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Abstract. We apply eigenvalue techniques for cut evaluation to produce
relations between the weight and order of induced subgraphs, and apply these results
to bound the stability number.

1. Introduction

S. Poljak suggested that an upper bound for the stability number �(G) of
a graph G could be obtained in the following way. Add a new vertex ! to the
graph G, and connect it to all vertices of G by an edge; this yields a graph G0;
give the weight 1 to the edges of the graph and for each vertex x of G give the
weight 1 � dx to the edge !x if dx is the degree of x in G. If a subset S of the
set of vertices of G is chosen, we evaluate the cut c(S), that is the sum of the
weights of the edges between S and the remaining part of G0. Then the maximum
mc(G0) = maxS�G c(S) is �(G), because if we add a vertex y from V (G) n S to
S, such that the induced degree of y in S [ fyg is Æ, then the cut is incremented
by 1� 2Æ. Hence the maximum cut is obtained when S is a stable set as large as
possible, in other words this maximum cut is �.

Clearly, this method works also with weights t � d, with 0 < t < 2 (instead
of 1 � d), which suggests another upper bound for �, namely min0<t<2mc(G0)=t.
And this quantity receives an upper bound with eigenvalue techniques.

We develop that idea to obtain further results.
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2. Max-cut and optimized eigenvalues

We have a weighted graph G, with the weight wij on the edge ij. The cocycle
of G de�ned by a subset S of its vertex set is the setWS of edges having an endpoint
in S and the other one out of S. The value of the cocycle is the sum of the weights
of the edges in WS . The max-cut of G is the maximum value of its cocycles. Using
the laplacian matrix of G, that is the n � n matrix with entry Lij = �wij and
Lii =

P
j 6=i wij , we observe that 4WS = X�

SLXS , where XS is the column whose
entries xi are given by

xi =

�
1 if i 2 S

�1 if i 62 S
:

Moreover, if D is a diagonal matrix with null trace, then 0 = X�
SDXS ; hence the

max-cut of G is at most n�(L + D)=4, with � the highest eigenvalue of L + D.
Of course one may choose D to make this bound as low as possible. Let us call
�(G) = nminD �(L+D)=4 this minimized upper bound.

If all weights are positive or null, the bound is quite good: Goemans and
Williamson [4] show that the actual max-cut is at least 0:878 �(G). But this
does not work as well if there are positive and negative weights. For example, the
max-cut for a triangle with weights 1, �1, �1 is 0 and the bound is 1=3 > 0.

2.1. Relation with the spectrum of the adjacency matrix. The
adjacency matrix A and the laplacian matrix L of a (weighted) graph satisfy L+A =
M , whereM is the diagonal matrix with the same diagonal entries as L; the sum of
these entries is 2w, where w is the sum of the weights of all edges. Let us compare
the minimized highest eigenvalue � = minDmax(Sp(L + D)) and the maximized
lowest eigenvalue � = maxD0 min(Sp(A +D0)), with D and D0 diagonal matrices
having null trace. They satisfy

�+ � = 2w=n (1)

where n is the number of vertices. We prove this in a few lines: the matrix A+ L
is a diagonal matrix, say �, with entries the sums of weights of edges incident to
one vertex, the trace of � is 2w; we see that the lowest eigenvalue of A +D and
the highest eigenvalue of L�D ��+ (2w=n)I sum up to 2w=n, because the sum
of these two matrices is (2w=n)I . The mapping D 7! (�D ��+ (2w=n)I) maps
one-to-one and onto the set of diagonal matrices with null trace onto that set itself.

3. Other cocycles and optimized eigenvalues

Obviously, if all weights are � 0, the minimum value of a cocycle is null: it
suÆces to take S = ;, or S = V .

There are (at least) two ways of making the problem more interesting: we
may remove assumptions on the signs of the weights of the edges | and thus we
are led back to the problem of max-cut, with all weights replaced by their opposite
| or we may prescribe the number k of vertices in S (or both).
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We thus make no assumption on signs of weights, and impose S = k, with
2k � n without loss of generality. We have then two approaches.

