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Abstract. Let f(x1; x2; . . . ; xn) be a Boolean expression in n variables
x1; x2; . . . ; xn. A method for checking if the identity f(x1; x2; . . . ; xn) = 1 is valid
for all boolean values of x1; x2; . . . ; xn is proposed, based on the parallel struc-
ture of a computer k-bit processor. We give a construction of n boolean vectors
b1; b2; . . . ; bn of the size 2n with the following property:

If f(b1; b2; . . . ; bn) = 1; then f(x1; x2; . . . ; xn) is identically equal to one:

In this case, the necessary number of computing steps for checking the identity
f(b1; b2; . . . ; bn) = 1 is 2n�k , to be compared with the number of 2n computing
steps in the usual table-checking procedure. The complete characterization of vectors
b1; b2; . . . ; bn is given.

It is usually neglected in the design and program implementation of algo-
rithms that even standard computer processors are capable of performing certain
parallel operations. Examples of this kind include logical operations which can be
performed bitwise, i.e. by use of all register bits in one processor cycle. The aim
of this paper is to present an algorithm for computing values of Boolean functions
using parallel computing capability of a k-bit register processor. The mathematical
background of this analysis are free �nitely generated Boolean algebras.

1. Finite free Boolean algebras

Let us review �rst some facts, terminology and notation. The set of posi-
tive integers is denoted by N , while jX j denotes the cardinal number of a set X .
Algebras will be denoted by bold capital letters (e.g. A), while their domains
by ordinary capital letters (e.g. A). If F (x1; x2; . . . ; xn) is an algebraic expression
(term) over an algebraic language L,A an algebra of L and a1; a2; . . . ; an 2 A, then
FA(a1; a2; . . . ; an) denotes the value of F in A for variables x1; x2; . . . ; xn substi-
tuted with a1; a2; . . . ; an. If a set X � A generates A then we write A = hXi. In
the following we shall need the notion of a free algebra. LetM be an algebraic vari-
ety of algebras over a language L. An algebra A 2 M is said to be free for M over
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a set of free generators X � A if for every B 2M and every map f :X ! B there
is a homomorphism h:A! B such that f � h. As it is well known (G. Birkho�),
every algebraic variety has a free algebra over the set X as a free set of generators
for an arbitrary set X . As an illustration we prove the following theorem.

Theorem 1.1. Let M be an algebraic variety over an algebraic language
L, and A 2 M a free algebra over a �nite free generator set X = fb1; b2; . . . ; bng,
where b1; b2; . . . ; bn are distinct. Further, let

u(x1; x2; . . . ; xn) = v(x1; x2; . . . ; xn)

be an identity of L. If uA(b1; b2; . . . ; bn) = vA(b1; b2; . . . ; bn), then the identity
u = v holds on all algebras of M.

Proof. Assume uA(b1; b2; . . . ; bn) = vA(b1; b2; . . . ; bn). Let B 2 M be an
arbitrary algebra and d1; d2; . . . ; dn 2 B. Further, let f :X ! B be de�ned by
f(bi) = di, i = 1; 2; . . . ; n. As A is free overX , there is a homomorphism h:A! B

extending f . Then

uB(d1; d2; . . . ; dn) =u
B(hb1; hb2; . . . ; hbn) = huA(b1; b2; . . . ; bn) =

hvA(b1; b2; . . . ; bn) = vB(hb1; hb2; . . . ; hbn) =

vB(d1; d2; . . . ; dn):

As d1; d2; . . . ; dn were arbitrarily selected it follows that u = v holds on B.}

