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CONVERGENCE STRUCTURES AND S-ASYMPTOTIC

BEHAVIOUR OF FOURIER HYPERFUNCTIONS

B. Stankovi�c

Communicated by Stevan Pilipovi�c

Abstract. Some structural theorems for the convergence in the space of
Fourier hyperfunctions are proved and applied to the S-asymptotic behaviour of
elements in this space.

Preliminaries

We denote by Dn the compacti�cation of Rn;Dn = Rn[Sn�11 and supply it

with the usual topology. The sheaves ~O and Q on Dn+ iRn are de�ned as follows
(cf. [4], [5]). For any open set U � Dn+ iRn; and Æ � 0 ~O�Æ(U)( ~O0(U) = ~O(U))
consists of those elements of O(U \ Cn) which satisfy jF (z)j � CV;" exp(�(Æ � ")
� jRe zj) uniformly for any open set V � Cn; �V � U , and for every " > 0. Hence,
~OjCn = O. The derived sheaf Hn

Dn( ~O), denoted by Q, is called the sheaf of Fourier
hyperfunctions. It is a abby sheaf on Dn [5]. We need only the space of global
sections Q(Dn).

Let Ik , k = 1; . . . be open intervals, neighbourhoods of 0 2 R, let I = I1 �
� � �� In be a convex neighbourhood of 0 2 Rn and Uj = f(Dn+ iI)\fIm zj 6= 0gg,
j = 1; . . . ; n. The family fDn+iI; Uj ; j = 1; . . . ; ng gives a relative Leray covering

for the pair fDn + iI; (Dn + iI) nDng relative to the sheaf ~O. Thus

Q(Dn) = ~O((Dn + iI)#Dn)
. nX

j=1

~O((Dn + iI)#jD
n);

where (Dn + iI)#Dn = U1 \ � � � \ Un and

(Dn + iI)#jD
n = U1 \ � � � \ Uj�1 \ Uj+1 \ � � � \ Un:
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Similarly Q�Æ; Æ > 0, is de�ned using ~O�Æ instead of ~O (cf. De�nition 8.2.5. in
[4]).

We shall use the notation � for the set of n-vectors with entry f�1; 1g; the
corresponding open orthants in Rn will be denoted by ��; � 2 �. By � we denote
a convex cone in Rn.

A global section f = [F ] 2 Q(Dn) is de�ned by F 2 ~O((Dn + iI)#Dn);

F = (F�), where F� 2 ~O(Dn + iI�); D
n + iI� is an in�nitesimal wedge of type

Rn + i��0, � 2 �, I� = I \ �� . F is the de�ning function for f .

Recall the topological structure of Q(Dn). Let f = [F ] 2 Q(Dn) and

F 2 ~O((Dn + iI)#Dn). Then, a family of semi-norms is de�ned by PK;"(F ) =

sup
z2Rn+iK

jF (z) exp(�"jRe zj)j, " > 0, K �� I nf0g; ~O((Dn+ iI)#Dn) is a Fr�echet

and Montel space, as well as Q(Dn).

Let f = [F ] 2 Q(Dn). Then we associate to f; f(x) �=
P
�2�

sgn�F�(x +

i��0); F� 2 ~O(Dn + iI�) (cf. [4, Theorem 8.5.3 and De�nition 8.3.1]).

The Fourier transform of Q(Dn) is de�ned by the use of functions �� =
��1 . . .��n , where �k = �1; k = 1; . . . ; n; � = (�1; . . . ; �n) and �1(t) = et=(1+et),
��1(t) = 1=(1+et), t 2 R. Let u(x) �=

P
�2�

U�(x+i��0) =
P
�2�

P
~�2�

(�~�U�)(x+i��0),

where �~�U� 2 Q(Dn + iI�), �; ~� 2 � and decreases exponentially along the real
axis outside the closed ~�-th orthant.

The Fourier transform of u is de�ned by

F(u) �=
X
�2�

X
~�2�

F(�~�U�)(� � i�~�0)

X
�2�

X
~�2�

Z

Im z=y�

eiz�(�~�U�)(z)dx; y
� 2 I� ; � = � + i�;

where F(�~�U�) 2 ~O(Dn� iI~�) and jF(�~�U�)(z)j = O(e�wjxj) for a suitable w > 0
along the real axis outside the closed �-orthant. F is an automorphism of Q(Dn).

