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Abstract. We the main results concerning the properties of the lattice of
subautomata of an automaton. We characterize certain signi�cant types of elements
and the center of that lattice and describe its direct sum decompositions. We also
show how the properties of this lattice can be used in studying of direct sum de-
compositions of an automaton, and �nally, we treat the problem of representation
of lattices as lattices of subautomata of certain types of automata.

1. Introduction

From its very beginning, the theory of automata, especially the algebraic
one, was based on numerous algebraic ideas and methods. There are two main
reasons for this. The �rst is the fact that automata without outputs, and hence
the automata without outputs belonging to arbitrary automata, can be treated as
algebras whose all fundamental operations are unary, that is as unary algebras.
Of course, the opposite statement also holds, that is any unary algebra can be
treated as an automaton. This makes possible to investigate automata from the
aspect of Universal algebra and to use its ideas, methods and results. On the other
hand, many investigations in the theory of automata have their fundamentals in
the theory of semigroups. Relationships between automata and semigroups, which
one realizes through input, output and transition semigroups of automata, were
shown oneself to be very useful in many investigations in the theory of automata
and the theory of formal languages.

The third algebraic approach to automata, that we present here, is not much
used in Theory of automata, although it has been widely used in other algebra-
ic theories. This is the lattice-theoretical approach to studying algebras, which
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includes studying of lattices of subalgebras, lattices of congruences, lattices of vari-
eties, representations of abstract lattices by such lattices and so on. In this paper we
will deal with the lattices of subautomata of automata (for the results concerning
lattices of congruences of automata we refer to the Sali��'s book [41]).

In Section 2 treat about some fundamental concepts of lattice theory, and
automata theory. In Section 3 we present certain basic properties of the lattice of
subautomata of an automaton: we describe its completely join and meet irreducible
elements, its atoms and dual atoms etc. Section 4 deals with the center of the
lattice of subautomata. We show that it consists of �lters of an automaton, that
it is a complete atomic Boolean algebra, and we give two algorithms for �nding its
atoms. The next section, Section 5, presents the connections which exist between
the lattice of subautomata of an automaton and its direct sum decompositions.
Two central places of the whole paper are Theorem 5.3, which describes the lattice
of all direct sum decompositions of an automaton through the Boolean algebra of
its �lters, and Theorem 5.4, which says that every automaton can be represented
as a direct sum of direct sum indecomposable automata and that the summands in
such a decomposition are the atoms of the Boolean algebra of the �lters of the given
automaton. We also give various characterizations of automata decomposable into
a direct sum of strongly connected automata. In Section 6 we collect the results
that give some relationships between the lattice of subautomata of an automaton
and the lattice of positive quasi-orders on it, and in Section 7 we give a connection
between direct sum decompositions of an automaton and decompositions of its
lattice of subautomata into a direct product. In the last section, Section 8, we
present several theorems that give representations of certain lattices through the
lattices of subautomata of automata.

Some of the results presented in Section 3 were also given in the Sali��'s book
[41]. In Sections 4{7 we present the results of the authors published in [14] and
[17]. The results given in Section 8 are mainly the results of Johnson and Seifert
from [31], and they are taken from the book of J�onsson [32].

2. Preliminaries

In this section we deal with some important concepts of lattice theory and
automata theory that will be used in the paper.

Throughout the paper, N will denote the set of all positive integers, the notion
of poset will be used as a synonym for the notion \partially ordered set" and L will
stand for a complete lattice. The zero and the unity of L will be denoted by 0 and
1, respectively.

A sublattice K of L is called a 0-sublattice (resp. a 1-sublattice) of L if 0 2 K
(resp. 1 2 K), and it is a 0,1-sublattice of L if both 0 2 K and 1 2 K. A subset
K of L is called a complete meet-subsemilattice (resp. join-subsemilattice) of L
if it contains the meet (resp. the join) of each its non-empty subset, and it is a
complete sublattice of L if it is both complete meet- and join-subsemilattice of L.
The set of all complete 0,1-sublattices of L, partially ordered by the set inclusion,
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is also a complete lattice, and it is denoted by CS(L). A non-empty subset K of
L is de�ned to be directed if any �nite subset of K has a upper bound in K. A
non-empty subset K of L is join-dense in L if any element of L is the join of some
subset of K. A subset K of L will be called an order ideal of L if for all a; b 2 L,
b 2 K and a � b implies a 2 K. Dually we de�ne dual order ideals .

An element a 2 L is called an atom of L, if 0 < a and there exists no x 2 L
such that 0 < x < a. An element a 2 L is called completely join irreducible if a 6= 0
and for every subset K of L, a =

W
K implies a 2 K. Dually we de�ne completely

meet irreducible elements of L. The set of all completely join irreducible elements
of L will be denoted by CJI(L), and the set of all completely meet irreducible
elements of L will be denoted by CMI(L).

