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LITTLEWOOD-PALEY TYPE INEQUALITIES

FOR M-HARMONIC FUNCTIONS

Miroljub Jevti�c and Miroslav Pavlovi�c

Communicated by Stevan Pilipovi�c

Abstract. We prove several Littlewood-Paley type inequalities for M-
harmonic and analytic functions on the unit ball B of Cn. Further, we give some
characterizations ofM-harmonic and analytic Hardy spaces on B.

1. Introduction

Let B denote the open unit ball in Cn, n > 1, with boundary S. We denote by
� the normalized Lebesgue measure on B and by � the rotation invariant probability
measure on S.

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. If f is a function in Lp(S), 1 < p <1, and u is a function

on B de�ned via the invariant Poisson integral of f , then

(1.1)

�Z
B

jeru(z)jp(1� jzj2)nd�(z) + ju(0)jp� � Z
S

jf(�)jpd�(�); for 1 < p � 2;

and

(1.2)

�Z
B

jeru(z)jp(1� jzj2)nd�(z) + ju(0)jp� � Z
S

jf(�)jpd�(�); for 2 � p <1;

where er and � denote the invariant gradient and invariant measure on B.

We also show that jeru(z)j in (1.1) and (1.2) may be replaced by (1 � jzj2)
�jru(z)j, wherer denotes the real gradient of u and by (1�jzj2)(jRu(z)j+j �Ru(z)j),
where, as usual, R =

Pn
j=1 zj

@
@zj

is the radial derivative.
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Theorem 1.2. If f 2 Lp(S), 1 < p < 1, and u is the invariant Poisson

integral of f , then for 1 < p � 2 we have

�Z
B

jru(z)jp(1� jzj2)p�1d�(z) + ju(0)jp
�
�

Z
S

jf(�)jpd�(�)(1.3) �Z
B

�
jRu(z)j+ j �Ru(z)j

�p
(1� jzj2)p�1d�(z) + ju(0)jp

�
�

Z
S

jf(�)jpd�(�);(1.4)

and for 2 � p <1 we have

�Z
B

(jRu(z)j+ j �Ru(z)j)p(1� jzj2)p�1d�(z) + ju(0)jp
�
�

Z
S

jf(�)jpd�(�);(1.5) �Z
B

jru(z)jp(1� jzj2)p�1d�(z) + ju(0)jp
�
�

Z
S

jf(�)jpd�(�):(1.6)

For n = 1 (1.3) and (1.6) are well known inequalities of Littlewood and Paley
[11]. Various generalizations of their result are referred to as a Littlawood-Paley
type inequalities.

The method of proof of Theorem 1.1 we will present is based on local estimates
for M-harmonic functions (which will be de�ned in Section 2) and the following
theorems that allow us to express the Lp norm of f in terms of some area integrals,
and which are of interest on their own right.

Theorem 1.3. Let u be M-harmonic function on B. If 1 < p <1, then

(1.7)
d

dr

Z
S

ju(r�)jpd�(�) =
cpr

1�2n(1� r2)n�1

2n

Z
rB

ju(z)jp�2jeru(z)j2d�(z);
where cp = p(p� 1).

For 1 < p < 1, let Hp = Hp(B) denote the set of M-harmonic functions u
on B, u 2M, for which jujp has anM-harmonic majorant on B. It is well known
that u 2 Hp(B) if and only if kukHp = sup0<r<1Mp(r; u) < 1, where, as usual,
Mp

p (r; u) =
R
S ju(r�)j

pd�(�).

Theorem 1.4. A function u M-harmonic on B belongs to Hp, 1 < p <1,

if and only if Z
B

ju(z)jp�2jeru(z)j2(1� jzj2)�1d�(z) <1
Furthermore, if u 2 Hp, 1 < p <1, then

(1.8) kukpHp =

Z
B

ju(z)jpd�(z) +
p(p� 1)

4n2

Z
B

ju(z)jp�2jeru(z)j2(1� jzj2)�1d�(z);
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Let

(1.9) G(�; r) =
1

2n

Z r

�

t1�2n(1� t2)n�1dt; 0 � � � r � 1;

As a corollary of Theorem 1.3 we have another characterization of the Hardy
space Hp.

Theorem 1.5. Let 1 < p <1. A function u 2 M belongs to Hp if and only

if Z
B

ju(z)jp�2jeru(z)j2G(jzj; 1)d�(z) <1:

Moreover, if u 2 Hp, 1 < p <1, then

(1.10) kukpHp = ju(0)j
p + p(p� 1)

Z
B

ju(z)jp�2jeru(z)j2G(jzj; 1)d�(z):
The method of proof of Theorems concerningM-harmonic functions we will

present can also be applied to Hardy spaces Hp of holomorphic functions. Recall
that a holomorphic function f on B, f 2 H(B), belongs to the Hardy space Hp,
0 < p < 1, if and only if kfkHp = sup0<r<1Mp(r; f) < 1. An analogue of the
identity (1.7) of the Hardy-Stein-Spencer type for analytic functions is as follows.

