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Abstract. We construct the logic L(V; �;m; R), as a logic with in�nitary
predicates, generalized ordinary and probability quanti�ers and propositional con-
nectives. An important feature of this logic is that in�nitely many variables can
occur in a single formula, but only �nitely many quanti�ers and connectives. We
prove the weak completeness theorem for this logic.

Let V and Pr be disjoint sets of variables and predicates symbols, respectively,
� a function from the set Pr to the set of all ordinals and let m be a cardinal. In [4]
Keisler introduce a formal system L(V; �;m) which has predicates with in�nitely
many argument places and quanti�ers over in�nite sets of variables, but which has
only �nitary propositional connectives and no identity symbol, and whose proofs
are �nite. We suppose that V; �; m satisfy the conditions I, II and III from [4].

Let R be a  Lukasiewicz chain f 0; 1
n
; . . . ; n�1

n
; 1 g together with the operations

x� y = minfx + y; 1 g and :x = 1� x:

In [3] Keisler introduced several probability logics and developed model the-
ory for them together with Hoover (see [2]). The notion of probability logic is
designed to permit a logical and model{theoretic approach to probability theory.
We construct similar weak probability logic with in�nitary predicates L(V; �;m; R)
(briey L) by adding probability quanti�ers Px � r, where r 2 R and x 2 V � is
a sequence of di�erent variables of the length �; � < m. The set R is taken to be
�nite in order to preserve the �niteness of proofs. The set F of all formulas of L
is the set of all expressions that are built from atomic formulas p(x) (p 2 Pr and
x 2 V �(p)), using negation :, �nite disjunction _, quanti�er (8x) and probability
quanti�er (Px � r) (x 2 V �; � < m). The formula (Px � r)�(x) means that the
set fx : �(x) g has probability greater than or equal to r.
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The notions of set Vf (�) of free variables and set Vb(�) of bound variables of
� 2 F are de�ned as usual, with the quanti�ers (8x) and (Px � r) binding all the
variables in the sequence x.

For each � 2 V V , the substitution S(�)� of each variable v in a formula � by
�(v) is de�ned as usual (see [4]), with S(�)(8x)� = (8�Æx)S(�)�;

S(�)(Px � r)� = (P� Æx � r)S(�)�,

in the quanti�er case. Similarly, the substitution Sf (�)� of free variables is de�ned
by:

Sf (�)(8x)� = (8x)Sf (�)�,

Sf (�)(Px � r)� = (Px � r)Sf (�)	 ,

where � 2 V V and �(v) =

�
�(v); v 2 V n rangex

v; v 2 rangex:

We can write � = (� �(V n rangex))�V where � is de�ned as in [4].

If � 2 V W ; W �V , let S(�)� = S(� �V )� and Sf (�)� = Sf (� �V )�.

Abbreviations ^, !, $, 9, ?, >, Px < r, Px > r and Px � r are introduced
as usual.

The rules of inference for L are those from [4].

The axioms for L are:

A1 The axioms of propositional logic,

A2 (8x)(�! 	) ! (�! (8x)	); rangex � V n Vf (�),

A3 (8x)�! Sf (�)�; � : rangex! V n Vb(�),

A4 (8x)�$ (8� Æx)�; where � : rangex
na
!
1�1

rangex

A5 (Px � 0)�,

A6 (Px � s)�! (Px � r)�; for s > r,

A7 (Px � s)� ^ (Px � r)	 ^ (Px � 1)(:� _ :	) ! (Px � s� r)(� _ 	),

A8 (Px � s)� ^ (Px < r)	 ! (Px < s� r)(� _ 	),

A9 (Px < s)�! (Px � s)�,

A10 (Px � s)�! (Px > r)�; for s > r,

A11 (Px > s)�! (Px � s+)�; where s+ = s� 1
n

,

A12 (8x)�! (Px � 1)�,

where �; 	 2 F; s; r 2 R and x 2 V � is the sequence of di�erent variables, for
� < m:

A weak probability structure of type � is

A = (A;Rp; ��)
p2Pr;��V

;

where A is a nonempty set, Rp � A�(p); �� is a �nitely additive probability measure
on A� with range R, such that the set fbÆx j j=A �[b]; b � (V n rangex) = a �
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(V n rangex); b 2 AV g is �� measurable, for each sequence of variables x 2 V �,
any a 2 AV and any formula � 2 F , where the satis�ability relation is de�ned as
usual (see [4]), with:

j=A (8x)�[a] if for each b 2 AV such that b � (V n rangex) = a � (V n rangex),
we have j=A �[b],

j=A (Px � r)�[a] if ��
�
bÆx

��j=A �[b] and b � (V n rangex) = a � (V n

rangex)
	
� r.