Let us consider free �nitely generated Boolean algebras. By a Boolean alge-
bra, shortly BA, we mean an algebraic structure B = (B;+; �; �; 0; 1; ), where B is
the domain of B, and +; �; � are usual Boolean operations. A two-element BA is
denoted by 2, so its domain is 2 = f0; 1g. The fundamental representation theorem
of �nite BA's states that every �nite BA is isomorphic to 2n for some n 2 N . If B
is generated by n elements b1; b2; . . . ; bn, i.e., B = hb1; b2; . . . ; bni then jBj � 22

n

,
so B is �nite. From now on we shall discuss only �nite BA's. We shall call a basis
of a BA B a minimal generating set of B. If the basis X is a free generating set
of B then we shall call X a free basis, while the elements of X will be called free
vectors. A free Boolean algebra generated by n free vectors will be denoted by

n. First, we shall show that jBj = 22

n

if and only if B is a free BA over a free
generating n-element set. In the following we are going to use the following fact:

Theorem 1.2. (R. Sikorski) Let B be a BA and X � B. Then B is freely
generated by X if and only if:

- B = hXi.

- For any n 2 N , b1; b2; . . . ; bn 2 X and � 2 2n, b�11 b�22 � � � b�nn 6= 0. }

As usual, x1 = x and x0 = �x. Here are examples of some free generating sets
b1; b2; . . . ; bn:
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10 The Lindenbaum algebra LP of the propositional calculus with n proposi-
tional letters P = fp1; p2; . . . ; png. If ' is a propositional formula over P
and ['] its equivalence class under the logical equivalence, then we may take
b1 = [p1]; b2 = [p2]; . . . ; bn = [pn].

20 Let I = [0; 1]R be the real interval. Then

bi = f(x1; x2; . . . ; xn) 2 In: 0 � xi � 1=2g; i = 1; 2; . . . ; n

form a free basis of B = hb1; b2; . . . ; bni � P(In).

30 Let A;B;C be circles in a Venn's diagram, i.e., \circles in the gener-
al intersecting setting". Then fA;B;Cg is a free generating set of BA
B = hA;B;Ci � P(K), whereK is a square to which belong A;B;C. Accord-
ing to the Theorem 1.1 every proof of a Boolean (and therefore set-theoretical)
identity involving up to three variables using Venn's diagrams is mathemat-
ically correct. Compare this to the sentence \They (Venn's) diagrams are
useful for verifying identities involving operations on sets, but should not be
considered tools of rigorous mathematical proof" (cf. [2], p. 34).

40 Let ci, i = 0; 1; . . . ; 2n�1, be the binary expansion of the integer i with zeros
padded to the left up to the length n. Let M be the matrix whose columns
are vectors ci, and let bi, i = 1; 2; . . . ; n, be binary vectors { rows of the
matrix M . Then b1; b2; . . . , are free vectors of 
n. In case n = 3, the matrix
M looks like

M =

2
4
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

3
5 (1:3)

thus, b1 = 00001111; b2 = 00110011; b3 = 01010101.

Theorem 1.4 Let B be a �nitely generated BA. Then B is free if and only
if it is isomorphic to 22

n

.

Proof. Assume B = hb1; b2; . . . ; bni is freely generated by b1; b2; . . . ; bn. If
x2B then x = ��2�xb

�1
1 b�22 � � � b�nn for some �x � 2n. Let y = ��2�yb

�1
1 b�22 � � � b�nn ,

�y � 2n. Assume that �x 6= �y. Then �xn�y 6= ;, or �yn�x 6= ;, suppose

�xn�y 6= ;. Let � 2 �xn�y. Then by Sikorski's condition b�11 b�22 � � � b�nn 6= 0 and

b�11 b�22 � � � b�nn ��2�xb
�1
1 b�22 � � � b�nn = b�11 b�22 � � � b�nn 6=0, so xb�11 b�22 � � � b�nn 6=0. On the

other hand, b�11 b�22 � � � b�nn ��2�yb
�1
1 b�22 � � � b�nn = 0, so yb�11 b�22 � � � b�nn = 0. Hence,

x 6= y. Therefore, B has as many elements as there are subsets of 2n, so jBj = 22
n

.

