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CAUCHY NETS AND OPEN COLORINGS

Ilijas Farah

Communicated by �Zarko Mijajlovi�c

Abstract. The Open Coloring Axiom, OCA, (see [6]) is used to prove that RN

equipped with a natural uniform structure is complete, answering a question from
[3].

1. Cauchy nets

The Open Coloring Axiom, OCA, was introduced by Todorcevic in [6] in the
course of studying the Hausdor� completeness (i.e., gap spectrum) of the struc-
ture NN of all integer-valued sequences (see [6, Theorem 8.6], also [2, Chapter IV].
In this note we use the same axiom to deduce another, rather di�erent, complete-
ness property of NN . To express the new kind of completeness, we need to de�ne
an abstract distance on the set RN of all sequences of real numbers. First let

N
"N = fg : N ! N : lim

i!1
g(i) =1g:

For g 2 N"N let

Ug = fhx; yi in RN : jx� yj < g +M for some �xed M 2 Ng:

The symbol jx� yj < g +M is interpreted as pointwise inequality, namely as

jx(n)� y(n)j < g(n) +M for all n.

If x; y are such that jx � yj is uniformly bounded by some �xed M 2 N, we write
x � y, and say that in this case x and y are equivalent . The following simple fact
explains this terminology.

Lemma 1.1. hx; yi 2 Ug for all g 2 N"N if and only if x � y. �
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Therefore, U = fA � (RN)2 : A � Ug for some g 2 N
"Ng is a pseudouni-

formity on R
N (see [Kel]), which can naturally be identi�ed with a uniformity on

the quotient RN= �. Let us note that NN intersects every �-equivalence class, and
therefore U can be consider as a pseudouniformity on this space. One can think of
the elements of index-set N"N as di�erent orders of the in�nity: Note that the set
Ug gets �ner (i.e. smaller) as the growth rate of g gets slower, and therefore only
the slow-growing functions from N

"N matter in the study of U . Since this is exactly
the opposite from the way the structure hN"N ; <�i is usually considered (see e.g.
[6]), let us de�ne a transformation �:N"N ! N

"N by

�(f)(n) = maxfk : f(k) � ng:

Recall that for x; y 2 R
N and m 2 N we write

1. x <m y if x(n) < y(n) for all n � m.

2. x <� y if x <m y for some m 2 N.

Then f <� g implies that �(f) >� �(g) and for every h 2 N
"N there is some

g 2 N
"N such that �(g) <� h. This fact shows that the slow-growing functions

behave the same way as the well-studied fast growing functions, and it will be used
later (see Claim 2.3.)

A Cauchy net in hRN ;Ui is a sequence of the form hxa : a 2 Di for some
directed set hD;<i such that for every g 2 N"N there is d(g) 2 D such that

hxa; xbi 2 Ug

for all a; b � d(g) in D. This net converges to some x1 2 R
N if for every g 2 N

"N

there is a 2 D such that hx1; xbi 2 Ug for all b > a (see [Kel]). We say that a
uniform space hRN ;Ui is complete if every Cauchy net in this space converges.

The natural question whether the space hRN ;Ui is complete was raised by
Kaufhold in [3], and Watson [8] proved that under the Continuum Hypothesis
the answer is negative by constructing an h!1; !1i-gap one of whose sides is a
(necessarily divergent) Cauchy net. Then Steprans [5] proved that Proper Forcing
Axiom, PFA, implies that every Cauchy net in hRN ;Ui converges. The purpose
of this note is to prove that the Open Coloring Axiom, OCA, gives the same
conclusion. Since OCA is a consequence of PFA, this strengthens Steprans' result
and also shows that the statement \Every Cauchy net in hRN ;Ui converges" does
not have any large cardinal strength.

I would like to thank Stevo Todor�cevi�c for several remarks which have con-
siderably improved this note.

2. Cauchy nets under OCA

Let us �rst recall the statement of OCA (see [6, x8].

OCA: If X is a separable metric space and [X ]2 = K0 [ K1 is a partition
such that K0 is an open subset of [X ]2 = ffx; yg : x 6= y; x; y 2 Xg then one of
the following applies:
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(a) There is an uncountable Y � X which is K0-homogeneous, i.e., [Y ]2 � K0

(b) X can be covered by countably many sets, each of which is Kn
1 -homogeneous

(X is �-K1-homogeneous).

Our proof of the following theorem should be compared with the proof of [6,
Theorem 8.7].

Theorem 2.1. OCA implies that the uniform space hRN ;Ui is complete.

Proof. We need to prove that every Cauchy net in hRN ;Ui converges. Let us
start by giving an alternative de�nition of the pseudouniformity U . For g 2 N

"N

de�ne a subset of RN � R
N as follows:

U�g = fhx; yi : jx� yj <� gg;

and consider the pseudouniformity U� = fA � (RN)2 : A � U�g for some g 2 N"Ng.