A mapping ' of L into itself is called extensive, if a � a', for any a 2 L,
isotone, if for all a; b 2 L, a � b implies a' � b', and idempotent , if '2 = ', i.e.
if (a')' = a', for each a 2 L. An extensive, isotone and idempotent mapping of
L into itself is called a closure operator on L. An element a 2 L is called closed

(with respect to ') if a' = a. The set of all closed elements with respect to a
closure operator ' on L is a closure system on L, where by a closure system in L
we mean any complete meet-subsemilattice of L containing the unity of L. As it is
well known (see [39] and [1]), any closure system on L determines a unique closure
operator on L, i.e. there is a bijective correspondence between closure operators
on L and closure systems in L. In the case L = P (U), where P (U) denotes the
Boolean algebra of all subsets of a non-empty set U , closure systems in L are also
called closure systems on U . They are also known as Moore families or intersection
structures on U .

There are two important special types of closure operators and closure sys-
tems. As it is well known, any closure operator on L preserves all meets in L,
but in the general case it does not preserve the joins in L. If a closure operator '
on L preserves the joins of directed subsets of L. i.e. if

�W
i2I ai

�
' =

W
i2I(ai'),

for each directed subset fai j i 2 Ig of L, then it is called an algebraic closure

operator on L, and if it preserves the joins of all non-empty subsets of L, i.e. if�W
i2I ai

�
' =

W
i2I(ai'), for each non-empty subset fai j i 2 Ig of L, then it is

called a complete closure operator on L. Similarly, a closure system C in L is called
an algebraic closure system if it contains the join of any its directed subset, whereas
it is called a complete closure system if it contains the join of any its non-empty
subset. The bijective correspondence mentioned above gives also bijective corre-
spondences between algebraic closure operators and systems, and between complete
closure operators and systems. As it is well known, algebraic closure operators and
algebraic closure systems play a crucial role in the representation of lattices as lat-
tices of subalgebras of algebras and lattices of congruences on algebras (see, for
example, [2], [28], [26] and [32]).

A subset K of a complete Boolean algebra B is called a complete Boolean

subalgebra of B if it is both a Boolean subalgebra and a complete sublattice of B.
The set of all complete Boolean subalgebras of L, partially ordered by set inclusion,
is a complete lattice, and it is denoted by CB(B). A complete Boolean algebra B
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is called atomic if any non-zero element of B is the join of some family of atoms
of B, i.e., if the set of all atoms of B is join-dense in B. As it is well known (see
[44]), a Boolean algebra is a complete atomic Boolean algebra if and only if it can
be represented as the Boolean algebra of subsets of some set.

Let B be a Boolean algebra. For a subset L of B, L0 will denote the set of
complements of elements of L, that is L0 = fa0 j a 2 Lg. We see that the mapping
a 7! a0 is a dual order isomorphism of the poset L onto the poset L0, so L is
a sublattice of B if and only if L0 is a sublattice, and if B is a complete Boolean
algebra, then L is a complete sublattice of B if and only if L0 is a complete sublattice
of B. In both of these cases L and L0 are dually isomorphic as lattices, and we
will say that L and L0 are conjugated sublattices of B. For a 2 L, a0 will be called
the dual of a. If L = L0, then we say that L is a self-conjugated sublattice of B.
Clearly, self-conjugated sublattices of B are exactly its Boolean subalgebras.

Let a non-empty set U and a closure system L on U be given. For a non-empty
H � U , the intersection of all elements of L containing H , denoted by L(H), is the
smallest element of L containing H , and it is called the element of L generated by

H . For a 2 U , L(a) is called the principal element of L generated by a. The set of
all principal elements of L is called the principal part of L. It is known that for a
complete sublattice L of P (U), the principal part of L coincides to the set CJI(L)
of all completely join irreducible elements of L.

Finally, we introduce the notations for some important concrete lattices. Let
U be a non-empty set. Recall that P (U) denotes the Boolean algebra of all subsets

of a non-empty set U . By a quasi-order on U we mean any re
exive and transitive
binary relation on U . The set of all quasi-orders on U , partially ordered by the
usual ordering of binary relations, is a complete lattice that is denoted by Q(U)
and called the lattice of quasi-orders on U . The lattice of equivalence relations on
U , denoted by E(U), is a complete sublattice of Q(U). The lattice of partitions of
U is de�ned as the dual lattice of E(U), and it is denoted by Part (U). Let A be
an algebra of an arbitrary (�xed) type. The lattice of congruences on A, denoted
by Con (A), is a complete sublattice of E(A). The lattice of all subalgebras of A is
denoted by Sub(A).

For unde�ned notions and notations from lattice theory and universal algebra
we refer to the books: Birkho� [1], Burris and Sankappanavar [7], Crawley and
Dilworth [19], Gr�atzer [26], [27], J�onsson [32] and Sali�� [41].