Theorem 1.6. Let f 2 H(B). If 0 < p <1, then

(1.11)
d

dr

Z
S

jf(r�)jpd�(�) =
p2

4

r1�2n(1� r2)n�1

2n

Z
rB

jf(z)jp�2jerf(z)j2d�(z);
An application of the identity (1.11) gives the following characterization of

the Hardy spaces Hp.

Theorem 1.7. A function f holomorphic on B belongs to Hp, 0 < p < 1,

if and only if Z
B

jf(z)jp�2jerf(z)j2(1� jzj2)�1d�(z) <1:

Furthermore, if f 2 Hp, 0 < p <1, then

(1.12) kfkpHp =

Z
B

jf(z)jpd�(z) +
p2

8n

Z
B

jf(z)jp�2jerf(z)j2(1� jzj2)�1d�(z):

Theorem 1.8. Let 0 < p < 1. A function f 2 H(B) belongs to Hp if and

only if Z
B

jf(z)jp�2jerf(z)j2G(jzj; 1) d�(z) <1
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Furthermore, if f 2 Hp, 0 < p <1, then

(1.13) kfkpHp = jf(0)j
p +

p2

4

Z
B

jf(z)jp�2jerf(z)j2G(jzj; 1) d�(z):
The characterizations of Hardy spaces Hp, 1 < p <1, and Hp, 0 < p <1,

given in Theorems 1.4 and 1.7 are known (see [14]). The proofs we will presente are
based on the new identities (1.8) and (1.12) and they are simpler than the proofs
given in [14].

For another proof of (1.13) see [4]. See also [14].

The following identity due to Beatrous and Burbea [2] was �rst proved by
Hardy, Stein and Spenser (see [6, p. 42]) for n = 1.

Theorem 1.9, Let f 2 H(B), 0 < p <1 and 0 < r < 1. Then

(1.14) r
d

dr
Mp

p (r; f) =
p2

2n

Z
rB

jzj�2njf(z)jp�2jRf(z)j2d�(z):

An application of the identity (1.14) gives the criteria for f holomorphic in
B to belong to the Hardy space Hp.

Theorem 1.10. [2] Let 0 < p < 1 and f 2 H(B). Then the following

statements are equivalent:

(i) f 2 Hp,

(ii)
R
B jf(z)j

p�2jRf(z)j2(1� jzj2) d�(z) <1.

Since jerf(z)j � (1 � jzj)2jrf(z)j � (1 � jzj2)jRf(z)j, (see Section 2) the
following theorem is an immediate consequence of Theorems 1.7 and 1.10.

Theorem 1.11. A function f holomorphic on B belongs to Hp, 0 < p <1,

if and only if Z
B

jrf(z)j2jf(z)jp�2(1� jzj2)d�(z) <1:

Remark 1. It is authors belief that the results of Theorems 1.10 and 1.11
should hold for the Hardy spaces Hp, 1 < p <1 of M-harmonic functions

As a �nal result we have the inequalities of Littlewood-Paley type for analytic
functions.

Theorem 1.12. Let f 2 H(B). If 0 < p � 2, then

kfkpp �

�Z
B

jerf(z)jp(1� jzj2)�1d�(z) + jf(0)jp�;(1.15)

kfkpp �

�Z
B

jrf(z)jp(1� jzj2)p�1d�(z) + jf(0)jp
�
;(1.16)

kfkpp �

�Z
B

jRf(z)jp(1� jzj2)p�1d�(z) + jf(0)jp
�
;(1.17)
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and if 2 � p <1, then

�
jf(0)jp +

Z
B

jerf(z)jp(1� jzj2)�1d�(z)� � kfkpp;(1.18) �
jf(0)jp +

Z
B

jrf(z)jp(1� jzj2)p�1d�(z)

�
� kfkpp;(1.19) �

jf(0)jp +

Z
B

jRf(z)jp(1� jzj2)p�1d�(z)

�
� kfkpp:(1.20)

The usual method of proof of the inequality (1.20) ((1.19), resp. ) is to
apply the Riesz Convexity Theorem to the operator f ! jRf(z)j(1 � jzj2) (f !
jrf(z)j(1 � jzj2)) acting on functions f on the measure space (S; �) and taking
them to functions on (B; (1� jzj2)�1d�(z)). It is relatively easy to show that this
operator is of type (2.2) as well as (1;1) and the Riesz theorem produces (1.20)
((1.19), resp.). By duality we have (1.17) and (1.16) for 1 < p � 2. Additional
considerations show that (1.17) holds also for 0 < p � 1. See [3]. Obviously (1.15)
and (1.16) are consequences of (1.17). For the inequality (1.18) see [5].