Now assume that jBj = 22
n

. By the above, 
n has 22
n

elements, so by the
representation theorem for �nite Boolean algebras it follows B �= 
n. }

Theorem 1.5 
n+1
�= 
n �
n.

Proof. By the previous theorem we have:


n+1
�= 22

n+1 �= 22
n

� 22
n �= 
n �
n: }
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There is an easy procedure for constructing in the inductive way free vectors of

n which can be used in a program implementation. Suppose that u1; u2; . . . ; un�1
are free vectors of 
n�1. If this sequence is of length 1, then we take u1 = 01. Free
vectors b1; b2; . . . ; bn of 
n are obtained as follows. b1 = 00 . . . 011 . . . 1, i.e., b1
consists of two blocks, the �rst one is a block of zeros of size 2n�1, while the
second block is a sequence of ones also of size 2n�1. Further, b2 = u1^u1; b3 =
u2^u2; . . . bn = un�1^un�1. Here u^v is a concatenation of words u and v.
For a real number x, let dxe denote the least integer greater than or equal to x.

Corollary 1.6 The Boolean algebra 2m is generated by dlog2(m)e elements.

Proof. Let n = dlog2(m)e. Then 2m � 22
n

, so BA 2m is a homomorphic
image of BA 22

n

, i.e., of 
n. A homomorphism h: 
n ! 2m is the projection, i.e.
the mapping which cuts o� the coordinates of vectors in 22

n

(which are of length
2n) to obtain vectors which are of length m. As 
n is generated by n vectors, say
by b1; b2; . . . ; bn, so is 2m, since 2m = hhb1; hb2; . . . ; hbni. }

Example 1.7 Let us determine a generating subset of 25 of size dlog2(5)e =
3. If in the matrix (1.3) the last three columns are deleted (the homomorphism-
projection which \forgets" the three last coordinates), then we obtain vectors u1 =
00001; u2 = 00110; u3 = 01010, and 25 = hu1; u2; u3i. As atoms of 2m have exactly
one bit equal to 1 in vector (binary) representation, by an obvious enumeration of
atoms ai, we have u1 = a5; u2 = a3 + a4; u3 = a2 + a4.

Theorem 1.8 Suppose 
n = hu1; u2; . . . ; uni. Then u1; u2; . . . ; un are free
vectors of 
n.

Let fb1; b2; . . . ; bng be a free basis of 
n, and let the mapping f be de�ned
by f(bi) = ui; i = 1; 2; . . .n. Then f extends to an endomorphism h: 
n ! 
n. As
u1; u2; . . . ; un generate 
n, h is onto. Since 
n is �nite, h is also 1-1, therefore h is
an automorphism. Hence u1 = hb1; u2 = hb2; . . . ; un = hbn are free vectors of 
n.

}

If u1; u2; . . . ; um 2 
n and m < n then hu1; u2; . . . ; umi is a proper Boolean
subalgebra of 
n (since it has at most 22

m

< 22
n

elements), so, free vectors of 
n

not only form a basis of 
n but also a generating set with the least possible number
of elements. Thus it makes sense to introduce a \dimension" function d on a �nite
Boolean algebra B as dB = the least natural number k such that B has a basis
with k elements. By the previous observation, we have d
n = n. In fact we can
compute d for every 2m.

Theorem 1.9 d2m = dlog2(m)e.

Proof. By Corollary 1.6, Boolean algebra 2m has a generating set having
dlog2(m)e elements. If u1; u2; . . . ; uk 2 2m and k < dlog2(m)e, then the subalgebra

hu1; u2; . . . ; uki � 2m has at most 22
k

< 2m elements so it is a proper subalgebra of
2m. Thus 2m does not have a generating subset with fewer elements than dlog2(m)e.

}
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Since atoms of 2m make a partition of 1, and under every non-zero element
of 2m there is an atom, it follows that the set of atoms A � 2m is a basis of 2m

with the maximal number of elements. Hence, if S � 2m is any basis of 2m, then

dlog2(m)e � jSj � m (1:10)

Now, we shall describe all free base of 
n.

