
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 63 (77), 1998, 143{146

INTEGRATION OF THE PERTURBATED JACOBI PROBLEM

Vladimir Dragovi�c

Communicated by Stevan Pilipovi�c

Abstract. It is shown that recently obtained family of integrable potential
perturbations of the Jacobi problem for the geodesics on the ellipsoid can be inte-
grated by separation of variables in the elliptic coordinates. The way of reduction to
the Liouville case is demonstrated and the complete integral of the Hamilton{Jacobi
equation is given.

1. Introduction

In the theory of the Hamiltonian systems, the completely integrable case has
a very important position. According to Lionville's theorem (see [1, 2]), the mo-
tion associated to the system has regular behavior. Unfortunately the integration
procedure given by this theorem is ine�ective. There are several methods of e�ec-
tivisation of this procedure, classical and modern, as presented in the encyclopedic
reviews [1, 2].

The integrability of the Hamiltonian system describing a particle moving
under inertia on an ellipsoid

x2

a
+

y2

b
+

z2

c
= 1 (1)

was proven by Jacobi by separation of variables in the elliptic coordinates (see, for
example, [1, 2]).

A family of integrable potential perturbations of the above system was re-
cently obtained (see [5]) using Kozlov's method (see [3, 4]). It was found in the
form of Laurent polynomials:

V (x; y; z) =
X

r�n;m;p�s

am;n;p(a; b; c)x
mynzp; s; r 2 Z:
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The basic potentials Vm0
; m0 = �2t; t 2 N , were given (see Theorem 1 in

[5]) by the formulae

am0+2k;2s;�m0�2�2(k+s) =

�
s+ k � 1

k

�ck+s(c� a)s(c� b)k
k+sQ

i=k+1

(m0 + 2i)

bkas(b� a)k+s(�2)ss!
(2)

where k � s, and m0 + 2(k + s) < 0.

In this paper we want to show that these systems are integrable by the method
of separation of variables in the elliptic coordinate system. On the example of V�4
we demonstrate how such system can be reduced to the Liouville case (see [6, 7])
and give the complete integral of the Hamilton{Jacobi equation. (The exapmle
V�2 = 1=x2 has been studied by Kozlov in [3].)

2. The elliptic coordinates and the separation of the variables

If 0 < a < b < c are distinct positive real numbers, Jacobi's elliptic coordi-
nates ( in R3) �1; �2; �3 can be de�ned by the function which the triple (x; y; z) 2 R3

maps the roots (�1; �2; �3); �3 < �2 < �1, of the equation

f(�) =
x2

a� �
+

y2

b� �
+

z2

c� �
= 1:

Conversely (see [1]):

x2 =
(a� �1)(a� �2)(a� �3)

(a� b)(a� c)
;

y2 =
(b� �1)(b� �2)(b� �3)

(b� a)(b� c)
;

z2 =
(c� �1)(c� �2)(c� �3)

(c� a)(c� b)

(3)

In these coordinates the constrain (1) is given by �3 = 0. The Hamiltonians of the
analysed systems are of the form:

Hm0
= T + ~Vm0

;

where

T =
2

�1 � �2

�
(a� �1)(�1 � b)(�1 � c)

�1
p21 +

(a� �2)(b� �2)(�2 � c)

�2
p22

�

pj = (�1)j+1(�1 � �2)
�j _�j

4(a� �j)(b� �j)(c� �j)
; j = 1; 2;

and ~Vm0
(�1; �2) we got from Vm0

(x; y; z) by expressing x2; y2; z2 in (2) by (3).
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Theorem. The systems with Hamiltonians Hm0
(�1; �2; p1; p2) are integrable

by the method of separation of variables in the elliptic coordinate system.

Proof. By the Levi{Civita criterion (see [2, 7]) one has to show that
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(4)

The system with Hamiltonian H0 = T is integrable by separation of variables in
the elliptical coordinates. So (4) is equivalent to

(�1 � �2)
@2 ~Vm0

@�1@�2
+

@ ~Vm0

@�2
�

@ ~Vm0

@�1
= 0:

This can be verifyed directly, using (2) and (3).

�

3. Explicit reduction to the Lioville case of separation of variables

We demonstrate explicit reduction of such systems to the Liouville case of
separation of variables on the example

V�4 = x�4z2 +
c(c� a)

b(b� a)
x�4y2:

Then we give complete integral of the Hamilton-Jacobi equation. Recall that
separation of variables in the simpler case of V�2 = 1=x2 was given by Kozlov in
[3].

In elliptic coordinates we have

~V�4(�1; �2) =
(a� b)2(c� �1)(c� �2)� (c� a)2(b� �1)(b� �2)

(a� �1)2(a� �2)2
:

The following proposition is obtained by simple algebraic transformations.

Proposition. The potential ~V�4 can be expressed in the form:

~V�4(�1; �2) =
1

�1 � �2
('(�1)� '(�2));

where

'(�) =
�

a2(a� �)2
((a� b)2(c� �)c� (c� a)2(b� �)b):

As a corollary we get (see [6]):
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Corollary. Complete integral of the Hamilton-Jacobi equation is

K =

Z s
2�1

(a� �1)(�1 � b)(�1 � c)
(h�1 � '(�1) + �) d�1

+

Z s
2�2

(a� �2)(b� �2)(�2 � c)
(�h�2 + '(�2)� �) d�2;

where �; h are constants representing values of two integrals in involution.

In the case of polynomial potential perturbations (the case m0 = 0 from
[5]) there is nothing new comparing to the situation considered by Kozlov. The
polynomials di�er from the Kozlov's potential V (x; y; z) = k(x2 + y2 + z2) by the
constants, according to the constrained condition (1).
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