Our argument is di�erent. We show that

Z
B

jerf(z)jp(1� jzj2)�1d�(z) � Z
B

jf(z)jp�2jerf(z)j2(1� jzj2)�1d�(z);
for 2 � p < 1, and that the reverse inequality holds for 0 < p � 2, and then we
apply the identity (1.12) established in Theorem 1.7.

2. Notations and preliminary results

Let e� be the invariant Laplacian on B. That is, e�u(z) = �(uÆ'z)(0), where
� is the ordinary Laplacian and 'z the standard authomorphism of B taking 0 to

z [13]. (It can be shown that e� is equal (n+ 1) times the Laplacian with respect
to the Bergman metric). As in [13],

e� = 4(1� jzj2)
X
i;j

(Æi;j � zi�zj)
@2

@zi@�zj
:

The real valued functions annihilated by e� are called invariantly harmonic
or M-harmonic.

The operator e� is M-invariant in the sense that e�(f Æ ') = (e�f) Æ ', for
' 2 Aut(B) [13, Theorem 4.1.2]. This implies that the class M of M- harmonic
functions on B is M-invariant.

For a function u 2 C1(B) let eDu(a) = D(u Æ 'a)(0) and eru(a) = r(u Æ
'a)(0) be the invariant complex and invariant real gradient respectively, where



Littlewood-Paley type inequalities... 41

Du =
�
@u
@z1

; . . . ; @u
@zn

�
denotes the complex gradiant and ru =

�
@u
@x1

; . . . ; @u
@x2n

�
,

zk = x2k�1 + ix2k, k = 1; . . . ; n, is the real gradient of u.

For u 2 C1(B) and � 2 Aut(B) we have j eD(uÆ�)j = j( eDu)Æ�j and jer(uÆ�)j =
j(eru) Æ �j. In other words, j eDj and jerj are M-invariant. See [12].

The length of the invariant gradient of a function u 2 C1(B) is given in
coordinates by

(2.1) jeru(z)j2 = 2(1� jzj2)(jDu(z)j2 � jRu(z)j2 + jD�u(z)j2 � jR�u(z)j2):

It is easy to check that

jzj2jDu(z)j2 = jRu(z)j2 +
X
i<j

jTi;ju(z)j
2; u 2 C2(B);

where Ti;ju = �zi
@u
@zj

� �zj
@u
@zi

are tangential derivatives of u. Using this and (2.1)

we �nd that

(2.2)

jzj2jeru(z)j2 = 2(1� jzj)2
�
(1� jzj2)(jRu(z)j2 + jR�u(z)j2)

+
X
i<j

jTi;ju(z)j
2 +

X
i<j

jTi;j �u(z)j
2
�
;

For z 2 B and r between 0 and 1, Er(z) = fw 2 B : j'z(w)j < rg.

In this note we follow the custom of using the letter C to stand for a positive
constant which changes its value from one appearence to another while remaining
independent of the important variables.

We write A � B, or equivalently B � A, when there is a constant C such
that A � CB, and A �= B when A � B and B � A.

Lemma 2.1. [12], [1] Let 0 < p < 1 and 0 < r < 1. There exist constants

C1 > 0 and C2 > 0 so that if u 2 M, then

(a) jeru(z)jp � C1
(1�jzj2)n+1

R
Er(z)

jeru(w)jpd�(w); z 2 B, and

(b) jru(z)jp � C2
(1�jzj2)n+1

R
Er(z)

jru(w)jpd�(w); z 2 B:

Lemma 2.2. [9], [8] Let 0 < r < 1. There is a constant C sach that if u 2M
then

(a) jTi;jRu(z)j � C(1� jzj2)�1=2
R
Er(z)

jRu(w)jd�(w); z 2 B;

(b) jTi;j �Ru(z)j � C(1� jzj2)�1=2
R
Er(z)

j �Ru(w)jd�(w); z 2 B;

(c) jTi;ju(z)j � C(1� jzj2)�1=2
R
Er(z)

ju(w)jd�(w), z 2 B.

Here, d�(z) = (1� jzj2)�n�1d�(z) is the Mobius invariant measure on B.

The following lemma gives some basic properties of G which will be needed
later.



