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Abstract. The composition of an ultradistribution and a real analytic func-
tion as well as kernel type operators are analyzed. The suppleness of various spaces
of microfunctions is given.

0. Introduction

The microlocal analysis of various classes of functions, generalized functions
and hyperfunctions has a long history. Essentially it is related to the qualitative
analysis of solutions of linear and non-linear equations and because of that it is a
wast and reach theory.

H�ormander has studied in [9, Section 8] the wave front set of distributions
and Roumieu type ultradistributions while Komatsu has investigated in [12] the mi-
crolocal properties of sheavesC� and C� which correspond to Beurling and Roumieu
ultradistribution spaces and the spaces of corresponding ultradi�erentiable func-
tions. We refer to Sato, Kawai, Kashiwara [21] for the hyperfunction theory and
the theory of microfunctions.

Note that Matsuzawa has developed in [14] the hyperfunction theory and the
microlocal analysis by mean of the Gauss kernel. In this context we refer also to
papers [4], [5]. The analysis of ultradistribution spaces is given in many papers
(among others are [2], [11{13], [15], [18], [20] and [22]).

In this paper we continue our investigations of [18] and give the assertions
which are known for distributions but need to be carefully examined for ultradis-
tributions (see also [11] and [19]). In order to make clear our contribution to the
theory, we note that uniform estimations related to all the derivatives of a function
are the main problems in our proofs.
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In Sections 1 and 2 we recall the de�nitions of ultradistributional singular
spectrums SS�, SS

� ([12], [6]) and the de�nition and the properties of tempered
ultradistribution spaces S 0� ([3], [13], [16]). The composition of a u 2 D0� with a
real analytic function with the singular spectrum disjoint of the set of normals of f is
given in Section 3. Note that this composition can not be made by using stationary
phase arguments as in the distribution theory [9]. The microlocal analysis of a
linear operator with a kernel K 2 D0�(X � Y ) is given in Section 4. For the
decomposition of a microlocal support we refer to [1], [6], and [7]. In Section 5 we
recall our de�nitions of various spaces of microfunctions and the results related to
the suppleness of corresponding sheaves.

1. Notation and notions

As usual, Mp; p 2 N0 , denotes a sequence of positive numbers with M0 = 1.

We refer to [11] for the meaning of conditions (M.1), (M.2)', (M.2), (M.3)'
and (M.3). Also we use the following one [15]:

(M.1)� M�
p�1M

�
p+1 �M�

p , p 2 N, where M�
0 = 1, M�

p =Mp=p!, p 2 N.

Let Mp satisfy (M.1) and (M.3)'. The associated function M(�) and the

growth function ~M(�) related to Mp are de�ned by

M(�) = sup
p2N0

ln
�p

Mp
; ~M(�) = sup

p2N0

ln
�p

M�
p

; � > 0:

An open set in Rn will be always denoted by 
; K �� 
 means that K is a
compact subset of 
. Recall,

k'kK;h;Mp
= sup

x2K;�2Nn
0

j '(�)(x) j
hj�jMj�j

; ' 2 C1(
):

We use the symbol � for both (Mp) and fMpg. For the de�nitions of E�(
),
D�
K(
), D�(
) and their strong duals we refer to [11]. Throughout the paper we

will assume that (M.1), (M.2)' and (M.3)' hold.

Presheaves U ! E�(U), U ! D0�(U), U � Rn , are sheaves. These sheaves
are known to be soft, that is, if f is a section on a closed set it can be extended on
the whole space.