A continuous function v de�ned on Rn is of infra-exponential growth if for
every " > 0 there exists C" > 0 such that jv(x)j � C"e

"jxj; x 2 Rn. By kvk" =
sup
x2Rn

e�"jxjjv(x)j, " > 0 we de�ne a family of seminorms in the space of functions

of infra-exponential growth. By `v we denote the Fourier hyperfunction de�ned by
v.

An in�nite-order di�erential operator J(D) =
P
j�j�0

b�D
� with lim

j�j!1

p
[j�j]jb�j�!

= 0 is called a local operator. J(D) acts on Q as a sheaf homomorphism and
continuously on Q(Dn).

We shall use the following proposition proved in [7] and [8].
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Proposition 1. Let I be a convex neighbourhood of 0 2 Rn and I� = I \��,
� 2 �. Let ffh; h 2 �g be a family in Q(Dn) such that fh �=

P
�2�

Gh;�(x + i��0),

where Gh;� 2 ~O(Dn + iI�), h 2 �, � 2 �.

A necessary and suÆcient condition that fh converges in Q(Dn) to f �=P
�2�

G�(x + i��0) as khk ! 1, h 2 � is the existence of families fFh;� ;h 2 �g

� ~O(Dn + iI�), � 2 �, such that

1) Fh = (Fh;�) belongs to the same class as Gh = (Gh;�), h 2 �;

2) For every � 2 �; Fh;� converges to F� in ~O(Dn+iI�) as khk ! 1; h 2 �,
where F = (F�) belongs to the same class as G = (G�):

Convergence structure for Fourier hyperfunctions

We shall prove some structural theorems for the convergence in the space of
Fourier hyperfunctions Q(Dn). First we shall give a modi�ed form to Theorem 1.3
in [3]. We give the complete proof of it although we shall use the same method of
the proof as in the theorem mentioned above.

Let B[K] be the set of hyperfunctions with supports in the compact set K �
Rn.

Proposition 2. Let K 0 be a compact set in Rn and K the convex hull of
K 0. Then for every u = [U ] 2 B[K] there exist an elliptic local operator J0(D) and
a function v 2 C1 \ L2 with the properties:

a) jv(x)j � C"e
�(1�")jxj; x 2 Rn, for every " > 0 and `v 2 Q�1(Dn)

b) v(x) = (u � `g)(x), where the function g has the same property a) as the
function v.

c) u = J0(D)v.

Proof. The Fourier transform û of u is an entire function and satis�es the
following growth condition

ju(�)j � C exp
� j�j

'(j�j)
+HK(Im �)

�
;

where '(r) is a monotone increasing function of r > 0 and satis�es: '(0) = 1,
'(r) ! 1 when r ! 1; HK(�) = sup

x2K
x�. (cf. Lemma 1.1 in [3]). We take

an elliptic local operator J(D) which corresponds to the chosen ' as it is done in
Lemma 1.2 in [3]. Now we can consider û as a Fourier hyperfunction with de�ning
function U = (û(�); 0; . . . ; 0). The corresponding function to J(D); J(�) is an
entire function, jJ(�)j � C"e

"j�j for every " > 0. Also, for any prescribed positive
constants A, C, we have

J(�) � C exp(Aj�j='(j�j)) for j�j � 1
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or
jJ�2(�)j � C�2 exp(�2Aj�j='(j�j)); j�j � 1:

We can take without loss of generality that j�j='(j�j) � cj�j with some c > 0
and 0 <  < 1. We have now the following estimate:

jû(�)=J2(�)j � C exp(�cj�j); j�j � 1: (1)

Let V = û=J2, then û = J2V and u = J2(D)F�1(V ). Since û is also an
entire function, û=J2 belongs to O(Dn + ifj�j < 1g). By Theorem 8.2.6 in [4],
F�1(V ) 2 Q�1(Dn). Consequently, v = F�1(V ) 2 Q�1(Dn).