Next we introduce several notions and notations concerning automata. In
what follows, X is always an alphabet, but not necessarily �nite. The set of all
(�nite) words over X , including the empty word e, is denoted by X�. With the
catenation of words as the operation and the empty word as the unit element, X�

is the free monoid over X . By an automaton we mean a system A = (A;X) where
A is a non-empty set of states, not necessarily �nite, X is its input alphabet and
to each symbol x 2 X an unary operation xA on A is assigned. For any a 2 A and
x 2 X , we write axA, or just ax, for xA(a). For any word u = x1x2 � � �xn 2 X�, the
mapping uA : A! A is de�ned as the composition of the mappings xA1 ; x

A
2 ; . . . ; x

A
n ,

that is to say, auA = axA1 x
A
1 � � �x

A
n , for each a 2 A. In particular, eA is the
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identity mapping on A. In order to simplify the notations, if A is known from the
context, we shall write simply au instead of auA, and we shall use the same letter
A to denote an automaton and its set of states. Therefore, automata are de�ned
here as algebras having only unary fundamental operations, so the notions such
as a congruence, subautomaton, generating set etc., will have their usual algebraic
meanings. Viewed from the aspect of automata theory, the automaton de�ned
above behaves in the following way: under the action of an input symbol x 2 X
the automaton A goes from the state a into the state ax, and under the action
of an input word u = x1x2 � � �xn 2 X�, considered as a sequence of fundamental
input symbols, the automaton A goes from the state a into the state au, through
the sequence of states ax1; ax1x2; . . . ; ax1x2 � � �xn�1. In fact, automata de�ned in
that manner are exactly automata without outputs, as they were called in the book
of G�ecseg and Pe�ak [21]. Automata with a one-element input alphabet are called
autonomous automata.

For unde�ned notions and notations concerning automata we refer to the
books: Burris and Sankappanavar [7], G�ecseg and Pe�ak [21], Howie [29], Lallement
[33], Madar�asz and Crvenkovi�c [37], and Sali�� [41].

3. Basic properties of the lattice of subautomata

In this section we deal with the fundamental properties of the lattices of
subautomata and dual subautomata of an automaton and we describe their prin-
cipal elements, completely join and meet irreducible elements and atoms. Except
Theorem 3.7, all other results presented here are new.

Let an automaton A be given. For a subset H of A we say that it is a
subautomaton of A if for a 2 A and u 2 X�, from a 2 H it follows that au 2 H . If
we consider automata as unary algebras, then this de�nition is exactly the de�nition
of subalgebras of A. The set of all subautomata of A is denoted by Sub(A).

On the other hand, a subset H of A is called a dual subautomaton of A if for
a 2 A and u 2 X�, from au 2 H it follows a 2 H . The set of all dual subautomata
of A is denoted by DSub(A). The empty subset of A is de�ned to be both a
subautomaton and a dual subautomaton of A. Of course, the whole A has the
same property.

The place of Sub(A) and DSub(A) inside the Boolean algebra P (A) is de-
termined by the following theorem:

Theorem 3.1. For an arbitrary automaton A, Sub(A) and DSub(A) are complete

0,1-sublattices of P (A).

Moreover, Sub(A) and DSub(A) are conjugated sublattices of P (A).

The property of lattices of subautomata that they are complete sublattices
of corresponding Boolean algebras of subsets, is a very rare property among other
algebras. Namely, it is known that the lattice of subalgebras of an algebra is always
a complete meet-subsemilattice of the corresponding Boolean algebra of subsets,
but often it is not a complete join-subsemilattice of this Boolean algebra.
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The second part of Theorem 3.1 asserts that dual subautomata of an au-
tomaton A are exactly the set-theoretical complements of subautomata of A. For a
subautomaton B of A, the dual subautomaton B0 (the set-theoretical complement
of B in A) is called the dual of B, and vice versa. This fact justi�es the name \dual
subautomaton" that we use here.

For the concept that we call here \dual subautomaton", the authors used
in [14] and [17] the name \consistent subset". This name traces its origin to the
concept of a consistent subset of a semigroup, introduced by P. Dubreil in [20],
1941. This concept was since generalized to the case of an arbitrary universal
algebra, and in the book of V. M. Glushkov, G. E. Ce��tlin and E. L. Yushchenko
[24] we meet it under the name \isolated subset". The notion that we call here
\dual subautomaton" is simply a projection of this general notion to the case of
automata, considered as unary algebras.

Let us consider again an automaton A. For a 2 A we de�ne:

S(a) = fb 2 A j (9u 2 X�) b = aug = fau ju 2 X�g;

D(a) = fb 2 A j (9u 2 X�) a = bug:

These sets have the following property:

Theorem 3.2. Let a be a state of an automaton A. Then

(a) S(a) is the principal element of Sub(A) generated by a;
(b) D(a) is the principal element of DSub(A) generated by a.

For a subset P of an automaton A set

S(P ) =
[

a2P

S(a) = fb 2 A j (9a 2 P )(9u 2 X�) b = aug;

D(P ) =
[

a2P

D(a) = fb 2 A j (9a 2 P )(9u 2 X�) a = bug:

Then S(P ) is called a subautomaton of A generated by P , and D(P ) is called a dual

subautomaton of A generated by P . For a 2 A, S(a) is called a principal subau-

tomaton of A generated by a, and D(a) is called a principal dual subautomaton of
A generated by a. Principal subautomata and dual subautomata have the following
signi�cant property.

Theorem 3.3. Let A be an arbitrary automaton. Then

(a) Completely join irreducible elements of Sub(A) are exactly the principal

subautomata of A;
(b) Completely meet irreducible elements of Sub(A) are exactly the duals of

principal dual subautomata of A.