There exist injections

E� ,! B; D0� ,! B:

Let Np be a sequence of positive numbers which satis�es (M.1), (M.2)', (M.3)' and
N0 = 1. Then [11]

(Np) � (Mp) (resp., fNpg � fMpg)
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if there are constants L > 0 and C > 0 (resp., for every � > 0 there is C� > 0) such
that

Np � CLpMp (resp., Np � C��
pMp); p 2 N0 :

Let f 2 D0y, where y = Np � Mp. Then (x; !) 2 S�
 = 
 � Sn�1 (the
cosphere bundle) is not in SS�f (resp., not in SS�f) i� there exist a neighborhood
U � 
 of x and a conic neighborhood � of ! of the form

� = f� 6= 0; j �=j � j � ! j< �g

such that for every � 2 D�(U) the following holds:

In the (Mp)-case, for every � > 0 there is C� > 0 such that

j c�f(�) j� C�e
�M(�j�j); � 2 �

(resp., there are a k > 0 and a C > 0 such that

j c�f(�) j� CeM(kj�j); � 2 �:)

In the fMpg-case, there exist a k > 0 and a C > 0 such that

j c�f(�) j� Ce�M(kj�j); � 2 �

(resp., for every � > 0, there is a C� > 0 such that

j c�f(�) j� C�e
M(�j�j); � 2 �:

Note, the notion SSfMpg is equivalent to H�ormander's notion WFL.

By using the above de�nitions of singular spectrums we can formulate de�ni-
tions (and we will do this) according to which (x; �) 2 
� (Rn n f0g) is an element
of a singular spectrum de�ned above if (x; �=j�j) is an element of the same singular
spectrum.

We denote by B(U) the space of Sato's hyperfunctions on an open set U in
Rn . It is known that U ! B(U) forms a sheaf and that this sheaf is 
abby, that
is, the restriction mappings S : B(U) ! B(U1) (U1 � U) are always surjective (cf.
[21]).

For an open set U in a real analytic manifold M , let S�U be the cosphere
bundle of U and V be the complexi�cation of U . Then S�UV can be identi�ed withp�1S�U . In the last paragraph we will use the notation accomodated to Kaneko
[8]. Recall, a hyperfunction f on U can be written as a formal sum of boundary
values of holomorphic functions Fj(z) de�ned on in�nitesimal wedges U+

p�1�j0,
where �j are open cones in Rn , f(x) =

PN
j=1 Fj(x+

p�1�j0). It is said that f is

microanalytic at the point (x;
p�1�1) 2 p�1S�U if, for a suitable representation

of f (given above) on a neighbourhood of x;�j \ fy 2 Rn ; h�; yi > 0g = ; holds
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for all j 2 f1; . . . ; Ng. So, in the last paragraph we will use the identi�cation ofp�1S�U and S�U and say that (x;
p�1�1) 2 SSu if and only if (x; �) 2 SSu. The

same will be used for other types of singular supports. Thus, for an f 2 D0�(
),
(x; !) 2 S�
 is not in SSf if (x;

p�1!1) 2 S�
 is not in SSffg, where ffg
denotes the corresponding hyperfunction. This notion is equal to H�ormander's
WFAf� the analytic wave front set of f [9, De�nition 9.3.2., Theorem 9.6.3].

2. Tempered ultradistributions

Tempered ultradistribution spaces are introduced and studied in [13] and
[16].

Let m > 0. The space of smooth functions ' on Rn which satisfy

�m;2(') =

� X
�;�2Nn

0

Z
Rn

��� mj�+�j

Mj�jMj�j
(1 + jxj2)j�j=2'(�)(x)

���2dx�1=2 <1;

equipped with the topology induced by the norm �m;2, is denoted by SMp;m
2 . The

strong duals of S(Mp) = proj limm!1 SMp;m
2 and SfMpg = ind limm!0 SMp;m

2 are
called spaces of tempered ultradistributions of Beurling and Roumieu type. For
every �xed p 2 [1;1], the family of norms f�m;2; m > 0g is equivalent to the
family of norms f�m;p; m > 0g where instead of L2 norm we put Lp norm.

S(Mp) and SfMpg are (FS)- and (LS)-spaces, respectively. If (M.2) holds,
they are (FN)- and (LN)- spaces, respectively (for these types of spaces, see [8])
and

D� ,! S� ,! E�; S� ,! S;
where we have also that injections are continuous.