Now we prove that v is rapidly decreasing. For V we know that V = û=J2 =
(û(�)=J2(�); 0; . . . ; ). Then

F�1(V ) '
X
�2�

F�1(��(�)û(�)=J
2(�)) =

X
�2�

F�1(V )�(x� i��0)

Consider F�1(V )�(z) for a � 2 � and z 2 Rn � iI� :

���F�1(V )�(z)
��� = 1

(2�)n

���
Z

Rn

e��zi
û(�)

J2(�)
��(�) d�

���

�
1

(2�)n

Z

Rn

e�y+�x
��� û(�)

J2(�)
��(�)

�
j d�; � = � + i�

uniformly for j�j � (1 � ") for every " > 0. Thus we can write � = �(1 � ")x=jxj
and ���F�1(V )�(z)

��� � 1

(2�)n
e�(1�")jxj

Z

Rn

e�y
��� û(�)

J2(�)
��(�)

��� d�;

where the integral is convergent since y 2 �I� . It follows that F�1(V )�(x + iy),
y 2 �I� , � 2 �, can be extended to real axis and that v(x) is rapidly decreasing.

Furthermore we can give another analytic form to `v. For the holomorphic
function J�2(�); j�j < 1, we can take

jJ�2(�)j � C exp(�j�j); 0 <  < 1; j�j < 1: (2)

By Theorem 8.2.6 in [4], J�2(�) is the Fourier transform of a g 2 Q�1(Dn). By
the same reasons as for v we have jg(x)j � Ce�(1�")jxj for every " > 0; x 2 Rn.
By the Paley{Wiener{Ehrenpreis theorem, û(�) is an entire function of � and for
any " > 0 and any j�j � Æ; Æ > 0, there exists C";Æ such that:

jû(�)j � C";Æe
"j�j; j�j � Æ: (3)
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Consequently, û(�) is a slowly increasing analytic function and (cf. Theorem 8.4.3
in [4]), F(u � g) = û � J�2.

Since (û � J�2)(�) 2 L2, then (u � g)(x) 2 L2, as well. We know that B[K] �
Q�1(Dn), then by Theorem 8.2.8 in [4], u � g 2 Q�1(Dn).

Now we have in correspondence to [3]:

1) `v 2 Q�1(Dn) is de�ned by the function v belonging L2 \C1 (cf. [3]).

2) v(x) = (u � `g)(x), where `g 2 Q�1(Dn); jg(x)j � Ce�(1�")jxj, for every
" > 0; x 2 Rn.

3) jv(x)j � Ce�(1�")jxj, for every " > 0, where C > 0. �

Corollaries of Proposition 2. 1) If we take in Proposition 2, u = Æ,
and v = q, then

Æ = J0(D)`q; (4)

where J0 and q have the following properties:

J0(D) = J(D)J(D); J(D) is an elliptic local operator constructed by any
monotone increasing function '(r), of r > 0 with the properties: '(0) = 1, '(r) !
1 (see Lemma 1:2 in [3]).

`q 2 Q�1(Dn); q 2 L2 \ C1 and jq(x)j � Ce�(1�")jxj; x 2 Rn, for every
" > 0. Also F(q)(�) = J�2(�),

Proof. In the proof of Proposition 2 we have only to take F(u) = F(Æ) = 1.
Then (1) is satis�ed for every J , we constructed using the function ' mentioned
above, because of (2).

2) If f 2 Q(Dn), then there exist an elliptic local operator J0(D) and a
function v 2 C1 which is of \infra exponential" growth such that f = J0(D)v; `v 2
Q(Dn).

Assertion 2) was �rst proved in [3] but without the property of v to be of
\infra exponential" growth. The complete assertion 2) was proved in [2]. We shall
show how it can be proved using 1).

Proof. By (4), by properties of q and Proposition 8.4.8 in [4]

f = (J0(D)q) � f = J0(D)(`q � f):

It remains only to show that (`q � f) is a function v with the required properties.
Because of 1) we can choose for J the same function as it is done in [2].

