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Abstract. It is shown that if a continuum X contains the Gehman dendrite
as its retract, then there exists a mapping f of X such that the closure of the set of
periodic points of f is a proper subset of the closure of the set of recurrent points
of f . Other continua with this property are presented, and a number of related
questions are asked.

1. Introduction

All spaces considered in this paper are assumed to be metric and separa-
ble. By a continuum we mean a compact connected space. A locally connected
continuum containing no simple closed curve is called a dendrite. A tree means a
one-dimensional compact connected acyclic polyhedron. By an end point (in the
classical sense) of an arcwise connected continuum X we mean a point p of X which
is an end point of every arc A such that p 2 A � X . Thus the concept of a dendrite
having �nitely many end points coincides with one of a tree. A rami�cation point

is de�ned as a point being the vertex of a simple triod contained in the space; the
number of arcs emanating from the point and pairwise disjoint out of it is taken as
the order of the point.

We denote by N the set of all positive integers, by R the set of reals, by C
the set of complex numbers, by I the unit closed interval [0; 1] of reals, and by S
the unit circle, i.e., S= fz 2 C : jzj = 1g.

Let X be a space, and let f : X ! X be a mapping (i.e., a continuous
function) of X to itself, and for any n 2 N let fn : X ! X denote the n-th
iteration of f . A point x of X is said to be:
| a �xed point of f , if f(x) = x;
| a periodic point of f , provided that there is n 2 N such that fn(x) = x;
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| a recurrent point of f , provided that for every neighborhood U of x there is
n 2 N such that fn(x) 2 U ;
| a nonwandering point of f , provided that for every neighborhood U of x there
is n 2 N such that fn(U) \ U 6= ;.

The sets of �xed points, periodic points, recurrent points and nonwandering
points of a mapping f : X ! X will be denoted by F (f), P (f), R(f) and 
(f),
respectively. Thus we have

(1.1) F (f) � P (f) � R(f) � 
(f) � X:

1.2. Remarks. If f : S! S is a rotation of S by the angle �=4 (i.e., if f is de�ned
by f(z) = iz), we have F (f) = ; and P (f) = S. If f : S ! S is an irrational
rotation (i.e., a rotation by an angle � such that �=� is irrational), then P (f) = ;,
while R(f) = S. A piecewise monotone mapping f : I! I with clR(f)  
(f)
is described in Section 3 of [36, pp. 183{184]. Finally, for f : I! I de�ned by
f(t) = t2 we have R(f) = f0; 1g  I. Thus we see that, in general, none of the
inclusions in (1.1) can be replaced by the equality.

1.3. Remarks. Continua are known for which all the inclusions in (1.1) turn into
the equalities. a) Cook has constructed ([7, Theorems 8 and 11, pp. 245 and 247])
hereditarily indecomposable and nonplanable continua X such that the identity is
the only mapping of X into itself. b) Ma�ckowiak has constructed ([23, Section 4,
Theorems 30 and 31, pp. 547 and 549]) hereditarily decomposable and planable
continua X such that the identity is the only mapping of X onto itself. Thus for
all these continua we have F (f) = X for each f : X ! X .

The notions of periodic, recurrent and nonwandering points of a mapping
f : X ! X are ones of the most important notions in dynamical systems (see e.g.
[3] and [27]). To formulate in a shorter way some properties of spaces related these
notions let us accept the following de�nition.

1.4. De�nition. A space X is said to have the periodic-recurrent property (shortly
PR-property) provided that for every mapping f : X ! X the equality holds

(1.5) clP (f) = clR(f):

Coven and Hedlund proved in [9] the following result.

1.6. Theorem (Coven and Hedlund). The closed unit interval I has the PR-

property.

The essential argument used in the proof of Theorem 1.6 was an equivalence
saying that for each topological space X and for each mapping f : X ! X the
condition x 2 R(f) holds if and only if x 2 R(fn) for each n 2 N (Theorem I of
[11, p. 126], which is a generalization of a similar result for homeomorphisms f due
to Gottschalk, see [14, Theorem 1, p. 222]).
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Special cases of this result have been proved by Block [4] (for mappings f
with 
(f) �nite), by Coven and Hedlund [8] (for mappings f with P (f) being
closed), and by Young [36] (for piecewise monotone mappings). In Theorem 2.6 of
[34, p. 349], Ye generalized the result to mappings on trees.