Theorem 1. Let � � F , �; 	 2 � , A is a structure of type �, a 2 AV .
Then:

(i) If � : V (�)
1�1
�! V , then j=A S(�)�[a] i� j=A �[aÆ(� �V )].

(ii) If � : Vf (�) �! V n Vb(�), then j=A Sf (�)�[a] i� j=A �[aÆ(� �V )].

(iii) If � is a theorem in L, then � is valid.

(iv) If the set of formulas � is satis�able, then � is consistent in L.

Let V � be a set of symbols such that V � � V and V � \ Pr = ;. Let
L� = L(V �; �;m; R) and let F � be a set of formula of L�.

A formula � is a V-formula in L� if � 2 F � and Vb(�) � V . A formula � is
V-sentence in L� if � 2 F �, Vb(�) � V and Vf (�) � V � n V .

Assume that V � 6= V and � is a maximal consistent set of V -sentences in L�.
Let A(�; V ) be a structure de�ned as follows:

A = V � n V;

Rp = fx 2 A�(p) j p(x) 2 �g; for each p 2 Pr;

��fbÆx j Sf (b)� 2 �; b�(V n rangex) = a�(V n rangex)g =

maxfr j Sf (a)(Px � r)� 2 �g;

for each V -formula �, each a 2 AV and for each sequence of variables x 2 V �.

Lemma 1. Suppose that

(i) � is a maximal consistent set of V -sentences in L�,

(ii) for any V -sentence (8x)	 there exists a � : rangex �! V � n V such that
Sf (�)	 ! (8x)	 2 � .

Then

(a) A(�; V ) is a weak probability structure of type �,

(b) for each V -formula � in L� and each function b 2 (V � n V )V we have

j=A �[b�V �] i� Sf (b)� 2 �:

Proof . (a) First, we shall prove that �� is a well de�ned �nitely additive

measure on A�, for any ordinal �, � � V .
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(1) �� is a well de�ned function.

We shall show that the measure of any subset of A� does not depend on the
de�ning formula of that subset. Let

fbÆx j Sf (b)� 2 �; b�(V n rangex) = a�(V n rangex)g =

fbÆx j Sf (b)	 2 �; b�(V n rangex) = a�(V n rangex)g:

Then, for every b 2 AV such that b�(V n rangex) = a�(V n rangex), we have

Sf (b)(�! 	) 2 �:

By (ii), for V -sentence (8x)Sf (a�(V n rangex))(� ! 	) there exists a � 2 Arangex

such that

Sf (�)Sf (a�(V n rangex))(�! 	) ! (8x)Sf (a�(V n rangex))(� ! 	) 2 �:

This means that for b = � [ a�(V n rangex) we have

Sf (b)(�! 	) ! (8x)Sf (a�(V n rangex))(�! 	) 2 �:

By using R1 (see [4]) and A12, it follows

(Px � 1)Sf (a�(V n rangex))(� ! 	) 2 �:

By assuming

��fbÆx j Sf (b)� 2 �; b�(V n rangex) = a�(V n rangex)g 6=

��fbÆx j Sf (b)	 2 �; b�(V n rangex) = a�(V n rangex)g;

we obtain the existence of an s 2 R such that

(Px � s)Sf (a�(V n rangex))� 2 � and (Px � s)Sf (a�(V n rangex))	 =2 �:

Thus

(Px � s)Sf (a�(V n rangex))� ^ :(Px � s)Sf (a�(V n rangex))	^

(Px � 1)Sf (a�(V n rangex))(:� _ 	) 2 �:

But, by A8

(Px � :s)Sf (a�(V n rangex)):� ^ (Px < s)Sf (a�(V n rangex))	^

:(Px < 1)Sf (a�(V n rangex))(:� _ 	) =2 �:

A contradiction.