An f 2 D0� is in S 0� if and only if there exists a family F�;� 2 L2(Rn ); �; � 2
Nn0 , such that

f =
X

�;�2Nn
0

((1 + jxj2)�=2F�;�)(�) in S 0�;

and in case S 0(Mp), (resp., in the case S 0fMpg, for every k > 0) such that

� X
�;�2Nn

0

Z
Rn

jMj�jMj�j

kj�+�j
F�;�(x)j2

�1=2
<1:

The corresponding structural theorems may be obtained by using the families
of norms fmam;p; m > 0g, p 2 [1;1].

If (M.1), (M.2) and (M.3) are assumed, then we have more precise structural
characterisations [16].

The Fourier transformation is an isomorphism of S� onto itself.
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In the next theorem we use the notation Np for the sequence of positive

numbers and N(�), ~N(�) for the corresponding associated and growth function.

Theorem 1. [17] Assume that (M:1)�; (M:2) and (M:3)0 hold for Np (N0 =
1). Let � be an open convex cone in Rn and F be an analytic function in

Z = fz 2 C
n ; Im z 2 �; j Im zj < ag:

for some a > 0. Moreover, assume

jF (x+p�1y)j � Ca;be
N(ajxj)+ ~N( b

jyj
); x+

p�1y 2 Z;

for some a > 0; b > 0 and Ca;b > 0, in the (Np)-case and for every a > 0, b > 0
there exists a Ca;b > 0, in the fNpg-case. Then

F (x+
p�1y) S0

y

! F (x+
p�10); y ! 0; y 2 �:

In paricular
SSy � R

n � �0 n f0g

3. Composition with a real analytic function

We still assume that (M:1)�; (M:2) and (M:3)0 hold for Mp.

Let f be a real analytic mapping X ! Y , where X and Y are open sets in

Rm and Rn , respectively. We are going to de�ne the pullbackf?u of a u 2 D0y with
suitable properties of its singular spectrums. Denote

Nf = f(f(x); �); tf 0(x)� = 0g:

If 
 is a closed conic subset of Y � (Rn n f0g) (conic in the second variable),
denote

D0�

(Y ) = fu 2 D0�(Y ); SSu � 
g;

f?
 = f(x;t f 0(x)�); (f(x); �) 2 
g:
For the composition of an ultradistribution with an analytic function we can not use
the asymptotic expansion based on the stationary phase arguments as for distribu-
tions. Because of that the �rst part of the proof of the next theorem is completely
di�erent from the corresponding one for distributions [9].

Theorem 2. The pullback f?u can be de�ned in one and only one way for
all u 2 D0�(Y ) with Nf \SSu = ; such that f?u = uÆf if u 2 C1(Y ) and for any
closed conic subset 
 of Y � (Rn n f0g) with 
 \Nf = ;, u 2 D0�


(Y ) implies

(1) SS(f?u) � f?(SSu) and SS�(f
?u) � f?(SS�u):
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Proof. Let � be an open convex cone in R
n such that (Y ��0)\Nf = ;. Let

u 2 D0�
�(Y ). We de�ne f?u as an element from D0�(X) as follows.

For every x0 2 X choose h0 2 Rm such that f 0(x0)h0 2 �. There exist an
open set Ox0 ; x 2 Ox0 � X , an open convex cone �h0 and �0 > 0 such that

f(x+
p�1h) 2 Y +

p�1�; h 2 �h0 ; jhj < �0:

Theorem 3.9. in [12] and Theorem 1, imply that the following limit exists in
D0�(Ox0)

(2) f?ujOx0
= lim

h!0

h2�h0

�(f(�+p�1h));

where �(z) 2 O�(Y +
p�1�) and u = �(�+p�1�0).

The family of ultradistributions ff?ujOx0
;x0 2 Xg has the property:

If Ox0\Ox1 6= ;; x0; x1 2 X then f?ujOx0
and f?ujOx1

coincide on Ox0\Ox1 .
Let us prove that for every x 2 Ox0 \ Ox1 there is an Ox � Ox0 \ Ox1 and an h
such that f?ujOx0

and f?ujOx1
coincide with f?ujOx

on Ox. Since f 0(x)h0 and
f 0(x)h1 belong to �, this holds for f

0(x)((1� t)h0+ th1), for every t 2 [0; 1]. By the
compactness of [0,1], there exist Ox and h such that the quoted assertion holds.