1.7. Theorem (Ye). Every tree has the PR-property.

Since each nondegenerate subcontinuum of a tree T is a tree, equality (1.5)
holds not only for each mapping on T , but also for each mapping of a nondegenerate
subcontinuum of T onto itself, i.e., every tree has the PR-property hereditarily.

1.8. Question. What continua have the PR-property hereditarily?

2. A property of Gehman's dendrite

Since dendrites have often appeared as Julia sets in complex dynamical sys-
tems (see [28], for example), the dynamical behavior of their automappings is both
important and interesting in the study of dynamical systems (and in continuum
theory, too). Therefore a question arises in a very natural way concerning a pos-
sibility of an extension of equality (1.5) to dendrites, which form the nearest (in
a sense) class of curves containing trees. The question was discussed by Kato in
[20], who has shown (exploiting a general method of constructing in�nite telescopes
T (X) over an arbitrary compact metric space X as an application of inverse limits,
due to Krasinkiewicz, see [21, Sections 3 and 4, pp. 98{105]) that equality (1.5)
fails for the well-known Gehman dendrite G (see [12, the example on p. 42]; see
also [24, pp. 422{423] for a detailed description, and [26, Fig. 1 on p. 203], for a
picture; note that the in�nite binary tree is another name of this dendrite, see [10,
p. 12]). Recall that G can be characterized as the only dendrite whose set of end
points is homeomorphic to the Cantor set, and whose rami�cation points are of
order 3 only (see [25, p. 100]). Namely Kato de�nes a mapping f : G ! G such
that equality (1.5) does not hold, i.e., according to (1.1), that

(2.1) clP (f)  clR(f):

For further purposes we need some auxiliary de�nitions and results. A mapping
r : X ! Y from a continuum X onto a continuum Y � X is called a retraction

provided that r(y) = y for each point y 2 Y . Then Y is called a retract of X . A
compact metric space Y is called an absolute retract provided that every homeo-
morphic image of Y lying in an arbitrary separable metric space X is a retract of
X . Recall the following theorem (see [22, x53, III, Theorem 5, p. 341]).

(2.2) A compact metric space Y is an absolute retract if and only if for each
closed subset A of a separable metric space X each mapping from A to Y has a
(continuous) extension over X .

The following results concerning dendrites are known (see [13, Theorem,
p. 157], and [22, x53, III, Theorem 16, p. 344]).
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(2.3) A continuum X is a dendrite if and only if each subcontinuum of X is a
monotone retract of X .

(2.4) Each dendrite is an absolute retract.

To extend Kato's result to other continua, in particular to other dendrites,
as well as to exhibit other important consequences of the existence of the mapping
f : G ! G satisfying (2.1) (whose proofs depend heavily on the de�nition and
properties of the mapping) we have to recall both the construction of G and the
description of the mapping. Since we need a geometric picture of G in the plane
which helps to understand the mapping, we omit the general method of construction
of in�nite telescopes: this part of Kato's argument is not necessary to draw further
consequences from the result.

If q = (x; y) 2 R2 , we de�ne �x(q) = x and �y(q) = y. Let C � I be the
Cantor ternary set. Put p = (1=2; 1) and join p with (0; 0) and (1; 0) by straight
line segments. Let T1 be the union of the two segments. Let p(0), p(1) 2 T1 be
such that

�x(p(0)) < �x(p(1)) and �y(p(0)) = �y(p(1)) = 1=3:

Join p(0) with (1=3; 0) and p(1) with (2=3; 0) by straight line segments, and let T2
be the union of T1 and the two segments. Next take four points

p(00); p(01); p(10); p(11) 2 T2
de�ned by

�x(p(00)) < �x(p(01)) < �x(p(10)) < �x(p(11))

and
if �1; �2 2 f0; 1g; then �y(p(�1�2)) = 1=32:

Joining them consecutively with the points (1=32; 0); (2=32; 0); (7=32; 0), and
(8=32; 0) by straight line segments we de�ne T3 as the union of T2 and the four
recently constructed segments.