Except the subautomata and dual subautomata, in the theory of automata
we are also interested in the following kind of sets: A subset H of an automaton A
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is called strongly connected if for each pair a; b 2 H there exists u 2 X� such that
au = b. The set of all strongly connected subsets of A is denoted by Scs(A). Before
we describe some basic properties of this set, we present the following theorem
that gives yet an other interesting relationship between principal subautomata and
principal dual subautomata of an automaton.

Theorem 3.4. Let a and b be two states of an automaton A. Then

S(a) = S(b) , D(a) = D(b):

In view of this theorem we de�ne an equivalence relation 
 on an automaton
A in two ways:

a 
 b , S(a) = S(b) and a 
 b , D(a) = D(b):

For a 2 A, by Ga we denote the 
-class of A containing a. The 
-classes of A can
be characterized as follows:

Theorem 3.5. Lee A be an automaton and a 2 A. Then Ga = S(a) \D(a).

Using the equivalence relation de�ned above we give the following theorem:

Theorem 3.6. Let A be an automaton. Then Scs(A) is an order ideal of P (A).

Furthermore, Scs(A) is the set-theoretical union of principal ideals of P (A)
generated by 
-classes of A.

Strongly connected subsets are very useful when we want to characterize the
atoms and the dual atoms of lattices of subautomata. This will be done by the
next two theorems. The �rst one is taken from the Sali��'s book [41].

Theorem 3.7. (Sali�� [41]) Let A be an automaton. The atoms of Sub(A) are

exactly the strongly connected subautomata of A.

By another theorem we give an answer to a question asked by Sali�� in [41]
(Question II 2.2).

Theorem 3.8. Given an automaton A. The dual atoms of Sub(A) are exactly

the duals of strongly connected dual subautomata of A.

The atoms and dual atoms of the lattice of subautomata can be also charac-
terized in the following way:

Theorem 3.9. The following conditions for a subautomaton B of an automaton

A are equivalent:

(i) B is an atom in Sub(A);
(ii) B = S(a), for any a 2 B;

(iii) B = Ga, for some a 2 A.



172 �Ciri�c, Bogdanovi�c and Petkovi�c

Theorem 3.10. The following conditions for a subautomaton B of an automaton

A are equivalent:

(i) B is a dual atom in Sub(A);
(ii) B0 = D(a), for any a 2 B0;

(iii) B0 = Ga, for some a 2 A.

4. The center of the lattice of subautomata

In the beginning of this section we give some additional de�nitions. An ele-
ment a of a lattice L is called neutral if

(a ^ x) _ (x ^ y) _ (y ^ a) = (a _ x) ^ (x _ y) ^ (y _ a);

for all x; y 2 L, or equivalently, if for arbitrary x; y 2 L the sublattice of L generated
by x, y and a is distributive. If L is a lattice with a zero 0 and a unity 1, the set
of all neutral complemented elements of L is called a center of L, and it is denoted
by C(L). It is known that, 0; 1 2 C(L), C(L) is a sublattice of L and a Boolean
algebra. In the case when L is a distributive lattice, then C(L) consists simply of
all complemented elements of L. For such lattices, the authors used in [14] and
[17] the name \Boolean part" instead of the name \center". Moreover, if L is a
0,1-sublattice of some Boolean algebra, then C(L) = L \ L0.

For many lattices, much information about them can be obtained from certain
properties of their centers, especially in the case when the center is a complete
sublattice of the given lattice. In this section we consider the center of the lattice
of subautomata of an automaton.

The results that will be presented are taken from the paper [14] by �Ciri�c and
Bogdanovi�c. In order to characterize the center of the lattice Sub(A) of subau-
tomata of an automaton A, they introduced the following notion: A subset H of A
is said to be a �lter of A if it is both a subautomaton and a dual automaton of A,
that is if for a 2 A, u 2 X�, au 2 H if and only if a 2 H . The set of all �lters of A
is denoted by F (A). Hence, F (A) = Sub(A) \ DSub(A).

The �rst theorem that we quote here characterizes F (A):

Theorem 4.1. (�Ciri�c and Bogdanovi�c [14]) Let A be an automaton. Then F (A)
is the center of Sub(A), it is a complete sublattice of Sub(A) and a complete atomic

Boolean algebra.

The same authors stated in [14] the question: What are the atoms of F (A)?
In order to give an answer to this question, they investigated the principal elements
of F (A). Namely, F (A) is a complete 0,1-sublattice of Sub(A), and hence a
complete 0,1-sublattice of P (A), so for any a 2 A we can speak about the principal
element of F (A) generated by a, which is called the principal �lter of A generated

by a, and is denoted by F (a). �Ciri�c and Bogdanovi�c obtained in [14] the following:
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Theorem 4.2. (�Ciri�c and Bogdanovi�c [14]) Let A be an automaton. The atoms

of F (A) are exactly the principal �lters of A.

Note that this theorem is a consequence of the fact that an arbitrary complete
Boolean subalgebra of P (U), for a non-empty set U , is atomic and its atoms are
exactly its principal elements.