42 Jevti�c and Pavlovi�c

Lemma 2.3. Let 0 < Æ < 1
2 be �xed. Then G(jzj; 1) satis�es the following:

(a) G(jzj; 1) � cn(1� jzj
2)n, for all z 2 B.

(b) G(jzj; 1) � cÆ(1 � jzj
2)n for all z 2 B, jzj � Æ, where cÆ is a positive

constant depending only on Æ.

Furthermore, for all z, jzj � Æ, G(jzj; 1) �= jzj2�2n, n > 1.

The proof is a routine estimation of the integral in (1.9), and thus is omitted.

Lemma 2.4. Let 0 < Æ < 1. There exists a constant K = K(Æ) > 0 such that

j'a(z)j � Kjz � aj, for all a, jaj � Æ, and z 2 B.

Proof. By [13, p. 26]

j'a(z)j
2 = 1�

(1� jaj2)(1� jzj2)

j1� z�aj2
=
jz � aj2 + jz�aj2 � jzj2jaj2

j1� z�aj2

Thus

j'a(z)j
2 �

jz � aj2 + jz�aj2 � jzj2jaj2

(1 + Æ)2

=
jz � aj2 + j(z � a)�aj2 � jaj2jz � aj2

(1 + Æ)2

�
(1� Æ2)jz � aj2

(1 + Æ)2

3. Characterizations of the Hardy space Hp

Proof of Theorem 1.3. Let u� = (u2 + �2)p=2, � > 0. Then u� 2 C2(B) and

e�u� = p(p� 2)(u2 + �2)p=2�2u2jeruj2 + p(u2 + �2)p=2�1(jeruj2 + ue�u):
By the Green formula we have

(3.1)
d

dr

Z
S

u�(r�) d�(�) =
r1�2n(1� r2)n�1

2n

Z
rB

e�u�(z) d�(z); 0 < r < 1;

(see [12])

Since u is M-harmonic, we have

(3.2) e�u� = p(p� 2)(u2 + �2)p=2�2u2jeruj2 + p(u2 + �2)p=2�1jeruj2;
and

(3.3) lim
�!0

d

dr

Z
S

u�(r�) d�(�) =
d

dr

Z
S

ju(r�)jpd�(�);
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The latter holds because the function

(�; z)! (u2(z) + �2)p=2 = ju(z) + i�jp

is of class C1, (�; z) 2 (�1;1)�B.

If 1 < p � 2, then it follows from (3.2) that

e�u� � p(p� 2)(u2 + �2)p=2�2(u2 + �2)jeruj2
+ p(u2 + �2)p=2�1jeruj2

= p(p� 1)(u2 + �2)p=2�1jeruj2(3.4)

Hence, by (3.1),

cp
r1�2n(1� r2)n�1

2n

Z
rB

(u(z)2 + �2)p=2�1jeru(z)j2d�(z) � d

dr

Z
S

u�(r�) d�(�)

where cp = p(p� 1).

Using Fatou's lemma we �nd that

(3.5)
p(p� 1)

2n
r1�2n(1�r2)n�1

Z
rB

ju(z)jp�2jeru(z)j2d�(z) � d

dr

Z
S

ju(r�)jpd�(�):

If 2 � p <1, we �nd that

(3.6)
p

2n
(1� r2)n�1r1�2n

Z
rB

ju(z)jp�2jeru(z)j2d�(z) � d

dr

Z
S

ju(r�)jpd�(�):

Hence by (3.5) and (3.6) we conclude that the function ju(z)jp�2jeru(z)j2 is
locally integrable.

By (3.4) and (3.2) e�u� � 0, for every z 2 B. (Note that p > 1).

It is easy to see that

e�u�(z) � cpp(u
2(z) + �2)p=2�1jeru(z)j2; z 2 B;

where cp = 1 if 1 < p � 2 and cp = p� 1 if p � 2.

Hence by (3.1), (3.2), (3.3) and the Lebesgue theorem, we obtain

d

dr

Z
S

ju(r�)jpd�(�) = lim
�!0

Z
rB

(e�u�(z)) d�(z)
=

p(p� 1)

2n
(1� r2)n�1r1�2n

Z
rB

ju(z)jp�2jeru(z)j2d�(z)
To prove Theorem 1.4 we need the following proposition



44 Jevti�c and Pavlovi�c

Proposition 3.1. Let u be M-harmonic and p > 1. Then u 2 Hp if and

only if

lim
r!1

�
Mp

p (r; u)� r�2n
Z
rB

ju(z)jpd�(z)
�
<1

Proof. \Only if" is trivial. To prove the \if" let

'(r) =

Z
rB

ju(z)jpd�(z) = 2n

Z r

0

�2n�1Mp
p (�; u) d�:

Hence,

Mp
p (r; u)� r�2n

Z
rB

ju(z)jd�(z) =
r1�2n

2n
'0(r) � r�2n'(r) =

r

2n

�
'(r)r�2n

�0
:

From this the result follows easily.