Continuing in this way we obtain an increasing sequence of trees

T1 � T2 � � � � � Tn � . . .

such that if n > 1 then Tn has 21+22+ � � �+2n�1 rami�cation points each of which
is of order 3 and is of the form p(�1 . . .�n�1), where �i 2 f0; 1g. Further, each Tn
has 2n end points, each of which is of the form (c; 0), where c 2 C is an end point
of an open interval being a component of In C. Then the Gehman dendrite G is
de�ned as

G = cl
�[

fTn : n 2 Ng
�
;

and we see that if EndG and RamG stand for the sets of end points and of rami-
�cation points of G respectively, then

EndG = f(c; 0) : c 2 Cg and RamG = fp(�1 . . .�n) : �i 2 f0; 1g and n 2 Ng:
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The key argument in constructing the above mentioned mapping f : G! G satis-
fying (2.1) is the existence of a homeomorphism g : C ! C such that

(2.5) P (g) = ; and R(g) = C:

Such a homeomorphism g is de�ned as the binary adding machine, see [20, p.
461]. Since C is homeomorphic to EndG � G under a homeomorphism c 7! (c; 0)
for c 2 C, we can consider g as a mapping from EndG to itself. De�ne g1 :
fpg [ EndG ! fpg [ EndG by g1(p) = p and g1jEndG = g. Further, since G is
an absolute retract (2.4), and since fpg[EndG is a closed subset of G, there is by
(2.2) an extension f1 : G! G of g1.

Note that for each t 2 [0; 1] the set ��1y ([t; 1]) is a subdendrite of G. Thus

by (2.3) there is a monotone retraction rt : X ! ��1y ([t; 1]) (observe that such a
retraction is uniquely determined). Choose a homeomorphism h : I! Ide�ned by
h(s) =

p
s and note that

(2.6) h(0) = 0; h(1) = 1; and h(s) > s for each s 2 (0; 1):

For each point q 2 G put

(2.7) t = h(�y(q))

and de�ne the needed mapping f : G! G by

(2.8) f(q) = rt(f1(q));

where the index t depends on q according to (2.7). Note that f de�ned in this way
is continuous and onto. Further, condition (2.6) and the de�nition of f imply that

(2.9) f j(fpg [ EndG) = g1 and thus f jEndG = g;

and

(2.10) �y(q) < �y(f(q)) for each point q 2 G n (fpg [ EndG):

Condition (2.10) means that each point q 2 G for which 0 < �y(q) < 1 moves "up"
under f , whence it follows that no such a point is in R(f). So, we conclude that
R(f) � fpg [ EndG. On the other hand, we see that p 2 F (f) and R(g) � R(f)
by the de�nition of f , whence

(2.11) R(f) = fpg [ EndG

by (1.1) and (2.5). Analogously, (2.10) and the de�nition of f imply

(2.12) P (f) = fpg;
and thus (2.1) holds.

Therefore, Kato's result quoted above can be reformulated as follows.

2.13. Theorem (Kato). Gehman's dendrite does not have the PR-property.

This result motivates asking the following question.

2.14. Question. What continua have the PR-property?

A similar author's question for dendrites has recently been answered in full
by A. Illanes (see Theorem 3.9 and Corollary 3.10 in the next section).
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3. Generalizations

The lemma below is a consequence of de�nitions.

3.1. Lemma. Let r : X ! Y be a retraction of a continuum X onto a continuum

Y � X, and let f : Y ! Y be a mapping. Then

(f Æ r)n = fn Æ r for each n 2 N:

3.2. Proposition. The PR-property is preserved under retractions, i.e., if a

continuum X having the PR-property contains a subcontinuum Y which is a retract

of X, then Y has the PR-property, too.