Let (`q � f) = v. By Proposition 8.4.3 in [4]

F(`q � f)(�) = v̂(�) = J�2(�)F(f)(�) =
X
�;~�2�

J�2F(�~�F�)(x � i�~�0):

or F�1 F(`q � f) = v.
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Let � 2 I~� . We consider

v�;~�(z) =
1

(2�)n

Z

Im�=�

e�iz�
F(�~�F�)(�)

J2(�)
d�; �; ~� 2 �:

Then for every �; ~�

jv
(p)
�;~�(z)j � Cex�

Z

Rn

ey�e�j�j


j�jpd�; z 2 Rn + iI� ; p = 0; 1; . . .

This implies that v
(p)
�;~�(z); z 2 Rn + iI� ; p = 0; 1; . . . and �; ~� 2 �, is

continuable to a continuous function v
(p)
�;~�(x) up to real axis and jv�;~�(x)j � C"e

"jxj

for every " > 0. The function v(x) =
P

�;~�2�

v�;~�(x) has the required properties. �

Theorem 1. Let I be a convex neighbourhood of 0 2 Rn and I� = I \ ��,
� 2 �. Let ffh; h 2 �g be a family in Q(Dn) such that

fh �=
X
�2�

F�;h(x+ i��0); F�;h 2 ~O(Dn + iI); h 2 �; � 2 �: (5)

A necessary and suÆcient condition that fh converges in Q(Dn) when h 2 �,
khk ! 1, is that fh �g converges in Q(Dn); h 2 �; khk ! 1, for every g = [G] 2
Q�Æ(Dn) and for every Æ > 0. More precisely:

a) If fh ! u = [U ] in Q(Dn); h 2 �; khk ! 1, then fh � g ! u � g in
Q(Dn); h 2 �; khk ! 1; g 2 Q�Æ(Dn), Æ > 0.

b) If fh � g ! vg in Q(Dn); h 2 �; khk ! 1, for every g 2 Q�1(Dn), then
there exists an elliptic local operator J0(D) such that fh ! J0(D)vg in Q(Dn),
h 2 �, khk ! 1.

Proof. a) By Proposition 1 we can suppose that fFh;h 2 �g is such that

Fh ! F 2 [U ] in ~O((Dn + iI) 6= Dn); h 2 �; khk ! 1. By Proposition 8.4.3 in
[4] there exists fh � g; fh � g 2 Q(D

n); h 2 �, and

(fh � g)(x) =

Z

Rn

fh(x� �)g(�)d� =
X
�;~�2�

F�;h(x + i��0) �G~�(x+ i�~�0)

where

F�;h(x+ i��0) �G~�(x+�~�0) =

Z

Rn

F�;h(z � � � i�~�)G~�(� + i�~�)d�: (6)

�~� 2 I~� ; �~� is also an open ~� orthant in Rn and z be in Rn + i(I� + I~�).
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Let us consider only (6) for a �xed �; ~� 2 �. We will prove that

lim
h2�;jhj!1

F�;h(x+ i��0) �G~�(x + i�~�0) =

= F�(x + i��0) �G~�(x+ i�~�0): in O(Dn + iI�):

Let " < Æ; K� be a compact set in I� and let �~� be chosen such that y��~� 2 I�
when y 2 K�. Suppose that for ! > 0 we have chosen h0 so that PK�;"(F�;h�F�) <
!, jhj � jh0j, h 2 �. Then

sup
z2Rn+iK�

e�"jxj

�����
Z

Rn

F�;h(z���i�~�)G~�(�+i�~�)d��

Z

Rn

F�(z���i�~�)G~�(�+i�~�)d�

�����
�

Z

Rn

sup
z2Dn+iK�

e�"jxj�"j�j
���F�;h(z � � � i�)� F�(x� � � i�~�)

���e"j�j��G(� + i�~�)
��d�

� !

Z

Rn

e�(Æ�")j�jd�; jhj � jh0j; h 2 �:

b) By Corollary 1) of Proposition 2 there exists a g0 2 Q
�1(Dn) such that

Æ = J0(D)g0; g0 2 Q
�1(Dn):

Consequently
fh = (J0(D)g0) � fh = J0(D)(g0 � fh):

Since J0(D) acts continuously on Q(Dn), fh ! J0(D)vg in Q(D
n), h 2 �, jhj ! 1.