Lemma 2.2. The uniformities U and U� coincide.

Proof. It suÆces to note that

Ug=2 � U�g � Ug:

To see the left-hand side inequality, note that jx�yj < g=2+M implies jx�yj <k g,
where k is large enough so that g(k) > 2M . For the right-hand side inequality,
observe that jx� yj <k g implies jx� yj < g +maxfg(i) : i � kg. �

Fix a Cauchy net hxa : a 2 Di. For g 2 N
"N pick d(g) 2 D such that

jxa � xbj <
� g

for a; b � d(g). For x 2 RN and g 2 N
"N let

Bg(x) = fy : jx� yj < gg

De�ne a partition [N"N ]2 = K0 [K1 by letting ff; gg 2 K0 if

xd(f)(m)� xd(g)(m) > 2f(m) + 2g(m) + 2

for some m 2 N. (Or equivalently, ff; gg 2 K1 if xd(g) 2 B2f+2g+2(xd(f)).) If

we consider N"N as a subspace of N"N � R
N by identifying g 2 N

"N with the pair
hg; xd(g)i, then K0 becomes an open subset of [N"N ]2.

Assume �rst that N"N can be covered by countably many K1-homogeneous
subsets. Since the poset hN"N ; >�i is �-directed, one of these subsets, call it H, is
co�nal in this poset (namely, for every g 2 N

"N there is g0 2 H such that g >� g0).
Consider the intersection \

g2H

B2g+2(xd(g)):



Cauchy nets and open colorings 149

We claim that this set is nonempty. To see this, it will suÆce to prove that for
every m the intersection of family of intervals

Ig;m = [xd(g)(m)� 2g(m)� 2; xd(g)(m) + 2g(m) + 2] (g 2 H);

is nonempty. But by the K1-homogeneity we have

jxd(f)(m)� xd(g)(m)j � 2f(m) + 2g(m) + 4;

and therefore every two intervals from the family intersect, and by Helly's theorem
every �nite subfamily of this family has the nonempty intersection. By compact-
ness, the intersection of the whole family,

T
g2h Ig;m, is nonempty for every m, and

therefore we can pick

x1 2
1Y

m=1

\

g2H

Ig;m =
\

g2h

B2g+2(xd(g)):

Towards proving that our Cauchy net converges to x1, �x g 2 N
"N and �nd

g0 <� g=2� 2 in H. Then for every a � d(g0) we have

jx1 � xaj < jx1 � xd(g0)j+ jxd(g0) � xaj <
� 2g0 + 2 <� g:

Now assume N"N can not be covered by countably many K1-homogeneous
sets. Since K0 is open, OCA implies that N"N includes an uncountable K0-homo-
geneous set, g� (� < !1).

Claim 2.3. There is a g!1 in N
"N such that g!1 <

� g� for all �.

Proof . Let �:N"N ! N
"N be the function de�ned in the introduction. Pick

f� such that �(f�) <
� g�. Recall that OCA implies that there is an f!1 >

� f� for
all � (see [6, Theorem 8.7]. Then g!1 = �(f!1) is as required. �

Consider functions x� = xd(g�) (� � !1). Since D is directed, for every �
there is a� > d(g�); d(g!1), and by the de�nition of d(�) we have

jx� � x!1 j < jx� � xa� j+ jxa� � x!1 j <
� g� + g!1 <

� 2g�:

Let n� 2 N be such that jx� � x!1 j <
n� 2g�. By going to an uncountable subset,

we can assume that n� = �n and that dx�(i)e = dx�(i)e = �s�(i) for all i � �n. for all
� and some �xed �n 2 N and �s: f1; . . . ; �ng ! N. Therefore if m > �n we have

jx�(m)� x�(m)j < 2g�(m) + 2g�(m)

for all �; � < !1. Moreover, form � �n we have jx�(m)�x�(m)j < 2 for all �; � < !1,
and therefore jx� � x� j < 2g� + 2g� + 2, or equivalently, fg�; g�g 2 K1. But this is
a contradiction, and it completes the proof. �
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3. OCA1

Our �rst proof of Theorem 2.1 used a strengthening of OCA which was ex-
tracted from Steprans' proof [5]. Although it turned out that Theorem 2.1 already
follows from Todor�cevic's OCA, this axiom may turn out to be interesting in its
own right.

If X is a topological space, then

[X ]2 = Kn
0 [Kn

1 ; n 2 N

is a decreasing sequence of open partitions if every Kn
0 is an open subset of [X ]2 (in

a natural topology induced by the topology on X) and Kn
0 � Kn+1

0 for all n.