Splitting XS = (2k � n)XV =n + YS , we obtain a column YS , with entries
2(n � k)=n on S and �2k=n out of S; thus YS is orthogonal to XV , with length
given by Y 2 = 4k(n�k)=n. Then the value of the cocycle is at most k(n�k)��(L)=n
and also at least k(n�k)��(L)=n, where ��(L) and ��(L) are the highest and lowest
eigenvalue in Sp�(L), that is the spectrum of L with one occurrence of 0 removed.

We can also use two eigenvalues of L, like Donath and Ho�man [3]. The two
columns XS and XV give by an orthogonal combination two orthogonal columns
with entries 0 and

p
2, and squared lengths 2k and 2(n�k), namely (XS+XV )=

p
2

and (XV � XS)=
p
2, say ZS and ZV nS . Then the 2 � 2 matrix

�
Z�
S

Z�
V nS

�
(L +D)

� [ZS ZV nS ] has the same trace as

�
X�
V

X�
S

�
(L +D)[XV XS ], namely 4WS . Hence

WS is at most (k�0(L + D) + (n � k)�(L + D))=2, where �0(L +D) � �(L +D)
are the two highest eigenvalues of L+D. Similarly WS is at least (k�0(L +D) +
(n � k)�(L +D))=2, where �(L +D) � �0(L +D) are the two lowest eigenvalues
of L+D.

Of course, it is now useful to optimize these expressions, which is not too hard,
since k�0(L+D) + (n� k)�(L+D) is convex and (k�0(L+D) + (n� k)�(L+D)
is concave.

3.1. Application: stability number of regular graphs. For a regular
graph of degree d > 0, we obtain bounds for the number k of vertices inducing a
cocycle of weight kd. The sum of the weights of the set of edges inside such a set is
null. Hence, if all weights are > 0, such a set is stable. The two ways of bounding
the cut give two upper bounds for the order of a stable set:

� � n(�� d)=�

� � n�=(2d+ �� �0)
(2)

since the cocycle of a stable set with � elements in d�.

3.2. Example. We consider Petersen graph, with all edges bearing value
1. Because Petersen graph is vertex-transitive, the optimisation of eigenvalues is
realized with D = 0; the eigenvalues are then 0, 2 (with multiplicity 5) and 5 (with
multiplicity 4), thus � = �0 = �� = 5 and � = 0 and at last �0 = �� = 2. See [1]
for details. The bounds and actual values of the cocycles appear in the following
table.

k ��k(n�k)
n

��k(n�k)
n

�(n�k)+�0k
2

�(n�k)+�0k
2 actual cuts

0 0 0 25 0 0
1 4:5 1:8 25 1 3
2 8 3:2 25 2 4; 6
3 10:5 4:2 25 3 5; 7; 9
4 12 4:8 25 4 6; 8; 10; 12
5 12:5 5 25 5 5; 7; 9; 11
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We obtain � � 4 (it is the actual value).

3.3. Example We consider the 4-cycle with weights 1 and �1 alternating.
Thus it is a vertex-transitive weighted graph.

The eigenvalues of the Laplacian matrix, or the adjacency matrix as well, are
then 0 (twice), 2, and �2. The bounds and actual values of the cocycles appear in
the following table.

k ��k(n�k)
n

��k(n�k)
n

�(n�k)+�0k
2

�(n�k)+�0k
2 actual cuts

0 0 0 4 �4 0
1 1:5 �1:5 3 �3 0
2 2 �2 2 �2 �2; 0; 2

3.4. Example. The complete bipartite graph K2;6. The diagonal D has
entries �s and 3s on the two stable components. The eigenvalues are then 2� s (5
times), 3s+ 6, and 4 + s� 2

p
(4 + 2s+ s2).

k ��k(n�k)
n

��k(n�k)
n

�(n�k)+�0k
2

�(n�k)+�0k
2 actual cuts

0 0 0 24 0 0
1 7 1:75 22:96 1:04 2; 6
2 12 3 21:80 2:20 4; 6; 12
3 15 3:75 20:49 3:51 6; 10
4 16 4 20 4 6; 8

4. Weights of induced subgraphs and eigenvalues

We have a weighted graph G on N vertices. We build a graph G0(t) that is
G with an extra vertex ! and we give the weights t � dx to the edges x!, where
dx is the degree (the sum of the weights of edges incident to x) in G, and we allow
the variable t to take any real value.