Applications. S-Asymptotics of Fourier hyperfunctions

We shall apply the convergence structures that we proved to the asymptotic
behaviour of Fourier hyperfunctions. There are many de�nitions of asymptotic
behaviour of generalized functions. We mention two of them, which are most used:
the quasi-asymptotics and S-asymptotics.

S-asymptotics was de�ned for distributions [14] for ultradistributions [9, 10]
and for some other generalized functions [17]. It was applied in the quantum
�eld theory [1], for Abelian and Tauberian type theorems, for solutions of partial
di�erential equations,... [11]{[14]. It is easy to extend it to Fourier hyperfunctions
[18].

In fact, the S-asymptotics of Fourier hyperfunctions extends the S-asymptotics
of tempered distributions, because we have the continuous inclusion S' ,! Q(Dn)
(see [3]).

De�nition 1. Suppose that c is a positive continuous function de�ned on Rn

and f 2 Q(Dn): f is said to have the S-asymptotics related to c in the cone
� 2 Rn if there exists

lim
h2�;jhj!1

f(�+ h)

c(h)
= u in Q(Dn); u 6= 0:
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For short, f(x+ h)
s
� c(h) � u(x), h 2 �, jhj ! 1, in Q(Dn). We shall prove

two simple properties of the S-asymptotics.

Proposition 3. a) Let P (D) be a local operator and f 2 Q(Dn). If f(x+h)
s
� c(h) � u(x), h 2 �, jhj ! 1 in Q(Dn), then P (D)f(x + h)

s
� c(h) � P (D)u(x),

h 2 �, jhj ! 1 in Q(Dn), as well.

b) Let supp f � K, where K is a compact set in Rn. Then f 2 Q(Dn) and

f(x + h)
s
� c(h) � 0; h 2 �, jhj ! 1 in Q(Dn) for every positive function c and

every cone �:

Proof. a) This property follows from the property of a local operator; P (D)
maps Q(Dn) into Q(Dn) and this mapping is continuous.

b) Let supp f � K, where K � Rn is a compact set. We take 0 large
enough and such that h+K � Rn nK, jhj � 0: By de�nition of the support of a
hyperfunction, f(x+ h) = 0; jhj � 0. �

The next examples show that De�nition 1 is not a trivial extension of the
S-asymptotics of distributions. Let P (D) be a local operator

X
j�j�0

b�D
�; b� 6= 0:

The Fourier hyperfunction f = 1 + P (D)Æ has the S-asymptotics related to c = 1
in any cone � and with the limit u = 1 but f is not a distribution. For the
S-asymptotics of f it is enough to prove that

lim
h2�;jhj!1

P (D)Æ(x+ h) = 0 in Q(Dn):

Since P (D) maps continuously Q(Dn) into Q(Dn), by Proposition 3. b) the
above limit follows.

Since P (D)Æ =
P
j�j�0

b�D
�Æ is a distribution if and only if b� 6= 0 for a �nite

number of �, the Fourier hyperfunction 1 +P (D)Æ is not a distribution, but it has
the S-asymptotics related to c = 1.

We can also �nd the coeÆcients b� of the local operator P (D) such that

f = 1+P (D)Æ is not de�ned by an ultradistribution belonging to D(Mp)
0

or DfMpg
0

(Beurling or Roumieu type) when Mp = (p!)s, s > 1 (see [18]). For ultradistribu-
tions see [6].

A direct consequence of Theorem 1 is

Theorem 2. A necessary and suÆcient condition that f = [F ] 2 Q(Dn) has
the S-asymptotics in Q(Dn) related to c in the cone � is that f � g has the same
property, for every g = [G] 2 Q�Æ(Dn), Æ > 0. More precisely:

a) If f(x+h)
s
� c(h) �u(x), h 2 �; jhj ! 1, in Q(Dn), then (f � g)(x+h)

s
�

c(h) � (u � g)(x), h 2 �, jhj ! 1, in Q(Dn) for every g 2 Q�Æ(Dn), Æ > 0.
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b) If (f � g)(x + h)
s
� c(h) � vg(x), h 2 �, jhj ! 1, in Q(Dn) for every

g 2 Q�1(Dn), then there exists an elliptic local operator J0(D) such that f(x+h)
s
�

c(h) � J0(D)vg , h 2 �, jhj ! 1, in Q(Dn):
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