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A FIRST ORDER PROBABILITY LOGIC - LPQ
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Abstract. A conservative extension of the classical �rst order logic which al-
lows making statements about probability is introduced. Some classes of probability
models are described. An in�nitary axiomatic system which is sound and complete
with respect to these classes of models is given.

1. Introduction

The �rst order probability logic LP is given in [3,4] Its language is obtained
by adding probability operators of the form P�s to the classical �rst order language,
where s belongs to a set Index which is a �nite subset of [0; 1]. Formulas in the
scope of a probability operator are classical �rst order formulas. LP allows making
formulas such as P�s�, with the intended meaning \the probability of � is greater
then or equal to s". In [3,4] a �nitary axiomatic system is provided, and the
corresponding extended completeness theorem is proved.

In this paper we investigate another �rst order probability logic, denoted LPQ,
whose language contains a list of probability operators of the form mentioned above,
but the set Index is the set of all rational numbers from [0; 1]. It turns out that such
an assumption makes LPQ di�erent from LP . Namely, the compactness theorem
does not hold for LPQ, while it holds for LP : consider an arbitrary classical sentence
� and the set T = f:P=0�g [ fP<1=n� : n is a positive integerg; although every
�nite subset of T is satis�able, the set T is not. A consequence is that, if we want the
extended completeness theorem, we cannot obtain a �nitary axiomatization. In this
paper, we describe some classes of probability models, give an axiomatization with
an in�nitary rule, and prove the corresponding extended completeness theorems.
We also discuss (un)decidability of LPQ.
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2. Syntax

Let Index be the set of all rational numbers from [0; 1]. The language of
LPQ is a countable classical �rst order language extended by a list of probability
operators P�s, for every s 2 Index. Let us denote the set of all classical �rst order
formulas by ForC . The formulas from the set ForC will be denoted by �, �; . . . . If
� 2 ForC , and s 2 Index, then P�s� is a basic probability formula. The set of all
probability formulas is the least set ForP containing all basic probability formulas,
and closed under formation rules: if A;B 2 ForP , then :A, A ^ B 2 ForP . The
formulas from the set ForP will be denoted by A, B; . . . Let ForC [ForP be denoted
by For, and the set of all sentences from For by Sentences. The formulas from the
set For will be denoted by �, 	; . . . We use the usual abbreviations for the other
classical connectives, and also denote :P�s(�) by P<s(�), P�1�s(:�) by P�s(�),
:P�s(�) by P>s(�), and � ^ :� for an arbitrary � 2 For by ?.

3. Semantics

We use the possible-worlds approach to give semantics to formulas and in-
terpret formulas such that they remain either true or false. An LPQ-model is a
structure M = hW;D; I; A; �i where:

� W is a non empty set of objects called worlds,

� D is a function which assigns to every w 2 W a domain D(w),

� I is a function which assigns to every w 2 W a classical interpretation I(w),

� A is an algebra of subsets of W , and

� � is a �nitely additive probability measure, � : A! [0; 1].

Let M = hW;D; I; A; �i be an LPQ-model. A variable valuation v assigns
some element of the domain D(w) to every world w and every variable x, i.e.,
v(w)(x) 2 D(w). If D(w) is a domain, d 2 D(w), and v is a valuation, then
vw[d=x] is a valuation like v except that vw[d=x](w)(x) = d. The values of terms
and classical formulas in a world is de�ned as usual. For example, the value of a
classical formula (8x)� in w 2W for a given valuation v (denoted by I(w)((8x)�)v)
is true if and only if for every d 2 D(w), I(w)(�)vw [d=x] is true. A classical formula
holds in a world w of an LPQ model M (denoted by (M;w) j= �) if for every
valuation v, I(w)(�)v is true.

Let M be an LPQ model and � a classical sentence. The set fw 2 W :
(M;w) j= �g is denoted by [�]M . We will omit the subscript M from [�]M and
write [�], if M is clear from the context. An LPQ-model M is measurable if [�] is
measurable for every classical sentence �. In this paper we will focus on the class
LPQ;Meas of all measurable LPQ-models, as well as on its subclasses: LPQ;All, the
class of all LPQ;Meas-models such that a model M = hW;D; I; A; �; i belongs to
LPQ;All if A is the power set of W , and LPQ;� , the class of all LPQ;Meas-models
with �-additive measure.

