this with (6.3), we get the same estimate for our original sum T .
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