(2) ��(A�) = 1 and ��(;) = 0.
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Since A� = fbÆx j Sf (� _ :�) 2 �; b � (V n rangex) = a � (V n rangex)g, for
any a 2 AV and � 2 F , we have

��(A�) = maxfr j Sf (a)(Px � r)(� _ :�) 2 �g:

It follows from Sf (a)(Px � 1)(� _ :�) 2 � that ��(A�) = 1.

Now, we shall prove that ��(;) = 0. Obviously,

; = fbÆx j Sf (b)(� ^ :�) 2 �; b�(V n rangex) = a�(V n range x)g:

Assuming that there exists r > 0 such that Sf (a)(Px � r)(� ^ :�) 2 � we obtain

(Px > :r)Sf (a�(V n rangex))� _ :Sf (a�(V n rangex))� =2 �:

It follows from A9 and A10 that

(Px � 1)Sf (a�(V n rangex))� _ :Sf (a�(V n rangex))� =2 �:

Hence, we have Sf (a)(Px � 1)(�_:�) =2 � , which contradicts the �rst part of (1).

(3) It follows from A5 and (7.3) that �� is a nonnegative function.

(4) ��(A� nB) = :��(B), for every set B of the form B = fbÆx j Sf (b)� 2 � ,
b�(V n rangex) = a�(V n rangex)g.

If B is of the above form, then

A� nB = fbÆx j Sf (b):� 2 �; b�(V n rangex) = a�(V n rangex)g:

Let ��(B) = s, 0 < s < 1. Then maxfr j Sf (a)(Px � r)� 2 �g = s and hence

(Px � s)Sf (a�(V n rangex))� 2 � and (Px � s+)Sf (a�(V n rangex))� =2 �:

It follows from A11 that

:(Px > s)Sf (a�(V n rangex))� 2 �:

So,
Sf (a)(Px � :s):� 2 �:

It means that ��(A� n B) � :s. Assuming that there exists a t > :s such that
Sf (a)(Px � t):� 2 � and by using A10 we obtain

(Px > :s):Sf (a�(V n rangex))� 2 �;

which contradicts ��(B) = s.

Now, let ��(B) = 0 and ��(A� n B) 6= 1. Then Sf (a)(Px � 1):� =2 � , and
hence

(Px > 0)Sf (a�(V n rangex))� 2 �:
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It follows from A11 that

(Px � 0+)Sf (a�(V n rangex))� 2 �;

contradicting our assumption ��(B) = 0. Similarly, for ��(B) = 1.

(5) �� is an increasing function.

Let C = fb Æ x j Sf (b)� 2 �; b � (V n rangex) = a � (V n rangex)g,
D = fb Æx j Sf (b)	 2 �; b � (V n rangex) = a � (V n rangex)g and C � D.
Then, as in (1),

(Px � 1)(Sf (a�(V n rangex))�! Sf (a�(V n rangex))	) 2 �:

Putting ��(C) = s; ��(D) = t and t < s, we have

(Px � :s):Sf (a�(V n rangex))� 2 � and (Px < s)Sf (a�(V n rangex))	 2 �:

It follows from A8 that

(Px < 1)(:Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �:

A contradiction.

(6) �� is a �nitely additive function.

Let C = fbÆx j Sf (b)� 2 �; b � (V n rangex) = a � (V n rangex)g; D =
fbÆx j Sf (b)	 2 �; b � (V n rangex) = a � (V n rangex)g; C \ D = ;, ��(C) =
sand ��(D) = t. Then

(Px � s)Sf (a�(V n rangex))� 2 � and (Px � t)Sf (a�(V n rangex))	 2 �:

From C \D = ; it follows

(Px � 1):(Sf (a�(V n rangex))� ^ Sf (a�(V n rangex))	) 2 �:

By A7, we have

(Px � s� t)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �:

Since C � A� nD, we have, by (5), ��(C) � :t, and hence s + t � 1. So,

(Px � s + t)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �:

Now, we prove that

(Px � (s + t)+)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) =2 �:

From (Px � s+)Sf (a�(V n rangex))� =2 � , by A11, we obtain

(Px � s)Sf (a�(V n rangex))� 2 �:
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From this and
(Px < t+)Sf (a�(V n rangex))	 2 �;

by A8, we have

(7) (Px < s� t+)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �:

Suppose s < :t. Then t+ � :s, and thus s� t+ = s + t+. It follows that

(Px < s + t+)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �; i.e.,

Sf (a)(Px � s + t+)(� _ 	) =2 �:

We complete the proof in this case because (s + t)+ = s + t+.