Let L be one of the above class of models. The satis�ability relation j=�
L� Sentences ful�lls the following conditions:
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� if � 2 ForC , M j= � if (8w 2 W )(M;w) j= �,

� M j= P�s� if �([�]) � s,

� if A 2 ForP , M j= :A if M 6j= A, and

� if A;B 2 ForP , M j= A ^ B if M j= A and M j= B.

A set T of sentences is L-satis�able if there is an L-model M such that every
sentence from T is satis�ed in M . A sentence � 2 For is L-valid if it is satis�ed in
every L-model.

4. Complete Axiomatization

The axiom schemata for LPQ are:

(1) axiom schemata of the classical �rst order logic
(2) P�0�
(3) P�r�! P<s�, s > r
(4) P<s�! P�s�
(5) (P�r� ^ P�s� ^ P�1(:(� ^ �)))! P�min(1;r+s)(� _ �)
(6) (P�r� ^ P<s�)! P<r+s(� _ �), r + s � 1

while the inference rules are:

(1) From � and �! 	 infer 	.
(2) From � infer (8x)�
(3) From � infer P�1�.
(4) From A! P�s�1=k�, for every integer k � 1=s, and s > 0 infer A! P�s�.

The main di�erence between the axiomatic system for the logic LP and the
one given above is that the inference rule 4 does not appear in the former system.
Note that formulas obtained by applications of the inference rules must obey the
formation rules, i.e., in the inference rules 2 and 3, � must be a classical formula.
A formula � 2 For is deducible from a set T of sentences (T ` �) if there is an
at most countable sequence of formulas �0;�1; . . . ;�, such that every formula in
the sequence is an axiom or a formula from the set T , or it is derived from the
preceding formulas by an application of an inference rule. A set T of sentences is
inconsistent if T ` ?, otherwise it is consistent.

In the proof of the completeness theorem the Henkin procedure will be used.
We begin with some auxiliary statements.

Theorem 4.1 (Deduction theorem) If T � Sentences, � 2 Sentences, and

T [ f�g ` 	, then T ` � ! 	, where � and 	 are either both classical or both

probability formulas.

Proof. We use the trans�nite induction on the length of the proof of 	 from
T [f�g. For example, we consider the case where B = C ! P�sÆ is obtained from
T [ fAg by an application of the inference rule 4, and A is a probability sentence.
Then:

T;A ` C ! P�s�1=kÆ, for every integer k � 1=s
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T ` A ! (C ! P�s�1=kÆ), for every integer k � 1=s, by the induction
hypothesis

T ` (A ^ C)! P�s�1=kÆ, for every integer k � 1=s

T ` (A ^ C)! P�sÆ, by the inference rule 4

T ` A! B

The other cases follow similarly. �

Theorem 4.2. Let � and � be classical sentences. Then:

(1) ` P�1(�! �)! (P�s�! P�s�)
(2) ` P�r�! P�s�, r > s

Proof. 1. If s = 0, the statement obviously holds. So, let s be a rational
number from (0; 1]. First note that by an application of the inference rule 3, we
obtain

(1) ` P�1(:� _ :?)

from ` :� _ :?. Similarly, from ` (:� ^ :?) _ ::� we have

(2) ` P�1((:� ^ :?) _ ::�):

By the axiom 5, we have ` (P�s�^P�0:?^P�1(:�_:?))! P�s(�_?). Since
` P�0:? by the axiom 2, from (1) it follows that

(3) ` P�s�! P�s(� _ ?):

The expressions P�s(�_?) and :P�s::� denote P�1�s(:�^:?), and P<s::�,
respectively. By the axiom 6, we have ` (P�1�s(:�^:?)^P<s::�) ! P<1((:�^
:?)_::�). From (2) we obtain that ` (P�1�s(:�^:?)^P<s::�) ! (P<1((:�^
:?) _ ::�) ^ :P<1((:� ^ :?) _ ::�). It follows that ` P�1�s(:� ^ :?) !
:P<s::�, i.e.