Then each subset S of G induces a cocycle in G0: the two parts are S and
V (G0) nS; if S has n vertices and the sum of the weights of its induced edges is m,
then the corresponding value of the cut in G0 is WS(t) = nt� 2m.

On the other hand, owing to the tools previously recalled we can boundWS(t)
with expressions using the cardinality of S and eigenvalues involving the laplacian
matrix L(t) of G0.

This matrix L(t) is symmetric and has entries8>>>>>><
>>>>>>:

L(t)xy = �1 if x and y are adjacent vertices of G

L(t)xy = 0 if x and y are non-adjacent di�erent vertices of G

L(t)x! = dx � t

L(t)xx = t

)
for each vertex x in G

L(t)!! = Nt� 2M

(3)
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where N is the number of vertices of G, and M the sum of weights of edges in G.

A common upper bound for all aÆne functions corresponding to cocycles in
G0 is

nt� 2m � (N + 1)�(L(t) +D)=4:

Thus an other common upper bound is

nt� 2m � (N + 1)�(t)=4;

where �(t) is obtained by minimizing �(L(t) +D) on the N -dimensional space of
diagonal matrices D with null trace.

In the same vein, we have

nt� 2m � (N + 1)�(L(t) +D)=4;

and

nt� 2m � (N + 1)�(t)=4;

where �(t) is obtained by maximizing the lowest eigenvalue �(L(t) + D) of the
matrix L(t) + D on the N -dimensional space of diagonal matrices D with null
trace.

4.1. Convexity properties. We recall that the highest eigenvalue of a
symmetric matrix is a convex function of the matrix.

Thus the function D 7! �(t;D) is convex, and we can assume without loss
of generality that vertices of G lying in the same orbit under the automorphism
group of G give equal diagonal entries in D. This may signi�cantly decrease the
dimension of the space where minimization should be carried.

The function t 7! �(t) is convex.

Let us give a short proof. If t1 and t2 are given, and D1 and D2 are diagonals
that minimize � for these two values, then for a new value t3 = t1 + �(t2 � t1),
with 0 � � � 1, we have �(t3) � ` � �(t1) + �(�(t2) � �(t1)), where ` is the
highest eigenvalue of the matrix L(t1)+D1+�(L(t2)+D2� (L(t1)+D1)); the �rst
inequality comes from the optimization, and the second one from the convexity.

This could be seen also as a corollary of the following fact: the image by an
aÆne application of a convex set is also convex.

In the same vein, it is easily proven that �(t) is a concave function of t.

4.2. Application: stability number. The graphical representation of the
two functions t 7! (N + 1)�(t)=4 and t 7! (N + 1)�(t)=4 gives some indications
about the average degree, number of vertices and weights of induced subgraphs of
G. These subgraphs correspond to lines between the two curves, the slope is the
number of vertices, the t-intercept is the average degree and the f -intercept is �2
times the weight.



Eigenvalues and weights of induced subgraphs 25

Thus we obtain visual bounds for the number of vertices that induce a sub-
graph with a given weight w (from the slopes of the lines through the point
(t = 0; f = �2w) between the two curves), or a given average degree d (slopes
of lines through point (t = d; f = 0)) and the weights of subgraphs with given
order n (f -intercepts of lines with slope n).

In particular, for graphs with positive weights only, the stability number � is
at most the maximum slope of lines through the origin.

4.3. Example. Figure 1 shows the lines that correspond to actual cuts of
G0 and the bounds from � and � for G a 5-cycle with all edges bearing weight 1,
as well as the tangent indicating the bound

p
5 for the stability number

5. Partial optimisation for regular graphs

We consider a graph G, regular with degree d.

We may decide to give the same value a to the N entries of D corresponding
to the N vertices of G, and �Na to the entry that corresponds to !. Thus we
obtain a partial optimization for the highest and lowest eigenvalues, that provides
already some information, and very simple calculations.

Figure 1: Cuts and bounds for C5



26 Delorme

Let Sp�(H) = fui; 1 � i � N � 1g be the spectrum of the laplacian matrix
H of G with one occurrence of 0 removed. The highest value is thus ��(H) and
the lowest ��(H).