In the case s = 1� t, we have s� t+ = 1. It follows from (7) that

(Px < 1)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �:

On the other hand, since t + s = 1, from

(Px � t + s)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �

we have

(Px � 1)(Sf (a�(V n rangex))� _ Sf (a�(V n rangex))	) 2 �:

A contradiction.

(b) By induction on the complexity of the formula � we shall prove

j=A �[b�V �] i� Sf (b)� 2 �:

From this fact, the de�nition of �� and the �niteness of R it will follow that the set
faÆx j a�(V � n rangex) = b�(V � n rangex); j=A �[a]g is ��-measurable, for each

V -formula �, each b 2 AV �

and every sequence of variables x 2 V �. It will mean
that A(�; V ) is a weak probability structure.

Let � = p(x); b 2 AV ; x 2 V �(p). Then

j=A p(x)[b�V �] i� b�V �Æx 2 Rp; by de�nition of the satis�ability relation,

i� bÆx 2 Rp

i� p(bÆx) 2 �; by de�nition of Rp,

i� Sf (b)p(x) 2 � , by de�nition of Sf :

The steps � = 	 _ � and � = :	 are easy.

Let � = (8x)	 and j=A (8x)	 [b �V �]. Then for each a 2 AV �

, such that a �

(V �nrangex) = b�(V �nrangex) we have j=A 	 [a]. We must show Sf (b)(8x)	 2 � .
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The formula (8x)Sf (b�V nrangex)	 is a V -sentence, and hence, by (ii), there exists
a � 2 (V � n V )rangex such that

Sf (�)Sf (b�V n rangex)	 ! (8x)Sf (b�V n rangex)	 2 �:

Let d = � [ b � (V � n rangex). Then d 2 (V � n V )V
�

and d � (V � n rangex) =
b�(V � n rangex). So, j=A 	 [d]. By induction hypothesis,

Sf (d�V )	 2 �:

Since
Sf (d�V )	 = Sf (�)Sf (b�(V n rangex))	;

it follows from R1 that

(8x)Sf (b�(V n rangex)	 2 �:

Conversely, suppose that
Sf (b)(8x)	 2 �; i.e.,

(8x)Sf (b�(V n rangex))	 2 �:

Let c 2 (V � n V )V
�

be such that c�(V � n rangex) = b�(V � n rangex). Then

Sf (c)	 = Sf (c�rangex)Sf (b�(V � n rangex))	:

By A3, we have

(8x)Sf (b�(V n rangex)) ! Sf (c�rangex)Sf (b�(V � n rangex))	 2 �:

It follows from R1 that
Sf (c)	 2 �:

By induction hypothesis, we have

j=A 	 [c]:

Finally, by the de�nition of the satis�ability relation, we have

j=A (8x)	 [b�V �]:

Now, let � = (Px � r)	 . Then

j=A (Px � r)	 [b�V �]

i� ��fcÆx j c�(V n rangex) = b�(V n rangex); j=A 	 [c�V �]; c 2 AV g � r

i� ��fcÆx j c�(V n rangex) = b�(V n rangex); Sf (c)	 2 �; c 2 AV g � r

i� maxfs j Sf (b)(Px � s)	 2 �g � r

i� Sf (b)(Px � r)	 2 �:

The proof is complete.
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Theorem 2. If � is a consistent set of formulas in L, then � is satis�able
in some weak probability structure A of type �.

Moreover, if n is a cardinal and we have

F � n;

and

for each p 2 Pr; n = n
�(p);

then A may be taken to be of power n.

The proof may be found in [4].

Corollary 1. Let ��F . Then, � is satis�able i� every �nite subset of � is
satis�able.
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