(4) ` P�s(� _ ?)! P�s::�:

From (3) and (4) we obtain:

(5) ` P�s�! P�s::�:

The negation of the formula P�1(�! �)! (P�s�! P�s�) is equivalent to
P�1(:�_�)^P�s�^P<s�. By (5) this formula implies P�1(:�_�)^P�s::�^P<s�
which can be rewritten as P�1(:� _ �) ^ P�1�s:� ^ P<s�. From the axiom 6,
P�1�s:� ^ P<s� ! P<1(:� _ �), and P<1� = :P�1�, we have ` :(P�1(� !
�)! (P�s�! P�s�))! P�1(:�_ �)^:P�1(:�_ �), a contradiction. It follows
that ` P�1(�! �)! (P�s�! P�s�).
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2. By the axioms 3 and 4, we have ` P�r�! P>s�, for r > s, and ` P>s�!
P�s�. Thus, ` P�r�! P�s�, for r > s. �

Theorem 4.3. (Completeness theorem for LPQ;Meas) Let T � Sentences.
Then, T is consistent if and only if T has an LPQ;Meas-model.

Proof. The (()-direction follows from the soundness of the above axiomatic
system. In order to prove the ())-direction let us suppose that T is a consistent
set of sentences, that clconseq(T ) is the set of all classical sentences that are con-
sequences of T and that A0; A1; . . . is an enumeration of all probability sentences.
We de�ne a sequence of sets Ti, i = 0; 1; 2; . . . such that:

(1) T0 = T [ clconseq(T ) [ fP�1� : � 2 clconseq(T )g
(2) for every i � 0, if Ti [ fAig is consistent, then Ti+1 = Ti [ fAig, otherwise,

Ti+1 = Ti [ f:Aig,
(3) if the set Ti+1 is obtained by adding a formula of the form :(B ! P�s
),

then for some positive integer n, B ! :P�s�1=n
, is also added to Ti+1, so
that Ti+1 is consistent.

Every Ti is a consistent set. T0 is consistent because it is a set of conse-
quences of a consistent set. Suppose that Ti is obtained by the step 2 of the above
construction and that neither Ti [ fAig, nor Ti [ f:Aig are consistent. It follows
by the deduction theorem that Ti ` Ai ^ :Ai, which is a contradiction. Consider
the step 3 of the construction. If Ti [ fB ! P�s
g is not consistent, then the set
Ti can be consistently extended as above. Suppose that it is not the case. Then:

(1) Ti;:(B ! P�s
); B ! :P�s�1=k
 ` ?, for every k > 1=s, by the hypothe-
sis

(2) Ti;:(B ! P�s
) ` :(B ! :P�s�1=k
) for every k > 1=s, by the deduction
theorem

(3) Ti;:(B ! P�s
) ` B ! P�s�1=k
 for every k > 1=s, from 2, by the
classical tautology :(�! 
)! (�! :
)

(4) Ti;:(B ! P�s
) ` B ! P�s
, from 3, by the inference rule 4
(5) Ti ` :(B ! P�s
)! B ! P�s
, from 4, by the deduction theorem
(6) Ti ` B ! P�s


Since Ti [fB ! P�s
g is not consistent, from Ti ` B ! P�s
 it follows that
Ti is not consistent, a contradiction.

Let T � = [iTi. The set T
� is a deductively closed set that does not contain

all sentences. First note that for every � 2 Sentences, if Ti ` �, then it must be
� 2 T �. If � is a classical sentence, then T ` �, and � 2 T0. If � = Ak is a
probability sentence, and � 62 T �, then Tmaxfi;kg+1 ` � and Tmaxfi;kg+1 ` :�, a
contradiction. Since T is a consistent set, there is at least a classical sentence �
such that T 6` �. If A is a probability sentence, it cannot be A = Ak 2 T �, and
:A = Am 2 T �, because Tmaxfk;mg+1 is consistent. Finally, we can prove that if
A is a probability sentence, and T � ` A, then A 2 T �. Suppose that the sequence
�1;�2; . . . ; A of formulas which forms the proof of A from T � is countably in�nite
(otherwise there must be some k such that Tk ` A, and it must be A 2 T �). We
can show that for every i, if �i is obtained by an application of an inference rule,



6 Ra�skovi�c, Ognjanovi�c

and all the premises of �i belong to T �, then �i 2 T �. Suppose �i is obtained
by the inference rule 1 (modus ponens) and its premises �1

i and �2
i belong to T �.

There must be some k such that �1
i ;�

2
i 2 Tk. From Tk ` �i, it follows �i 2 T �.