�Ciri�c and Bogdanovi�c gave two algorithms for �nding the atoms in F (A).
The �rst one is given by the following theorem:

Theorem 4.3. (�Ciri�c and Bogdanovi�c [14]) Let A be an automaton, a 2 A, and
let the sequences fDn(a)gn2N and fSn(a)gn2N of subsets of A be de�ned by:

D1(a) = D
�
S(a)

�
; Dn+1(a) = D

�
S
�
Dn(a)

��
; for n 2 N:

S1(a) = S
�
D(a)

�
; Sn+1(a) = S

�
D
�
Sn(a)

��
; for n 2 N:

Then fDn(a)gn2N and fSn(a)gn2N are increasing sequences of sets and

F (a) =
[

n2N

Dn(a) =
[

n2N

Sn(a):

Clearly, fDngn2N is a sequence of dual subautomata of A, whereas fSngn2N is
a sequence of subautomata of A. Note that the theorem above can be also derived
from a more general result of Tamura concerning the joins of algebraic closure
operators on complete lattices (he called them join-conservative closure operators),
given in [43] (see also [17] and [16]).

When we work with �nite automata, the sequences de�ned above of sets are
also �nite, as the following theorem shows.

Theorem 4.4. (�Ciri�c and Bogdanovi�c [14]) Let A be a �nite automaton. Then

there exists

m = minfk 2 N j (8a 2 A)Dk(a) = Dk+1(a)g;

n = minfk 2 N j (8a 2 A)Sk(a) = Sk+1(a)g;

for which also holds m;n � jAj and F (a) = Dm(a) = Sn(a), for any a 2 A.

5. Direct sum decompositions of automata

An automaton A is a direct sum of its subautomata A�; � 2 Y , in notation
A =

P
�2Y A�, if

A =
[

�2Y

A� and A� \ A� = ?; for � 6= �:
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The equivalence relation on A whose classes are di�erent A�; � 2 Y , is a congruence
on A and is called a direct sum congruence on A, the related partition of A is called
a direct sum decomposition of A, and the automata A�; � 2 Y , are called direct

summands of A. Note that a congruence % on A is a direct sum congruence on A if
and only if A=% is a discrete automaton, where by a discrete automaton we mean
an automaton for which au = a, for each state a and each input word u 2 X�. An
automaton A is called direct sum indecomposable if the universal relation r on A
is a unique direct sum congruence on A.

Direct sum decompositions are one of the most important types of decompo-
sitions of automata. They were �rst de�ned and studied by Huzino in [30], 1958,
who proved that any automaton whose transition monoid is a group can be decom-
posed into a direct sum of strongly connected automata. A more general result
was obtained by Glushkov in [23], 1961, who proved that any invertible automaton
is also a direct sum of strongly connected automata. Thierrin, who called these
automata locally transitive, proved in [45] that the converse of this assertion also
holds. These results of Glushkov and Thierrin will be given in Theorem 5.5. Some
other characterizations of these automata were given by G�ecseg and Thierrin in
[22], 1987.

�Ciri�c and Bogdanovi�c observed in [14] that it is possible to build a general
theory of direct sum decompositions of automata in which lattices of subautomata
play a crucial role. They considered the poset of all direct sum decompositions of
an automaton A inside the lattice Part (A) of all partitions of A. They �rst proved
the following:

Theorem 5.1. (�Ciri�c and Bogdanovi�c [14]) The set of all direct sum congruences

of an automaton A is a principal dual ideal of the lattice E(A) of all equivalence

relations on A.

They also showed how the smallest direct sum congruence on an automaton
(which generates this principal dual ideal) can be constructed.

Let us observe that the class of all discrete automata is a variety of automata
(in the Birkho� sense), when one considers automata (without outputs) as unary
algebras. In a recent papers [10] and [6], the �rst two authors proved that an
algebraic class C of algebras of a given type F is a variety if and only if the set
ConC (A) of all C-congruences on A is a principal dual ideal of the congruence lattice
Con (A), for any algebra A of type F . Here by a C-congruence on A we mean a
congruence on A whose related factor algebra belongs to C. Applying this result to
automata and the variety of discrete automata we obtain that for any automaton
A, the set of all direct sum congruences on A is a principal dual ideal of Con (A).

As a dual of the above theorem one obtains the following:

Theorem 5.2. (�Ciri�c and Bogdanovi�c [14]) The set of all direct sum decomposi-

tions of an automaton A is a principal ideal of the partition lattice Part (A).

Hence, direct sum decompositions of an arbitrary automaton form a complete
lattice, and this lattice was characterized in the following way:
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Theorem 5.3. (�Ciri�c and Bogdanovi�c [14]) The lattice of direct sum decomposi-

tions of an automaton A is isomorphic to the lattice of complete Boolean subalge-

bras of F (A).

If K is an arbitrary complete Boolean subalgebra of F (A), and hence an
atomic Boolean algebra, then the summands in the direct sum decomposition of
A which corresponds to K are exactly the atoms of K. Considering the case
K = F (A), one obtains the following:

Theorem 5.4. (�Ciri�c and Bogdanovi�c [14]) Any automaton A can be represented

as a direct sum of direct sum indecomposable automata.