Theorem 1.11 Let b1; b2; . . . ; bn be free vectors of 
n as de�ned in Example
40, bi = (bi1; bi2; . . . ; bi2n), i = 1; 2; . . . ; n. Let M = jjbij jjn�2n be a matrix whose
rows are formed by coordinates of vectors bi (see the Example 40). Let p be any
permutation of columns of matrix M , and let us denote the matrix so obtained by
p �M . Then

1. The rows of p �M form a free basis of 
n.

2. Every free basis of 
n is obtained as row-vectors of p�M for some permutation
p.

Proof. To every column � of the matrix M corresponds an atom

a� = b�11 b�22 � � � b�nn

of 
n. Thus the permutation p permutes in fact atoms of 
n, so it de�nes an auto-
morphism hp of 
n. Then the rows of p�M are images of free vectors b1; b2; . . . ; bn
under hp, hence hpb1; hpb2; . . . ; hpbn also form a free basis of 
n.

Now, suppose that u1; u2; . . . ; un is any free basis of 
n. Let the mapping f
be de�ned by f(bi) = ui; i = 1; 2; . . . ; n. As u1; u2; . . . ; un generate 
n, f extends
to an automorphism h of 
n (see the proof of Theorem 1.8). Therefore h permutes
atoms of 
n, and h(bi) = ui, hence ui are rows of the matrix p �M , where p is the
restriction of h to the set of atoms of 
n. }

By the above consideration, we see that the number of free basis of 
n is
equal to jAut
nj = (2n)!.

2. Computation of Boolean formulas by use of free vectors

Let f : 
n ! 2 be a Boolean function. Representing f by its Boolean values,
we may consider that f = F
n(b1; b2; . . . ; bn), where F is a Boolean expression and
b1; b2; . . . ; bn form a free basis of 
n. Thus,

- If we want to check that f is identically equal to 1, it suÆces to compute
F
n(b1; b2; . . . ; bn) and check if the Boolean values consist of the sequence of
1's. Observe that in the computation, the expression F
n(b1; b2; . . . ; bn) is
evaluated only once. Also, we can obtain this fact by use of the Theorem 1.1.

- On the other hand, the sequence of binary values of F
n(b1; b2; . . . ; bn) is
exactly the sequence of values of the function f . If M = [b1; b2; . . . ; bn] is
the matrix whose rows are vectors b1; b2; . . . ; bn, and � is the ith column of
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M (so 0 � � � 2n � 1 if � is considered as a binary number), then the
ith member of the sequence F
n(b1; b2; . . . ; bn) is exactly f(�). Therefore,
F
n(b1; b2; . . . ; bn) represents f as a vector of the size 2n. It should be ob-
served that the DNF (disjunctive normal form) of F is read out from the
binary representation of f immediately.

Now we shall consider an algorithm for fast checking whether f is identically
equal to 1. Suppose that we have at our disposal a 2k-bit processor (for example
2k = 25 = 32), and that we want to check whether f(x1; x2; . . . ; xn) (for example
n = 30) is identically equal to 1. According to the previous discussion, it suÆces to
see whether f(b1; b2; . . . ; bn) = 1, where b1; b2; . . . ; bn is a free basis of 
n. For the
case 2n � 2k one should put b1; b2; . . . ; bn as binary sequences into 2k-bit registers
and compute f(b1; b2; . . . ; bn). It means that in contemporary computer processors,
due to the fact that logical operations are preformed bitwise, i.e. in parallel on the
vectors of length 2k, the evaluation of f can be done in the time interval of length
tb = ��, where � is the number of the nodes in the evaluation tree (the expression
tree) of the corresponding Boolean expression F , and � is the processor clock cycle
which we may take to be about 5 � 10�9sec. In the standard table-checking method
this time interval would be of the length ts = 2ktb, as it is performed on single bits,
not on whole vectors. Thus, the proposed method speeds up the evaluation of f by
2k times.