The eigenvalues of L+D are then the ui+ t� d+ a, and the two eigenvalues

of
h
t+a�d d�t

N(d�t) �Na+Nt�Nd

i
, in other words the roots of

X2 �X((N + 1)(t� d)� (N � 1)a)�Na2:

The (partially) minimized highest eigenvalue of L+D is

� =

8>><
>>:

0 if t � d� `, with a = 0
4N(t�d)
N+1 if t � d+ `, with a = 2(N+1)(t�d)

N�1

N(`+t�d)2

(N+1)` if d� ` � t � d+ `, with a = �� `� t+ d

(4)

where ` = ��(H) if it is � 0, and it is

� =

(
0 if t � d, with a = 0
4N(t�d)
N+1 if t � d, with a = 2(N+1)(t�d)

N�1

(5)

if ��(H) � 0.

Similarly the (partially) maximized lowest eigenvalue of L+D is

� =

8>><
>>:

0 if t � d� p, with a = 0
4N(t�d)
N+1 if t � d� p, with a = 2(N+1)(t�d)

N�1

N(p+t�d)2

(N+1)p if d+ p � t � d� p, with a = �� p� t+ d

where p = ��(H) if it � 0, and it is

� =

(
0 if t � d, with a = 0
4N(t�d)
N+1 if t � d, with a = 2(N+1)(t�d)

N�1

if ��(H) � 0.

5.1. Regular graphs with positive weights. Consider now the case where
all weights are > 0; then ` = ��(H) � 0 and ��(H) � 0. Hence the maximum cut
is at most 0, or N(t� d), or N(`+ t� d)2=(4`), according to the position of t with
respect to d� ` and d+ `.

The second tangent from the origin to the parabola (t;N(`+t�d)2=(4`)); t 2 R
touches it at the point t = `� d and has slope N(`� d)=`.

Hence the stable sets have at most N(` � d)=` vertices. This is the bound
obtained previously.
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On the other hand, the lower bound tells only that the average degree is at
most 2M=N , a rather dull result.

However, if the graph is not vertex transitive, one may improve the bounds.

5.2. Example. The disjoint union of a 3-cycle and a 4-cycle constitutes
a regular graph of degree 2. The Laplacian eigenvalues are 0,2,3,4. The partial
optimization gives the bound

nt� 2m �

8><
>:

0 if t � �2
7t� 14 if t � 6
7(t+2)2

16 if �2 � t � 6:

It gives only � � 7=2.

The optimization uses the diagonal matrix with a for the vertices of the 3-
cycle, b for those of the 4-cycle and �3a� 4b for the extra vertex !. The spectrum
of L+D is made from b+ t, b+ t+2 (twice), a+ t+1 (twice) and the eigenvalues

of

2
4 a+ t� 2 0 2� t

0 b+ t� 2 2� t
3(2� t) 4(2� t) �3a� 4b+ 7t� 14

3
5.

Its optimized maximum, multiplied by 2 = (7 + 1)=4 to �t with cuts is given
in the table

t
��� �2 �1 5 6

bound
��� 0 0 (t+2)2

4
1
4

2t2+6t+5
4

85
4

t2+16t�20
4 28 7t� 14

that can be obtained with the remark that the graph is the union of two graphs
with only ! as common vertex, and the theorem 4 of [2]. The maximum slope of
a line through the origin inside the allowed region is now (3 +

p
10)=2 = 3:081 . . . ,

that is closer to the true value 3.

6. More about stability number

For the stability number, counting edges is irrelevant, we just want to �nd
a maximum number of vertices inducing a null weight. Therefore, we can assign
arbitrary weights to edges and minimize as far as possible the slopes of the lines
inside the allowed region going through the origin. This �ddling with the weights
of edges was already practiced by Lov�asz [5].

Since the highest eigenvalue is a convex function with respect to the entries,
it is not necessary to give di�erent weights to edges in a same orbit from the
automorphism group of the (non weighted) graph.

6.1. Example. Let us use again the disjoint union of C3 and C4 as an
example. Giving the weight 2 to the edges of the C3 and 1 to the edges of C4 gives
the bound for the maxcut of G0.
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t
��� �2 6 10

bound
��� 0 0 3(t+2)2

8 24 t2+36t�60
8 50 7t� 20

Hence the line with slope 3 from the origin is tangent to the curve at the
point t = 2; f = 6. This gives the actual value of the stability number.