This decomposition is the greatest direct sum decomposition of A and its

summands are the principal �lters of A.

It may seem that the indecomposability of the summands in the greatest direct
sum decomposition of an automaton A is a natural consequence of the atomicity
of F (A). But, this is not true. Bogdanovi�c and �Ciri�c investigated in a similar way
in [3] the so-called right zero sum decompositions of semigroups with zero. They
used the center of the lattice of left ideals of a semigroup, which is also a complete
atomic Boolean algebra. But, an example was given that there are semigroups with
zero whose summands in the greatest right zero sum decomposition can be further
decomposed into a right sum of semigroups.

In Section 3 we de�ned an automaton A to be strongly connected if for each
pair a; b 2 A there exists u 2 X� such that au = b. These automata were introduced
by Moore in [40], and they can also be de�ned by any of the following conditions:
(1) (8a 2 A)S(a) = A; (2) (8a 2 A)D(a) = A; (3) 
 = r on A. In some other
sources such automata were called transitive automata (for example, by G�ecseg and
Thierrin in [22] and Lallement in [33]) or simple automata (by Glushkov in [23]).
But, we use the name \strongly connected" which is the most frequent.

Following the terminology of G�ecseg and Thierrin [22], an automaton A is
called locally transitive if for all a 2 A and u 2 X� there exists v 2 X� such that
auv = a. Glushkov in [23], called these automata invertible. The next theorem
gives some interesting properties of such automata:

Theorem 5.5. The following conditions on an automaton A are equivalent:

(i) A is a locally transitive automaton;

(ii) A is a direct sum of strongly connected automata;

(iii) 
 is a direct sum congruence on A;
(iv) Sub(A) � DSub(A);
(v) DSub(A) � Sub(A);
(vi) S(a) = C(a), for any a 2 A;
(vii) Sub(A) is a Boolean algebra;

(viii) Sub(A) is an atomistic lattice;

(ix) Sub(A) is a dually atomistic lattice.
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The implication (i)) (ii) was obtained by Glushkov in [23] (see also Huzino
[30]), and the equivalence of (i) and (ii) was proved by Thierrin in [45] (see also
G�ecseg and Thierrin [22]). The equivalence of the conditions (ii){(vii) was estab-

lished by �Ciri�c and Bogdanovi�c in [14], and the equivalence of (iii), (viii) and (ix)
is a consequence of Theorems 3.9 and 3.10.

The next theorem can be viewed as a consequence of the previous one:

Theorem 5.6. (V. N. Salii [41]) An automaton A is strongly connected if and

only if Sub(A) is a two-element Boolean algebra.

6. The lattice of positive quasi-orders

Positive quasi-orders were �rst de�ned and studied by Schein in [42], 1965, in
the theory of semigroups, and they proved to be very useful in many investigations
in this area. �Ciri�c, Bogdanovi�c and Petkovi�c extended in [18] this notion to an
arbitrary universal algebra, and making a specialization of this general notion to
automata, the same authors de�ned in [17] positive quasi-orders on automata, as
follows: A quasi-order � on an automaton A is called positive if a � au, for each
a 2 A and each u 2 X�.

�Ciri�c, Bogdanovi�c and Petkovi�c introduced also in [18] the notion of a di-
vision relation on an universal algebra, generalizing in a natural way the notion
of a division relation on a semigroup, and in [17] they applied this de�nition to
automata, so that they gave the following de�nition: The division relation j on an
automaton A is de�ned by: a j b , (9u 2 X�) b = au. The division relation is
an example of a positive quasi-order on an automaton. Furthermore, the following
holds:

Theorem 6.1. (�Ciri�c, Bogdanovi�c and Petkovi�c [17]) The set Qp(A) of all positive
quasi-orders on an automaton A is the principal dual ideal generated by the division

relation on A of the lattice Q(A) of quasi-orders on A.

Let a quasi-order � be given on a non-empty set U . For a 2 U , the sets
a� = fb 2 U j a � bg and �a = fb 2 U j b � ag are called a left coset and a right coset

of U determined by a, respectively. Similarly, for a non-empty H � U , the sets

H� =
[

a2H

a� and �H =
[

a2H

�a

are called a left coset and a right coset of U determined by H . Bogdanovi�c and �Ciri�c
investigated in [4,5,8,9,11,12,13,15] positive quasi-orders on semigroups from the
aspect of properties of their left and right cosets, and this proved to be very useful
when semilattice decompositions and lattices of ideals of semigroups were stud-
ied. From the same aspect, positive quasi-orders on automata were studied by
�Ciri�c, Bogdanovi�c and Petkovi�c in [17]. They established the following connection
between positive quasi-orders, subautomata and dual subautomata:



The lattice of subautomata of an automaton: a survey 177

Theorem 6.2. (�Ciri�c, Bogdanovi�c and Petkovi�c [17]) The following conditions for

a quasi-order � on an automaton A are equivalent:

(i) � is positive;

(ii) (8a 2 A)(8u 2 X�) (au)� � a�;
(iii) (8a 2 A)(8u 2 X�) �a � �(au);
(iv) a� is a subautomaton of A, for each a 2 A;
(v) �a is a dual subautomaton of A, for each a 2 A.