The algorithm works well on functions with small number of variables. Now,
let us consider the case when the length of free vectors (i.e. when f have large
number of arguments) is greater then the length of processor registers; this is the
case when 2n > 2k. In this case each vector bi should be divided simultaneously
into blocks each of size 2k. Observe that there are 2n�k such blocks. Thus we
may consider that bj consists of blocks bji ; 1 � i � 2n�k, each block having 2k

bits. Then, in order to to �nd out whether 0 appears in the binary expansion of
f(b1; b2; . . . ; bn), � = f(b1i ; b

2
i ; . . . ; b

n
i ); 1 � i � 2n�k, is computed and for each i it

is checked whether 0 appears in the register containing the value �.

If 2r processors are at our disposal, we may speed up the procedure by dividing
the evaluation of f into 2r parallel tasks, as the computation of f on a single block
obviously does not depend on the values of f on other blocks. Then the necessary
time of the whole computing process would take about ts=2

k+r.

If for some reason the security of the computation is needed, as in cryptog-
raphy, we can permute the bits of bi, or the blocks bij of the division of bi. More
precisely, the columns of the matrix M = [b1; b2; . . . ; bn] are permuted (cf. Theo-
rem 1.11), and then we apply f on the rows (blocks) of the matrix obtained in that
manner.

Here is a real situation where the algorithm can be applied. Suppose that we
have two Boolean expressions F (x1; x2; . . . ; xn) and G(x1; x2; . . . ; xn) that should
de�ne the same Boolean function f . Of course, we would like to know if F and
G really de�ne the same function, as f is intended to be �rmware implemented
on a certain chip. This problem may arise when G is obtained from F by some
optimization process, so that F describes the intended function f of the chip, while
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G is the actual implementation of f on the chip. In order to show that the chip will
work properly, it is necessary to show that F and G represent the same function f .
There are algorithms that are used for this purpose, as the Quine's BDP (binary
decision procedure). In our approach we would take H = F4G, where 4 stands
for the Boolean operation XOR (F4G = �FG+ f �G). Then, check by the proposed
procedure if H is identically equal to 1. If n � 30, this can be done on a computer
with one 32-bit processor in real time. But if parallel computers with processor
�elds, or if specialized chip ("logical chip") with registers of appropriate size, say
with 224 bits, is designed, then the number of arguments of f can be raised up to
50.

3. Remark

In the search for zero in the sequence of binary values of F
n(b1; b2; . . . ; bn),
the reading of bits of a k-bit register for large k might be time consuming. In fact,
this problem is equally hard to the computing problem of evaluating Lx, where L
is an operator de�ned on the Boolean algebra B = 2k, x 2 B, which satis�es the
following two axioms: x < 1) Lx = 0; L1 = 1: If the dual operator M is de�ned
byMx = �L�x, then L andM behave as modal S5 necessity and possibility operators,
respectively. In fact, �nite structures (B;M;L) are characteristic algebras for S5
modal logic, i.e. modal propositional sentences true on such structures are exactly
the theorems of S5 logic. There is a simple implementation of the operator M
by a switching circuit by rows of AND gates described by the following recurrent
formulas for x 2 2k, k = 2m, x = (x1; x2; . . . ; xn):

x11 = x1x2; x12 = x3x4; . . . . . . . . . ; x12m�1 = x2m�1x2m

x21 = x11x
1
2; x22 = x13x

1
4; . . . ; x22m�2 = x12m�1�1x

1
2m�1

...
xm1 = xm�11 xm�12 .

Then Mx = xm1 . Observe that the depth of this circuit is m = log2 k. In
a similar way, a Boolean circuit for Lx can be constructed, but with OR gates.
Therefore, the \logic processor" mentioned above should contain an extra bit e for
each register. The bit e would carry out the statusMx of the register containing the
value x. An extra property of such a device would be the capability of computing
values of modal S5 formulas.
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