Proof of Theorem 1.4. By (1.7) we have

r2n
d

dr
Mp

p (r; u) =
p(p� 1)

2n
(1� r2)n�1r

Z
rB

ju(z)jp�2jeru(z)j2d�(z)
Integrating this from 0 to � we get, by integration by parts and Fubini's theorem,

�2nMp
p (�; u)�

Z
�B

ju(z)jpd�(z)

=
cp
2n

Z �

0

�
r(1� r2)n�1

Z
rB

ju(z)jp�2jeru(z)j2d�(z)�dr
=

cp
2n

Z
�B

ju(z)jp�2jeru(z)j2d�(z) Z �

jzj

(1� r2)n�1rdr

=
cp
2n

Z
�B

ju(z)jp�2jeru(z)j2 (1� jzj2)n � (1� �2)n

2n
d�(z);(3.7)

where cp = p(p� 1).

If u 2 Hp, by taking limit in (3.7), �! 1, we obtain (1.8).

Conversely, if

Z
B

ju(z)jp�2jeru(z)j2(1� jzj)�1d�(z) <1
then

lim
�!1

�
Mp

p (�; u)� ��2n
Z
�B

ju(z)jpd�(z)
�
<1

and u 2 Hp, by Proposition 3.1.
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Proof of Theorem 1.5. We have, by (1.7) and Fubini's theorem,

(3.8) Mp
p (r; u) = ju(0)j

p + p(p� 1)

Z
rB

ju(z)jp�2jeru(z)j2G(jzj; r) d�(z):
If Mp

p (r; u) � C <1, then we apply Fatou`s lemma to get that

ju(0)jp + p(p� 1)

Z
B

ju(z)jp�2jeru(z)j2G(jzj; 1)d�(z) � C

In the opposite direction we use the Lebesgue theorem and the inequality

G(jzj; r) � G(jzj; 1):

Remark 2. An upper-semicontinuous function u : B ! [�1;1) is M-sub-
harmonic or invariant subharmonic if for each a 2 B

u(a) �

Z
S

u('a(r�)) d�(�); 0 < r < 1;

provided that none of the integrals is �1.

Recall that the Riesz measure of M-subharmonic function u on B is the
non-negative regular Borel measure �u satisfying

R
B
�d�u =

R
B
ue��d� , for all

� 2 C2
c (B), the class of twice continuosly di�erentiable functions on B with compact

support.

If u is M-harmonic on B and 1 < p < 1, then the Riesz measure of ju(z)jp

is given by u?pd� , where u
?
p(z) = p(p� 1)ju(z)jp�2jeru(z)j2, (see [14]).

If u 2 Hp(B), 1 < p < 1, then the least M-harmonic majorant of jujp is
given by

P [u?](z) =

Z
S

P (z; �)u?(�) d�(�);

where P (z; �) = j1 � z��j�2n(1 � jzj2)n is the invariant Poisson kernel on B, and
u?(�) = limr!1 u(r�) a.e. on S, [13]. Thus by the Riesz Decomposition Theorem
[14], [15] with z = 0, we again have the equality (1.10):

kukpHp = ju(0)j
p + p(p� 1)

Z
B

ju(z)jp�2jeru(z)j2G(jzj; 1) d�(z)
For a similar argument see [4], [14]. Our argument in proving (1.10) is much

simpler. We only use Green`s theorem, as well as in the proof of Theorem 1.4.We
note that the characterization of the Hardy space Hp given in Theorem 1.4 is a part
of Proposition 5, [14]. The proof given in [14] is also based on the computation of
the Riesz measure of the function jujp and the Riesz decomposition theorem.
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4. A Littlewood-Paley type inequalities

Proof of Theorem 1.1. Without loss of generality we may suppose that f is
real. It is well known that a M-harmonic function v belongs to Hp, 1 < p < 1,
if and only if v = P [g], for some g 2 Lp(S), 1 < p < 1. Furthemore, kvkHp =
kgkLp(S). Thus to prove (1.1), by (1.8), it is suÆcient to show that

I1 =

Z
B

ju(z)jpd�(z) �

�
ju(0)jp +

Z
B

jeru(z)jp(1� jzj2)�1d�(z)�

and

I2 =

Z
B

jeru(z)j2ju(z)jp�2(1� jzj2)�1d�(z) � Z
B

jeru(z)jp(1� jzj2)�1d�(z):
Let I denote the last integral. Using Lemma 2.1, (b), we �nd that

ju(z)jp =

����
Z 1

0

d

dt
u(tz) dt+ u(0)