As was observed by Bogdanovi�c and �Ciri�c in [4], any quasi-order � on a
non-empty set U determines two complete 0,1-sublattices �� and �� of P (U) as
follows:

�� = fH 2 P (U) jH� = Hg and �� = fH 2 P (U) j �H = Hg;

and the mappings � : � 7! �� and � : � 7! �� are dual isomorphisms of Q(U) onto
the lattice CS(P (U)) of all complete 0,1-sublattices of P (U). Moreover, for any
quasi-order � on U , �� and �� are conjugated sublattices of P (U). These facts,
together with Theorem 6.2, give the following two theorems:

Theorem 6.3. (�Ciri�c, Bogdanovi�c and Petkovi�c [17]) The latticeQp(A) of positive
quasi-orders on an automaton A is dually isomorphic to the lattice CS(Sub(A)) of
all complete 0,1-sublattices of Sub(A).

Theorem 6.4. (�Ciri�c, Bogdanovi�c and Petkovi�c [17]) The latticeQp(A) of positive
quasi-orders on an automaton A is dually isomorphic to the lattice CS(DSub(A))
of all complete 0,1-sublattices of DSub(A).

Of course, dual isomorphisms from the above two theorems can be chosen to
be the restrictions of � and � on Qp(A), respectively. For a positive quasi-order �
on an automaton A, the principal elements of the lattices �� and �� are the left
cosets a�, a 2 A, and the right cosets �a, a 2 A, respectively.

It is interesting to note that positive equivalence relations on an automaton A
are exactly the direct sum congruences on A, that is D(A) = E(A) \Qp(A), where
D(A) denotes the set of all direct sum congruences on A. In view of Theorem 6.1,
D(A) is a complete sublattice of Qp(A). Moreover, the following holds:

Theorem 6.5. (�Ciri�c, Bogdanovi�c and Petkovi�c [17]) For an arbitrary automaton

A, the restrictions of mappings � and � to D(A) are dual isomorphisms of D(A)
onto the lattice CB( F (A)) of all complete Boolean subalgebras of F (A).

Using this result the authors gave in [17] another proof of Theorem 5.3. In
the same paper they also studied the operator D : � 7! �D on Qp(A) which to
any � 2 Qp(A) associates the smallest direct sum congruence on A containing �,
denoted by �D. This is a closure operator on Qp(A) and the set of all D-closed
elements of Qp(A) is exactly D(A). The authors gave various characterizations of
the operator D and studied the relationships between D, the mapping � and the
mapping C : L 7! C(L) of CS( Sub(A)) onto CB( F (A)), which to any complete
0,1-sublattice L of Sub(A) associates its center C(L). They proved the following.



178 �Ciri�c, Bogdanovi�c and Petkovi�c

Theorem 6.6. (�Ciri�c, Bogdanovi�c and Petkovi�c [17]) For an arbitrary automaton

A, the following diagram commutes:

Qp(A)
D

����! D(A)

�

??y
??y�

CS(Sub(A))
C

����! CB(F (A))

In other words, for each � 2 Qp(A), (�D)� is the center of ��.

7. Direct product decompositions of the lattice of subautomata

It is known that direct product decompositions of certain kinds of lattices
have very close ties with the properties of their centers. This topic was studied
by Maeda in [38], Libkin in [34,35], Libkin and Muchnik in [36], Bogdanovi�c and
�Ciri�c in [3], �Ciri�c, Bogdanovi�c and Kova�cevi�c in [16] and others. This approach was

also used by �Ciri�c and Bogdanovi�c in [14] where direct product decompositions of
lattices of subautomata were investigated. Using the connections of these lattices
and their centers with direct sum decompositions of automata, these authors proved
the following:

Theorem 7.1. (�Ciri�c and Bogdanovi�c [14]) The lattice Sub(A) of subautomata

of an automaton A is a direct product of lattices L�; � 2 Y , if and only if A is a

direct sum of automata A�; � 2 Y , and L� �= Sub (A�), for each � 2 Y .

Note that Theorem 7.1 can be derived from a more general result of �Ciri�c,
Bogdanovi�c and Kova�cevi�c given in [16] concerning direct product decompositions
of lattices which are distributive, algebraic and dually algebraic.

On the other hand, using the fact that any subautomaton has a greatest direct
sum decomposition, the following was obtained:

Theorem 7.2. (�Ciri�c and Bogdanovi�c [14]) Let A be an arbitrary automaton.

Then the lattice Sub(A) can be represented as a direct product of directly inde-

composable lattices, Sub(A) �=
Q
�2Y Sub(A�), where A =

P
�2Y A� is a repre-

sentation of A as a direct sum of direct sum indecomposable automata.