Thus, there exists an element in D0�(X), denoted by f?u, which coincides
with f?ujOx0

for every x0.

More generally, let u 2 D0�(Y ) be such that SSu\Nf = ;. There exist open
convex cones �j , j = 1; . . . ; s, such that

SSu �
s[
i=1

Y � �0j and
s[

j=1

(Y � �0j ) \Nf = ;:

Theorem 3.9. in [12] implies that there are holomorphic functions �j 2 O�(Y +p�1�j), j = 1; . . . ; s, such that

uj = �j(�+
p�1�j0); SSuj � Y � �j ; j = 1; . . . ; s;

(in the sense of convergence in D0�(Y )) and u =
Ps

j=1 uj .

We de�ne

(3) f?u =

sX
j=1

f?uj :

In order to prove that this de�nition does not depend on the decomposition
of u, assume that Gi, i = 1; . . . ; p, are convex open cones such that

p[
i=1

(Y �G0
i ) \Nf = ;;

p[
i=1

Y �G0
i � SSu; vi = Fi(�+

p�1Gi0)
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and u =
Pp

i=1 vi. We have to prove

(4)

sX
j=1

f?uj =

pX
i=1

f?vi:

In the identity

(5)

sX
j=1

�j(�+
p�1�j0) =

pX
i=1

Fi(�+
p�1Gi0)

we may assume that �j , j = 1; . . . ; s, are pairwise disjoint sets because if for some
j1 and j2; �j1 \ �j2 6= ;, then the left hand side sum is reduced by

�j1(�+
p�1�j10) + �j2(�+

p�1�j20) = (�j1 +�j2)(�+
p�1(�j1 \ �j2)0):

In the same way we may assume that Gi, i = 1; . . . ; p, are pairwise disjoint
sets.

Denote by �j a subset of f1; . . . ; pg which consists of i for which �j \Gi 6= ;,
j = 1; . . . ; s. By using \Edge of the Wedge theorem" (see [12]) we have:

�j = ; ) �j(�+
p�1�j0) is real analytic on Y:

Put dj = �j . For every i 2 f1; . . . ; pg decompose Fi(�+
p�1Gi0)

Fi(�+
p�1Gi0) =

X
j2Vi

Fij(�+
p�1(Gi \ �j)0);

where Vi is the subset of f1; . . . ; sg which consists of j for which �j \ Gi 6= ;,
i = 1; . . . ; p. Again,

Vi = ; ) Fi(�+
p�1Gi0) is real analytic on Y:

So, we rewrite (5) as

sX
j=1

dj(
1

dj
�j(�+

p�1�j0)) + ' =
X

j2Vi 6=;

Fij(�+
p�1(Gi \ �j)0) +  

where ' and  are real analytic and both sums have the same number of terms.
Note, if j 2 Vi1 \ Vi2 , then (Gi1 \ �j2) \ (Gi2 \ �j2) = ; and

1

dj
�j(�+

p�1�j0)� Fi1j(�+
p�1(�j \Gi1)0)

is real analytic.
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Thus, the change of variable de�ned by (3) on both side of (4) gives the same
element in D0�(X):

For the proof of (1) we use the notation from the beginning of this proof.
From (2) it follows that

SS(f?u)jx0 � f(x0; �); hh; �i � 0; h 2 �h0g;

where SS(f?u)jx0 is a subset of SS(f?u) with the �rst projection x0. From

tf 0(x0)�
0 = f�; < h; � >� 0 if f 0(x0)h 2 �g ([9, p. 296]);

and f 0(x0)�h0 � � it follows

SS(f?u)jx0 � f(x0; tf 0(x0)�); � 2 �0 n f0gg:

By using the decomposition u = �uj in the neighborhood of f(x0) given in
[18], with cones �j such that �0j are small enough, and Theorem 1, the proof of (1)
follows.