����
p

� C

�Z 1

0

jru(tz)jpdt+ ju(0)jp
�

� C

�Z 1

0

�Z
Er(tz)

jru(w)jpd�(w)

�
dt+ ju(0)jp

�

Since 1� jwj2 �= 1� t2jzj2 �= j1� tz �wj for w 2 Er(tz), we obtain

ju(z)jp � C

�Z 1

0

�Z
Er(tz)

jru(w)jp(1� jwj2)��n�1

j1� tz �wj�
d�(w)

�
dt+ ju(0)jp

�

� C

�Z 1

0

�Z
B

jru(w)jp(1� jwj2)��n�1

j1� tz �wj�
d�(w)

�
dt+ ju(0)jp

�

� C

�Z
B

jru(w)jp(1� jwj2)��n�1

j1� z �wj��1
d�(w) + ju(0)jp

�

We may suppose that � > n+ 2.

By (2.1) jru(w)j � jeru(w)j
1�jwj2 . Thus

I1 � C

�
ju(0)jp +

Z
B

d�(z)

Z
B

jeru(w)jp(1� jwj2)��n�1�p
j1� z �wj��1

d�(w)

�

= C

�
ju(0)jp +

Z
B

jeru(w)jp(1� jwj2)��n�1�pd�(w) Z
B

d�(z)

j1� z �wj��1

�

By standard estimates (see [13, p. 17])Z
B

d�(z)

j1� z �wj��1
�

C

(1� jwj2)��n�2
:
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Hence,

I1 � C

�
ju(0)jp +

Z
B

jeru(w)jp(1� jwj2)1�pd�(w)�

Since 1 < p � 2, we have (1�jwj2)1�p � (1�jwj2)�1. Therefore, I1 � (ju(0)jp+I).

Let r 2 (0; 1=2) be �xed. Set � = r=4 and Æ = r=2. By Fubini's theorem we
have

(4.1) I2 � C

Z
B

(1� jaj2)nd�(a)

Z
E�(a)

jeru(z)j2ju(z)jp�2d�(z):
It is easy to see that if jzj � r=4 then G(jzj; r=2) � C > 0 and therefore

Z
�B

jeru(z)j2ju(z)jp�2d�(z) � C

Z
ÆB

jeru(z)j2ju(z)jp�2G(jzj; r=2) d�(z):
Applying this to u Æ 'a and using the M-invariance of jerj, we see that

(4.2)Z
E�(a)

jeru(z)j2ju(z)jp�2d�(z) � C

Z
EÆ(a)

jeru(z)j2ju(z)jp�2G(j'a(z)j; Æ)d�(z):
Let cp = p(p� 1). Using (3.8) and Jensen`s inequality we get

cp

Z
ÆB

jeru(z)j2ju(z)jp�2G(jzj; r=2) d�(z) = Z
S

ju(Æ�)jpd�(�) � ju(0)jp

=

Z
S

�
ju(Æ�)j2

�p=2
�
�
ju(0)j2

�p=2
�

�Z
S

ju(Æ�)j2d�(�)

�p=2

�
�
ju(0)j2

�p=2
:(4.3)

If 0 < � � 1 and 0 � b � a then a� � b� � (a� b)�. Thus

�Z
S

ju(Æ�)j2d�(�)

�p=2

�
�
ju(0)j2

�p=2
�

�Z
S

ju(Æ�)j2d�(�) � ju(0)j2
�p=2

=

�
2

Z
ÆB

jeru(z)j2G(jzj; r=2)d�(z)�p=2

� C sup
z2ÆB

jeru(z)jp�Z
ÆB

G(jzj; r=2)d�(z)

�p=2

� C sup
z2ÆB

jeru(z)jp:(4.4)
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Using M-harmonic behaviour of jeru(z)jp, (Lemma 2.1), we �nd that

(4.5) sup
z2ÆB

jeru(z)jp � C sup
z2ÆB

Z
EÆ(z)

jeru(w)jpd�(w) � C

Z
rB

jeru(w)jpd�(w):
Combining (4.3), (4.4) and (4.5) we obtainZ

ÆB

jeru(z)j2ju(z)jp�2G(jzj; r=2) d�(z) � C

Z
rB

jeru(z)jpd�(z)
Applying this again to u Æ 'a we get

(4.6)

Z
EÆ(a)

jeru(z)j2ju(z)jp�2G(j'a(z)j; r=2)d�(z) � C

Z
Er(a)

jeru(z)jpd�(z)
Finally, from (4.1), (4.2) and (4.6) we see that

I2 � C

Z
B

(1� jaj2)nd�(a)

Z
Er(a)

jeru(z)jpd�(z)
= C

Z
B

jeru(z)jp(1� jzj2)�1d�(z) = CI;

by Fubini's theorem.