6.2. Remark. Let us call �0(G) the upper bound of the stability number
�(G) of a graph G obtained above.

It is easy to check that the function f(G; t) = (N + 1)�(t)=4 satis�es
uf(G; t) = f(Gu; tu), where Gu is obtained from G by multiplying all weights
by u. Therefore, the disjoint union G + H of two graphs G and H the following
equality holds:

�0(G+H) = �0(G) + �0(H) (6)

since it is possible to adjust the weights in such a way that the contacts of the
tangents from the origin to the curves f(G; t) and f(H; t) have the same positive
coordinate t. Note that a set of a isolated vertices causes no problem, since the
curve is then included into the lines f = 0 and f = at. This property implies

�0(G) � �(G) (7)

where �(G) is the minimal number of complete subgraphs that covers all the vertices
of G.

I do not know whether the bound �0 coincides with the bound # described
by Lov�asz [5, Theorem 9], although it obviously does for vertex-transitive graphs
and graphs satisfying � = �.

7. Subgraphs again

It is possible to extend the techniques of section 3.

In the case of regular graphs, we observe that the partial optimisation gives
the eigenvalues between ��(G)+ t� d+ a and ��(G)+ t� d+ a; the corresponding
eigenvectors are copied from those of G with a null component for !. Besides, we
have the two eigenvalues roots of X2�X((N+1)(t�d)�(N�1)a)�Na2, that are
associated to the vector space T of vectors where all components are equal, with
the possible exception of the one of !.

Then one splits the vector XS that corresponds to a set S of k vertices in
G on YS of squared length 4k(N � k)=N , orthogonal to T (i.e. the component
relative to ! is null and the sum of components is null), and a vector in T , whose
components are �1 on ! and (2k � N)=N elsewhere. The cut is thus between
A + 4k(N � k)(��(G) + t � d + a)=N and A + k(N � k)(��(G) + t � d + a)=N ,
with A = �4ak(N � k)=N + (t� d)4k. Some terms cancel, and we obtain kt� 2m
is between (t � d)k + k(N � k)(��(G)) and (t � d)k + k(N � k)(��(G)); in other
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words, 2m is between dk � k(N � k)(��(G)) and dk � k(N � k)(��(G)). This is
not unexpected, since that result is also obtained by relating the weights of edges
inside S and the weight of the cocycle in G de�ned by S and the degree d of the k
vertices of S.

Of course, it is possible to apply both methods to graphs that are not regular,
thus bounds on the cuts between subsets of orders k and N + 1� k in G0 provide
bounds on the weights of subgraphs of G induced by k or N + 1� k vertices.

7.1. Example. For the graph K1;2, this method gives the following bounds:
the highest eigenvalue of L(t; G) is �� = (5t�4+

p
(9t2�40t+48))=2, that is close

to 4t�16=3 if t is large. The lowest one is t if t � 2, and (5t�4�p(9t2�40t+48))=2

otherwise. Figure 2 allows the comparison of the bounds for k = 2 (the eigenvalues
above) and k = 1 or 3 (3/4 of the eigenvalues above).

Figure 2: Cuts and bounds for K3;3

The dots show some results for the same graph, with the method of Donath
and Ho�man, that is use two highest or two lowest eigenvalues with coeÆcients 1
and 1 (for k = 2) or 3=2 and 1=2 (for k = 1 or 3).

References

1. Michel X. Goemans and David P. Williamson, Improved Approximation Algorithms for Max-
imum Cut and Satis�ability Problems Using Semide�nite Programming, J. Assoc. Comput.
Mach. 42 (1995), 1115{1145,

2. A. E. Brouwer and A. M. Cohen and A. Neumaier, Distance-regular graphs, Springer-Verlag,
1989



30 Delorme

3. C. Delorme and S. Poljak, Laplacian eigenvalues and the maximum cut problem, Math. Pro-
gramming 62 (1993), 557{574.

4. W. E. Donath and A. J. Ho�man, Lower bounds for the partitioning of graphs, IBM J. Res.
Develop. 17 (1973), 422{425

5. L. Lov�asz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory IT-25 (1979),
1{7

LRI Bat. 490 (Received 02 04 1998)
Universite Paris{Sud
91505 Orsay Cedex
France