4. The analysis of some operators

The six theorems which are to follow are well-known for distributions [9].
Their proofs are the same as for distributions.

Theorem 3. If u 2 D0�(X) and v 2 D0�(Y ), then

i) SS�(u
v) � SS�u�SS�v[ (supp u�f0g)�SS�v[SS�u� (supp v�f0g).
ii) SS(u
 v) � SSu� SSv [ (suppu�f0g)� SSv [ SSu� (supp v �f0g).
Theorem 4. If u; v 2 D0�(X) and there are no points (x; �) such that

(x; �) 2 SS�u and (x;��) 2 SS�v;

then by the pullback of the mapping

Æ : X ! X �X; Æ(x) = (x; x)

is de�ned the product

uv = Æ?(u(x)
 v(y))

D0� and

SS�uv � f(x; � + �); (x; �) 2 SS�u or � = 0;

(x; �) 2 SS�v or � = 0g:
The same holds for SSuv.
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Theorem 5. Let u 2 E 0�(Rn ), x0 = (x1; . . . ; xp); x00 = (xp+1; . . . ; xn) and
let

u1(x
0) =

Z
u(x0; x00)dx00

be de�ned by
hu1; �i = hu(x0; x00); �(x0)
 1x00i; � 2 D�(Rn ):

Then
SS�u1 � f(x0; �0); ((x0; x00); (�0; 0)) 2 SS�u; for some x00g:

The same holds for SSu1.

Proof. Since the proof of the theorem is slightly di�erent from the proof of
Theorem 8.4.5 in [9], we give details which are important in our assertion. Let
j!j = 1, suppu = Q;� 2 D�(Rp ). Put

 Æ(x
00) = �(Æx00); Æ > 0; x00 2 R

n�p ;

where � 2 D�(Rn�p ) is equal to 1 in the unit ball B(0; 1). Take R such that
Q � B(0; R), and � 2 D�(Rn ) such that � = 1 in B(0; 2R).

Note that
hu(t);K(�+p�1! � t)i

is analytic and exponentially decreasing if jx00j > 2R, and ! belongs to a suitable
neighbourhood of f!; j!j � 1g. By letting Æ ! 0 in

hU(x+p�1!); �(x0) Æ(x00)i = hhu(t);K(x+
p�1! � t)i; �(x)�(x0) Æ(x00)i

+ hhu(t);K(x +
p�1! � t)i; (1� �(x))�0(x0) Æ(x

00)i;
it follows

hu1; �i =
Z
j!j=1

hU(�+p�1!); �(x0)
 1x00id! =

=

Z
j!j=1

hU1(�+
p�1!0); �id!;

where

U1(z
0) =

Z
U(z0; x00)dx00 =

Z
U(z0; x00 + iy00)�x00; j Im z0j2 + jy00j2 < 1

is an analytic function when j Im z0j < 1 which is bounded by Ce
~M( k

1�jyj
) for some

k > 0 and C > 0 in (Mp)-case (respectively, for every k > 0 there is C in fMpg-
case). Now, by similar arguments as in the proof of Theorem 8.5.4 in [9], we �nish
the proof by using a corresponding result of [17].

Theorem 6. Assume K 2 D0(X � Y ), where X � Rn ; Y � Rm are open,
and �1 : suppK ! X is proper (�1 is the �rst projection). If u 2 E�(Y ), then

SS�Ku � f(x; �); (x; y; �; 0) 2 SS�K for some y 2 suppug;
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where K is the linear operator with the kernel K. The same holds for SSKu.
Theorem 7. If u 2 E 0� and SS�u \ SS0�(K)Y = ;, then

SS�Ku � SS�(K)X [ (SS0�(K) Æ SS�u);

where
SS0�(K) = f(x; y; �; �); (x; y; �;��) 2 SS�Kg;

SS�(K)X = f(x; �); (x; y; �; 0) 2 SS�K for some y 2 Y g;
SS0�(K)Y = f(y; �); (x; y; 0;��) 2 SS�K for some x 2 Xg:

The same holds for SSKu.
Now, one can easily prove the following assertion.