This �nishes the proof of the inequality (1.1).

Since the function jujp is M-subharmonic we have

ju(0)jp �

Z
B

ju(z)jpd�(z):

Hence by (1.8) to prove (1.2) it suÆcies to show that I2 � CI .

By Fubini's theorem

(4.7) I2 �=

Z
B

(1� jaj2)nd�(a)

Z
Er(a)

jeru(z)j2ju(z)jp�2d�(z)
Using (3.8) and Jensen's inequality we �nd that

cp

Z
ÆB

jeru(z)j2ju(z)jp�2G(jzj; Æ) d�(z) = Z
S

ju(Æ�)jpd�(�) � ju(0)jp

=

Z
S

�
ju(Æ�)j2

�p=2
d�(�) � ju(0)jp

�

�Z
S

ju(Æ�)j2d�(�)

�p=2

� (ju(0)j2)p=2:
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For 1 � � <1 and 0 � b � a, we have (a� b)� � a� � b�.

Hence, by using (3.8) and Lemma 2.1,

�Z
S

ju(Æ�)j2d�(�)

�p=2

� (ju(0)j2)p=2 �

�Z
S

ju(Æ�)j2d�(�) � ju(0)j2
�p=2

=

�
2

Z
ÆB

jeru(z)j2G(jzj; Æ)d�(z)�p=2

� C

�Z
ÆB

jeru(z)j2d�(z)�p=2

� Cjeru(0)jp
Therefore,

jeru(0)jp � C

Z
ÆB

jeru(z)j2ju(z)jp�2G(jzj; Æ) d�(z)
Since G(jzj; Æ) � Cjzj2�2n, for jzj � Æ, (note that n > 1), we get

jeru(0)jp � C

Z
ÆB

jeru(z)j2ju(z)jp�2jzj2�2nd�(z):
Applying this to u Æ 'a, where jaj < Æ, we �nd that

jeru(a)jp � C

Z
EÆ(a)

jeru(z)j2ju(z)jp�2j'a(z)j2�2nd�(z)
By Lemma 2.4 j'a(z)j � Cjz � aj. Thus

jeru(a)jp � C

Z
EÆ(a)

jeru(z)j2ju(z)jp�2jz � aj2�2nd�(z):

Integrating the last inequality over jaj < Æ with respect to � we obtainZ
ÆB

jeru(a)jpd�(a) � C

Z
rB

jeru(z)j2ju(z)jp�2d�(z) Z
ÆB

jz � aj2�2nd�(a):

Since, for z 2 rB,Z
ÆB

jz � aj2�2nd�(a) �

Z
fa:jz�aj<2rg

jz � aj2�2nd� � C

where C is independent of z, we have

jeru(0)jp � C

Z
ÆB

jeru(a)jpd�(a) � C

Z
rB

jeru(z)j2ju(z)jp�2d�(z)
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Applying this again to u Æ 'a we get

(4.8) jeru(a)jp � C

Z
Er(a)

jeru(z)j2ju(z)jp�2d�(z)
From (4.7) and (4.8) it follows that I2 � CI . This �nishes the proof of Theorem
1.1

Now, using Theorem 1.1 we get another version of Littlewood-Paley theorem.

Theorem 4.1. Let f 2 Lp(S) and u = P [f ]. Then

(4.9) kfkpp �

�
ju(0)jp +

Z
B

jeru(z)jpG(jzj; 1) d�(z)�; 1 < p � 2

and

(4.10) kfkpp �

�
ju(0)jp +

Z
B

jeru(z)jpG(jzj; 1)d�(z)�; 2 � p <1:

Proof. By Lemma 2.3 G(jzj; 1) � cn(1� jzj)
n for all z 2 B. Hence, (4.9) is a

consequence of (1.1).

Let 0 < Æ < 1=2 be �xed. Then using again Lemma 2.3 we �nd that

Z
B

jeru(z)jpG(jzj; 1) d�(z)
� C

�Z
1
2
ÆB

jeru(z)jpjzj2�2nd�(z) + Z
( 1
2
ÆB)c

jeru(z)jp(1� jzj2)nd�(z)�:
Thus, (4.10) follows from (1.2) since

Z
1
2
ÆB

jeru(z)jpjzj2�2nd�(z) � C

Z
ÆB

jeru(z)jp(1� jzj2)�1d�(z):
Theorem 1.2 is a corollary of Theorem 1.1 and the following theorem

Theorem 4.2. Let 1 < p < 1 and u 2 M. Then the following statements

are equivalent:

(i)
R
B
jeru(z)jp(1� jzj2)�1d�(z) <1.

