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Abstract. We give explicit formulae of a new family of rational (4 � 4) R-
matrices, satisfying the free-fermion condition. These solutions are of rank 2 and
with rational irreducible spectral curves. That was the last geometrically possible
situation in which solutions had not been known.

During the seventies and the eighties great e�orts were made in �nding and
describing the solutions of the Yang-Baxter equation:
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V is an operator acting on the i-th and the j-th components as R(�) and as
identity on the third component; � is a complex parameter, called spectral. Almost
always the \quasiclassical" property of the solutions was presumed: additionally
they smoothly depend on parameter � (Plank constant), R(�; �)
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is so-called classical r-matrix satisfying the classical Yang-Baxter

equation. The other solutions, without quasiclassical property, were usually treated
as strange and rarely investigated, and they were considered only in a few papers
[1{8].

The best known among them is the Felderhof free-fermion solution [1{8].
It was found in the beginning of the seventies, almost in the same time as the
celebrated Baxter solution. In this note we will use the parametrization of the
Felderhof R-matrices given in [6{8]:

� =

0
B@
b1 0 0 d
0 b2 c 0
0 c b3 0
d 0 0 b0

1
CA

AMS Subject Classi�cation (1991): Primary 82B20

Supported by Ministry of Science and Technology of Serbia, grant number 04M03/C



148 Dragovi�c

The key property of the matrix elements of the Felderhof R-matrix is the

free-fermion condition

b0b1 + b2b3 = c2 + d2

The explicit formulae for the matrix elements will be given at the beginning of
Section 2.

The classi�cation problem for the solutions of the Yang-Baxter equation is
far from being solved. The �rst serious steps were made by Krichever, in the basic
(4� 4) case, in 1981. He introduced and analyzed the vacuum vectors, the spectral
curves and the rank of the solution (see below). He stated that in the general
position all (4 � 4) rank 1 solutions are reduced to the Baxter's solution, and
rank 2 solutions to the Felderhof's solutions. This solutions have elliptical spectral
curves. In [9, 10] rank 1 solutions out of the general position were classi�ed.
They could have rational reducible spectral curves (represented by RXXZ , [9]) and
rational irreducible spectral curves (Cherednik's R-matrix [10]). Rank 2 solutions
with rational reducible spectral curves are very well known free-fermion six-vertex
R-matrices (see, for example [6{8]).

Here we give the missing solution { of rank 2 and with rational irreducible
spectral curve. We use nontrivial gauge limit (see [10]) and the obtained solution
is a free-fermion type analogue of Cherednik's R-matrix.

1. As it is well known, two families R(�) and R1(�) of solutions of the Yang-
Baxter equation, are gauge equivalent, if there exists a (2� 2) matrix T such that:

R1(�) = T�1 
 T�1R T 
 T:

Let us also recall some of Krichever's de�nitions. An even-dimensional matrix L
can be understood as a function from Cn 
 C2 to Cn 
 C2. The vectors of the
form X 
 U mapped by L into the vectors of the same type Y 
 V are called the
vacuum vectors . The vacuum vectors are parametrized by a curve � de�ned by the
equation

P (u; v) = det(Lij(u; v)) = 0;

where Lij(u; v) =
~V �L�i�jU�;

~V = (1;�v); U2 = V2 = Xn = Yn = 1; U1 = u; V1 = v.

The curve � is called the spectral curve, and P (u; v) is the spectral polynomial .

The (4 � 4) solution R(�) of the Yang-Baxter equation is of rank 2 if the
spectral polynomial Q(u; v) of (8� 8) matrix �1 = R12(�1)R

23(�2)R
13(�1� �2) can

be represented as an exact square: Q(u; v) = ~Q2(u; v). Otherwise, the solution is
of rank 1.

The matrices uniquely determine their spectral curves and the vacuum vec-
tors. But also the spectral curves and the vacuum vectors, as functions on the
curves with some analytical properties, uniquely de�ne the matrices. That is a
consequence of the Riemann-Roch theorem.