Finally, a relationship between the direct product indecomposability of the
lattice of subautomata and the direct sum indecomposability of an automaton was
given by the next theorem. Before we state this theorem, we give the following
de�nition: For a non-empty set U , we de�ne a relation G on P (U) by: H G G ,
H \G 6= ?.

Theorem 7.3. (�Ciri�c and Bogdanovi�c [14]) The following conditions on an au-

tomaton A are equivalent:

(i) Sub(A) is a direct product indecomposable lattice;
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(ii) A is a direct sum indecomposable automaton;

(iii) A has no proper �lters;

(iv) F (A) is a two-element Boolean algebra;

(v) for all a; b 2 A there exists a sequence c1; c2; . . . ; cn 2 A such that

S(a) G S(c1) G S(c2) G � � � G S(cn) G S(b);

(vi) for all a; b 2 A there exists a sequence c1; c2; . . . ; cn 2 A such that

D(a) G D(c1) G D(c2) G � � � G D(cn) G D(b):

8. Representation theorems

The Representation of lattices by lattices of subalgebras is one of the most
attractive problems of Lattice Theory and Universal Algebra. As was shown by
Johnson and Seifert in [31], J�onsson in [32] and others, representations by lattices
of subautomata are one of the most important kinds of representations. Such
representations will be treated in this section.

There are two general kinds of the representation problem:

Abstract representation problem: Let L be a complete lattice. Under what condi-
tions L is isomorphic to a subalgebra lattice of some algebra of a given type?

Concrete representation problem: Let L be a closure system on a non-empty set
U . Under what conditions L is a system of subalgebras of some algebra of a given
type with the base set U?

As was proved by Birkho� and Frink in [2], a lattice L can be represented as
a lattice of subalgebras of some algebra if and only if it is algebraic, and similarly,
a closure system L on a non-empty set U can be represented as the system of sub-
algebras of some algebra with carrier U if and only if it is algebraic. However, some
additional conditions are required for lattices and closure systems to be represented
as subautomata lattices and systems of subautomata of some automaton, as it is
shown in the further text.

We �rst consider the abstract representation problem.

For a cardinal k, any automaton whose input alphabet has this cardinality is
called a k-automaton.

Theorem 8.1. (Johnson and Seifert [31]) Let k be an in�nite cardinal. An alge-

braic lattice L is isomorphic to the lattice of subautomata of some k-automaton if

and only if the following conditions are satis�ed:

(a) L is distributive;

(b) CJI(L) is join-dense in L;
(c) principal ideals of CJI(L) have cardinality at most k.

Recall that one considers CJI(L) as a poset, so we use the notion \principal
ideals of CJI(L)" when we consider the principal ideals of this poset.
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Theorem 8.2. (Johnson and Seifert [31]) Let k be a cardinal such that 2 � k �
@0. An algebraic lattice L is isomorphic to the lattice of subautomata of some

k-automaton if and only if the following conditions are satis�ed:

(a) L is distributive;

(b) CJI(L) is join-dense in L;
(c) the principal ideals of CJI(L) are countable.

Theorem 8.3. (Johnson and Seifert [31]) An algebraic lattice L is isomorphic

to the lattice of subautomata of some autonomous automaton if and only if the

following conditions are satis�ed:

(a) L is distributive;

(b) CJI(L) is join-dense in L;
(c) each principal ideal of CJI(L) form a �nite or countable strictly decreasing

sequence.

Applied to �nite lattices, the above results give the following:

Theorem 8.4. (Sali�� [41]) A �nite lattice is isomorphic to the lattice of subau-

tomata of some �nite automaton if and only if it is distributive.

Theorem 8.5. (Sali�� [41]) A �nite distributive lattice is isomorphic to the lattice

of subautomata of some �nite autonomous automaton if and only if each principal

ideal of CJI(L) is a chain.

Now we go to the concrete representation problem for the representation of
closure systems by systems of subautomata:

Theorem 8.6. (Gould [25]) A closure system L on a non-empty set U is the

system of subautomata of some automaton if and only if L is complete.

In fact, the above theorem is a consequence of a more general result proved
in the cited paper.

Theorem 8.7. (Johnson and Seifert [31]) Let k be an in�nite cardinal. A closure

system L on a non-empty set U is the system of subautomata of some k-automaton

if and only if L is complete and the principal elements of L have cardinality at most

k.

Theorem 8.8. (Johnson and Seifert [31]) A closure system L on a non-empty set

U is the system of subautomata of some autonomous automaton if and only if L is

complete and for each a 2 U one of the following conditions holds:

(a) L(a) is �nite and L(b) = L(a), for any b 2 L(a);
(b) for each b 2 L(a) there exists a �nite sequence a = c0; c1; . . . ; cn = b such

that L(ck) = L(ck�1) n fck�1g, for 1 � k � n.

In the above theorem L(a) denotes the principal element of L generated by
a 2 U .
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For proofs of the above theorems see also J�onsson [32].

The section will be �nished by a representation theorem for complete atomic
Boolean algebras by Boolean algebras of �lters of automata:

Theorem 8.9. (�Ciri�c and Bogdanovi�c [14]) Any complete atomic Boolean algebra

can be represented as the Boolean algebra of �lters of some automaton.
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