(ii)
R
B
jru(z)jp(1� jzj2)p�1d�(z) <1.

(iii)
R
B
jRu(z)jp(1� jzj2)p�1d�(z) <1.

Proof. Since jeru(z)j � (1 � jzj2)jru(z)j � (1 � jzj2)jRu(z)j, we have (i) )
(ii)) (iii). So it remains to show that (iii)) (i).
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By (2.2) to prove that (iii)) (i) it is suÆcient to prove thatZ
B

(1� jzj2)p=2�1jTi;ju(z)j
pd�(z) � C

Z
B

(1� jzj2)p�1jRu(z)jpd�(z); 1 � i < j � n:

An integration by parts show that

u(z) =

Z 1

0

�
Ru(tz) + �Ru(tz) + u(tz)

�
dt

From this we conclude that it is suÆcient to prove that

I =

Z
B

(1� jzj2)p=2�1
�Z 1

0

jTi;jv(tz)jdt

�p

d�(z) � C

Z
B

(1� jzj2)p�1jRu(z)jpd�(z)

where v is either Ru or �Ru or u. We prove this for v = Ru. The remaining cases
may be treated analogously.

Let J =
R 1
0
jTi;jRu(tz)jdt. Using Lemma 2.2 and Fubini's theorem we �nd

that for any s > 0

J � C

Z 1

0

�Z
Er(tz)

jRu(w)j(1� jwj2)sd�(w)

j1� tz �wjn+s+3=2

�
dt

� C

Z 1

0

�Z
B

jRu(w)j(1� jwj2)sd�(w)

j1� tz �wjn+s+3=2

�
dt

=

Z
B

jRu(w)j(1� jwj2)s
�Z 1

0

dt

j1� tz �wjn+s+3=2

�
d�(w)

� C

Z
B

jRu(w)j(1� jwj2)sd�(w)

j1� z �wjn+s+1=2
:

Now we apply Lemma 4.1 [3] to conclude that

I � C

�Z
B

(1� jzj2)p=2�1
�Z

B

jRu(w)j(1� jwj2)sd�(w)

j1� z �wjn+s+1=2

�p

d�(z)

�

� C

Z
B

(1� jwj2)p�1jRu(w)jpd�(w)

References

[1] P. Ahern, J. Bruna, C. Cascante, Hp-theory for generalized M-harmonic functions in the
unit ball, Indiana Univ. Math. J. 45 (1996), 103{135.

[2] F. Beatrous, J. Burbea, Characterizations of spaces of holomorphic functions in the ball,
Kodai Math. J. 8 (1985), 36{51.



52 Jevti�c and Pavlovi�c

[3] F. Beatrous, J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes
Math. 256 (1989), 1{57.

[4] Caiheng Ouyang, Weisheng Yang, Ruhan Zhao, Characterizations of Bergman spaces and
Bloch space in the unit ball of Cn, Trans. Amer. Math. Soc. 347 (1995), 4301{4313.

[5] J. S. Choa, H. O. Kim, A Littlewood and Paley type inequality on the ball, Bull. Austr. Math.
Soc. 50 (1994), 265{271.

[6] W. Hayman, Multivalent functions, Cambridge Univ. Press, London, 1958.

[7] M. Jevti�c, M. Pavlovi�c, On subharmonic behaviour of functions and their tangential deriva-
tives on the unit ball in Cn (to appear).

[8] M. Jevti�c, Carleson measures in BMO, Analysis 15 (1995), 173{185.

[9] M. Jevti�c, M. Pavlovi�c, On M-harmonic Bloch space, Proc. Amer. Math. Soc. 123 (1995),
1385{1393.

[10] D. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc.
103 (1988), 887{893.

[11] J. E. Littlewood, R. E. A. C. Paley, Theorems on Fourier series and power series, II, Proc.
London Math. Soc. 42 (1936), 52{89.

[12] M. Pavlovi�c, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the
unit ball, Indag. Math. 2 (1991), 89{98.

[13] W. Rudin, Function theory in the unit ball of Cn Springer-Verlag, Berlin, 1980.

[14] M. Stoll, A characterization of Hardy spaces on the unit ball of Cn, J. London Math. Soc.
48 (1993), 126{136.

[15] M. Stoll, Invariant potential theory in the unit ball of Cn Cambridge University Press, 1994.

Matemati�cki fakultet (Received 02 07 1998)
Studentski trg 16
11001 Beograd, p. p. 550
Yugoslavia