If the matricesR1 and R2 are gauge equivalent, i.e., if R1 = T
TR2T
�1
T�1

then their vacuum vectors are related by (X1; U1; Y1; V1) = (TX2; TU2; TY2; TV2).
So, we have
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Proposition 1. The spectral curve is a gauge invariant.

2. The parametrization of Felderhof R-matrix given in [6{8] is:
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where
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e(') = cn'+ i sn';

sn' and cn' are Jacobi elliptical functions of modules k, � trivial common con-
stant, p and q are arbitrary constants.

The free-fermion six-vertex model R-matrix �XXZ is given by

�XXZ = lim
k!0

�('jp; qjk)

Let
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�

and
�1('jp; q) = lim

k!0
T�1(k)
 T�1(k) �('jp; qjk) T (k)
 T (k)

Then we have explicit formulae of a new family of rational (4� 4) R matrices:

Proposition 2. The explicit formula for �1 is

�1('jp; q) =
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where
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~e(') = cos'+ i sin':

The proof of the proposition is a consequence of the limit characteristics of
the elliptical functions (see [10, 11]).

This construction is simple and well known (see [12]). Probably it was not
applied previously to the Felderhof solutions, because it does not work with the
most popular parametrizations (from [1{3], and [5]).

Since �1 is obtained as a limit of a family of rank 2 solutions, we have:

Theorem 1. �1('jp; q) is a rank two solution of the Yang-Baxter equation.

We will compare the spectral curves of the solutions �;�XXZ and �1.

Proposition 3. (a) The spectral curve of the Felderhof R-matrix is elliptical.

(b) The spectral curve of the six-vertex free-fermion model R-matrix is rational

reducible.

(c) The spectral curve of �1 is rational irreducible.

Proof. Spectral curves in (a); (b); (c) are given by Pa(u; v) = u2v2 + �u2 +
�v2 + 1; Pb(u; v) = �u2 + �v2 and Pc(u; v) = u2v2 + �u2 + �v2. The proposition
follows by simple computation.

From Proposition 2, using the gauge invariance of the spectral curves, we get

Theorem 2. �1 is not gauge equivalent neither to Felderhof 's matrix nor to

R-matrix of the six-vertex model.

On the �rst sight, it might look paradoxical that two families of equivalent
solutions, in a limit, give solutions which are not equivalent. However, this is true
since the family T (k) does not have a limit when k ! 0.

3. Conclusion. Now we have examples of the rank 2 solutions of the Yang-
Baxter equation in all geometrically possible cases: with elliptical, rational re-
ducible and with rational irreducible spectral curves.

Krichever classi�ed in [5], as it was mention above, the (4� 4) solutions with
genus 1 spectral curve of the Yang equation:

R L L= = L= L R

up to the gauge equivalence:

R 7! T�1X 
 T�1
X= R TX 
 TX=

L 7! T�1X 
 T�1U L TX 
 TU

L= 7! T�1
X= 
 T�1U L= TX= 
 TU

(This classi�cation is, of course, weaker then up to the gauge equivalence de�ned
in Section 1.)
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One of the basic facts used by Krichever was the commuting property of the
spectral polynomials PL(u; v) and PL=(u; v) of the solutions L;L

=, in a sense of the
2{2 correspondences.

In our case the situation is practically the same:

Lemma. Polynomials P (u; v) = u2v2 + �u2 + �v2 and P1(u; v) = u2v2 +
�1u

2 + �1v
2 commute as relations if and only if �+ � = �1 + �1.

In order to get similar classi�cation in our case, one can repeat other Krichev-
er's arguments using functions on the rational curve with marked points a; b, sat-
isfying conditions f(a) = f(b), degD1f = 2, instead of Jacobi elliptical functions
and fractional{linear transformations  :  (a) = a;  (b) = b instead of shift on the
elliptical curves.

Let us note, at the end, that it would be very interesting to understand
possible generalizations of the free-fermion condition in dimensions greater then
4. It seems like an important step toward the classi�cation of the solutions of the
Yang{Baxter equation in arbitrary dimension.
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