If �i is obtained by the inference rules 2 and 3, then T0 ` �i, and �i 2 T �.
Suppose that �i = B ! P�s
 is obtained by the in�nitary inference rule 4, and
that the premises �1

i = B ! P�s�1=k
;�
2
i = B ! P�s�1=(k+1)
; . . . belong to

T �. If �i 62 T �, by the step 3 of the construction of T �, there is some j > 1=s,
such that B ! :P�s�1=j
 2 T �. Let l = maxfk; jg. By the axioms 3 and 4,
B ! P�s�1=l
 2 T �, and B ! :P�s�1=l
 2 T �. There must be a set Tm which
also contains these formulas. It follows that Tm [ fBg is not consistent. Thus,
B 62 T �, and there is some j such that :B 2 Tj , Tj ` B ! ?, Tj ` B ! P�s
, and
B ! P�s
 2 T �, which is a contradiction. Hence, from T � ` A, it follows A 2 T �.

The set T � is used to construct a tupleM = hW;D; I; f[�] : � is a classical sen-
tenceg; �; i, where:

� W = fw : w j= clconseq(T )g contains all the classical �rst order interpreta-
tions with at most countable domains that satisfy the set clconseq(T ) of all
classical consequences of the set T ; the corresponding domains are denoted
by D(w),

� D maps every w 2 W to D(w),

� I(w) is the interpretation w,

� � : f[�] : � is a classical sentenceg ! [0; 1] such that �([�]) = supfs : P�s� 2
T �g.

The axioms guarantee that everything is well de�ned. For example, by the
classical reasoning we can show that f[�] : � is a classical sentenceg is an algebra
of subsets of W . The theorem 4.2.1 implies that if [�] = [�], then �([�]) = �([�]).
From the axioms 2{6 about probability it follows that � is a �nitely additive prob-
ability measure.

By the induction on the complexity of formulas we can prove that for every
sentence �, M j= � i� � 2 T �. For example, let � be a classical sentence. If
� 2 clconseq(T ), then by the de�nition of M , M j= �. Conversely, let M j= �.
Then, by the completeness of the classical �rst order logic, � 2 clconseq(T ). If
� = P�s� 2 T �, then supfr : P�r(�) 2 T �g = �([�]) � s, and M j= �. For
the other direction, suppose that M j= �, i.e., that supfr : P�r(�) 2 T �g � s. If
�([�]) > s, then, by the well known property of supremum and monotonicity of �
(the theorem 4.2.2), � 2 T �. Let �([�]) = s. If � 62 T �, then by the step 3 of the
construction of T �, for some integer k > 1=s, :P�s�1=k� 62 T �. It follows that s
cannot be the supremum of the set fr : P�r� 2 T �g, which is a contradiction. The
other cases follow easily. �

Theorem 4.4. (Completeness theorem for LPQ;All) Let T � Sentences.
Then, T is consistent if and only if T has an LPQ;All-model.

Proof. The proof can be obtained by applying the extension theorem for
additive measures [1] on the measure � from the canonical model M described in
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the theorem 4.3. It is proved that there is an additive measure � de�ned on the
power set of W which is an extension of the measure �. �

Theorem 4.5. (Completeness theorem for LPQ;�) Let T � Sentences. Then,

T is consistent if and only if T has an LPQ;�-model.

Proof. By the Loeb process and a bounded elementary embedding [2] we can
transform the canonical modelM from the theorem 4.3 into a �-additive probability
model �M such that for every � 2 Sentences, M j= � i� �M j= �. �

5. Decidability

LPQ-logic is undecidable since it contains the classical �rst order logic. How-
ever, some fragments of LPQ are decidable. One of these fragments is the monadic
�rst order probability logic (without function symbols except constants) in which
the arity of all relation symbols is 1. By the Herbrand theorem, every �rst order
classical sentence � is satis�able if and only if the set E(�) of formulas that form
the Herbrand expansion of � is satis�able. Formulas from E(�) are without vari-
ables and can be understood as formulas in the classical propositional logic. In the
monadic case, for every formula � the set E(�) is �nite. Thus, the satis�ability
of the monadic LPQ-logic can be reduced to the satis�ability of the proposition-
al probability logic. Since the propositional probability logic is decidable [3], the
monadic LPQ-logic is decidable.
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