Theorem 8. If u 2 D0� and v 2 E 0�, then

SS�(u � v) � f(x+ y; �); (x; �) 2 SS�u; (y; �) 2 SS�vg:

The same holds for SS(u � v).
Remark. Theorem 8 has applications in the theory of pseudo-di�erential

operators. For example, for a pseudo-di�erential operator P it follows that
SS�Pu � SS�u, u 2 D0�.

If P (D) is an ultradi�erential operator with constant coeÆcients of �-class
[12], then Theorem 8 implies SS�P (D)u � SS�u, u 2 D0. The same theorem
implies that the Poisson transform of a u 2 D0, if it exists, does not enlarge the
SS�u because SSP is empty (cf. [18]).

5. Quotient sheaves of microfunctions and 
abbiness

The results of this paragraph are from [6] and [7].

Let � :
p�S�Rn ! Rn be the canonical projection. The sheaf of microfunc-

tions on
p�1S�Rn is the associated sheaf of the presheaf

p�1S�Rn � 
! �(�(
);B)=fu 2 �(�(
);B)jSSu \
 = ;g:

This sheaf is denoted by C: It enjoys the exact sequence

0! A ! B ! ��C ! 0; [21]

where A denotes the sheaf of real analytic functions on Rn . Moreover, there exists
a canonical surjective spectrum map

Sp : ��1B ! C:
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Then, for u 2 B, SS(u) = supp(Sp(u)). The injection

D0� ,! B (respectively; E� ,! B)

induces a sheaf homomorphism

��1D0� ! C (respectively ��1E� ! C):

We de�ne a subsheaf C� (respectively, Cd;�) of C as the image of the above morphism
and call it the sheaf of microfunctions of class � (respectively d; �). Furthermore,
we have a canonical exact sequence

0! A ! D0� ! ��C� ! 0

(resp. 0! A! E 0� ! ��Cd;� ! 0):

We have given in Section 1 an order to the set of sequences satisfying condi-
tions (M.1), (M.2) and (M.3)'. If y � �, we have canonical injections

Cd;y ,! Cd;� ,! C� ,! Cy ,! C:

From now on we use the notation C1 = C and 1 � � for any �.
We de�ne sheaves Cy;�; Cy=�; Cd;y;� on

p�1S�Rn by the following exact se-
quences:

i) 0! Cd;� ! Cy ! Cy;� ! 0; when y � �,
ii) 0! C� ! Cy ! Cy=� ! 0, when y � �,
iii) 0! Cd;� ! Cd;y ! Cd;y;� ! 0, when � � y.
The canonical surjective spectrum map Sp induces the following surjective

spectrum maps:

Sp1;� : ��1B ! C1;�;
Sp1=� : ��1B ! C1=�:

Let u 2 B. We can also de�ne the singular spectrum of class �; SS�(u), and
that of class 1=�; SS�(u), in the following way:

SS�u = supp(Sp1;�u);

SS�u = supp(Sp1=�u):

Let F be a sheaf of Abelian groups on a topological space X . Recall [1], F is
supple if for any open set 
 of X , any closed Z;Z1; Z2 of 
 such that Z = Z1 [Z2,
and any section u 2 �Z(
;F), there exists ui 2 �Zi(
;F) (i = 1; 2) such that
u = u1 + u2. Clearly, if a sheaf is 
abby, then it is supple.
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Theorem 9. [6] a) The quotient sheaf D0�=E� is supple.

b) The sheaves C1;� and C1=� are 
abby and the following sequences are exact

0! E� ! B ! ��C1;� ! 0;

0! D0� ! B ! ��C1=� ! 0:

c) Let 1 � y � �. The sheaves Cy;� and Cy=� are supple and the sequences

0! E� ! D0y ! ��Cy;� ! 0;

0! D0� ! D0y ! ��Cy=� ! 0;

are exact.

d) Let 1 � � � y. The sheaf Cd;y;� is supple and the sequence

0! D� ! Ey ! ��Cd;y;� ! 0

is exact.
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