OCA1: If X is a separable metric space and [X ]2 = Kn
0 [Kn

1 , n 2 N, is a
decreasing sequence of open partitions then one of the following applies:

(a) X =
S
n2N Fn, where each Fn is Kn

1 -homogeneous (in this case we say that
X is �-K�

1 -homogeneous).

(b) There is an uncountable Y � X which is covered by countably many Kn
0 -

homogeneous sets (Y is �-Kn
0 -homogeneous) for every n.

Note that the requirement that sequence Kn
0 is decreasing is, in some sense,

necessary, for if
T
i2sK

i
0 = ; for some �nite set s then clearly no uncountable set

can be simultaneously Ki
0-homogeneous for all i 2 F .

We do not know whether OCA1 (or its stronger version, see (b0) below)
follows from OCA. We can consider a strengthening of OCA1, obtained when (b)
is replaced by:

(b0) There is an uncountable Z � f0; 1gN and y� 2 X (� 2 Z) such that (recall
that �(�; �) is the minimal n such that �(n) 6= �(n)):

fy�; y�g 2 K
�(�;�)
0

for all �; � 2 Z.

If (b0) is satis�ed, then set Y = fy� : � 2 Zg satis�es a strong form of (b),
because for every s 2 f0; 1gn the set

Ys = fy� : � 2 [s]g

is Kn
0 -homogeneous, and therefore Y is covered by 2n many Kn

0 -homogeneous sets
for every n.

The consistency of OCA1, or its stronger version de�ned above, can be
proved in the same way as the consistency of OCA (see [6]), by using the following
lemma instead of [6, Theorem 4.4].

Lemma 3.1. Assume CH, let X be a separable metric space and let [X ]2 =
Kn
0 [K

n
1 be a decreasing sequence of open partitions. If X is not �-K�

1 -homogeneous,
then there is a ccc poset P = P(X;K�

0 ) which forces (b0)
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Proof. By using a diagonalization argument of [6, Theorem 4.4], we can �nd
an uncountable subset Y of X such that poset of �nite Kn

0 -homogeneous subsets
of Y is powerfully ccc (i.e. every its �nite power is ccc) for every n. De�ne poset
P so that its typical condition is p = hF p; gpi = hF; si, where

1. F is a �nite subtree of f0; 1g<N,

2. g is an injection of top-nodes of F into Y

3. fg(s); g(t)g 2 K
�(s;t)
0 for every pair s; t of distinct top-nodes of F .

The ordering on P is de�ned by letting hF p; gpi � hF q ; gqi if

4. F p � F q and gp(t) = gq(s) whenever s � t.

To see that P is ccc, �x hF � ; g�i (� < !1) in P . We can assume that F � = �F
for some �xed tree �F and all �. Let �n be the height of �F and let t1; . . . ; t�k be
its top-nodes. Finite sets fg�(t1); . . . ; g�(t�k)g can be considered as conditions in
k-th power of a poset of �nite K �n

0 -homogeneous subsets of Y . Since this poset is
powerfully ccc, we can �nd � < � such that

fg�(ti); g
�(ti)g 2 K �n

0

for all i = 1; . . . ; �k. Now de�ne an extension hF; gi of h �F ; g�i and h �F ; g�i as follows:

Let F be the end-extension of �F obtained by adding nodes t�i and t
�
i above each ti,

so that tji (i � k; j = �; �) are the top-nodes of F . De�ne g by letting

g(t�i ) = g�(ti); for � = �; � and i = 1; . . . �k.

The choice of �n assures that �(t�i ; t
�
i ) � �n and therefore condition 3. is satis�ed.

Therefore hF; gi extends both hF � ; g�i and hF � ; g�i, and poset P is ccc.

If G is a P-generic �lter, let YG = fgp(t) : p 2 Gg, and for y 2 YG let

�G(y) =
[
ft 2 f0; 1g<N : gp(t) = y for some p 2 Gg:

Note that, by 4., the set on the right-hand side will be a branch (in�nite, by
genericity) of f0; 1g<N, and therefore ZG = f�G(y) : y 2 YGg is a subset of a
Cantor space. If p is a condition in P which forces Y to be uncountable; then p
forces that ZG and YG satisfy (b0). �

Remark 3.2. One of the reasons why can OCA be considered as a natural
axiom is the fact that it has a de�nable version (see [TF], [Fe]). Let us note that a
de�nable version of OCA1 is also true. Namely, if A is an analytic subset of some
Polish space and fKn

0 g is a decreasing sequence of open partitions of [A]2, then
either A is �-K�

1 -homogeneous or there is a continuous embedding g of a Cantor

space into A such that fg(�); g(�)g 2 K
�(�;�)
0 for all distinct �; �.
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