Proof. Let f : Y ! Y be a mapping satisfying (2.1), and let r : X ! Y be a
retraction. De�ne a mapping g : X ! X by g = f Æ r. Then for each n 2 N the
equality gn = fn Æ r holds by Lemma 3.1, and r(x) = x if and only if x 2 Y by the
de�nition of r. If x 2 Y , then gn(x) = fn(x). If x 2 X n Y , then putting y = r(x)
we have gn(x) = fn(r(x)) = fn(y). Thus in both cases we have gn = fn, whence
the equalities hold

P (g) = P (f) and R(g) = R(f):

Thus clP (g)  clR(g) by (2.1), and the proof is �nished.

Theorem 2.13 and Proposition 3.2 imply, by (2.4), the following assertion.

3.3. Theorem. If a continuum contains a Gehman dendrite, then it does not have

the PR-property.

3.4. Corollary. Each dendrite containing the Gehman dendrite does not have

the PR-property.

Let X be a continuum. We say that a point p 2 X is of order ! in X
provided that it has arbitrarily small open neighborhoods U with �nite boundaries
bdU and card (bdU) is not bounded by any natural number. It is well-known that
a rami�cation point of a dendrite is either a point of a �nite natural order m � 3
or of order ! (see [22, x51, VI, Theorem 4, p. 301]).

Let m 2 f3; 4; . . . ; !g. The standard universal dendrite of order m means a
dendrite Dm such that each rami�cation point of Dm is of order m and for every
arc A contained in Dm the set of all rami�cation points of Dm which belong to A
is a dense subset of A. By results of WaDzewski (see [30, Chapter H, pp. 123{124,
and Chapter K, p. 137]) it is known that any two such dendrites are homeomorphic
and that they are universal in the class of dendrites whose rami�cation points are
of order m at most (i.e., if all rami�cation points of a dendrite X are of order
at most m, then Dm contains a homeomorphic copy of X). Hence we can write
the following sequence of inclusions (to simplify notation, the homeomorphisms are
omitted):

G � D3 � D4 � � � � � Dm � � � � � D!:

Thus, according to Corollary 3.4, we have the next one.
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3.5. Corollary. For each m 2 f3; 4; . . . ; !g the standard universal dendrite Dm

of order m does not have the PR-property.

3.6. Remarks. Observe that the inverse implications to one of Proposition 3.2 do
not hold. Namely we have the following examples. a) Taking the Gehman dendrite
G as X and any arc in G as Y we see that X does not have the PR-property,
Y is a retract of X , and Y has the PR-property. b) Taking a disc as X and its
boundary in the plane as Y we see that both X and Y do not have the PR-property
(the disc by Theorem 3.3; its boundary, being homeomorphic to the unit circle, by
the existence of an irrational rotation mentioned in Remark 1.2), while there is no
retraction of X onto Y .

3.7. Question. Can the existence of a retraction r : X ! Y � X in Proposition
3.2 be relaxed to the existence of any mapping from X onto Y?

Note that all the examples discussed above of dendrites which do not have
the PR-property contain the Gehman dendrite G, according to Corollary 3.4. The
converse implication to that of Corollary 3.4 is also true, as it recently was shown
by Illanes, [16]. Namely the following result is both interesting and of a particular
importance.

3.8. Theorem (Illanes). Every dendrite which does not have the PR-property

contains a homeomorphic image of the Gehman dendrite.

Thus by Corollary 3.4 we have the following characterization of dendrites with
the PR-property.

3.9. Theorem. A dendrite has the PR-property if and only if it does not contain

any homeomorphic copy of the Gehman dendrite.

A continuum which is arcwise connected and hereditarily unicoherent is called
a dendroid. It is well-known that each dendroid is hereditarily decomposable, thus
one-dimensional, and that each locally connected dendroid is a dendrite. Therefore
dendroids form the nearest (in a sense) class of curves containing the class of den-
drites. An important example of a dendroid which is not a dendrite is the Cantor
fan, i.e., the cone over the Cantor set. Let, as previously, C � I be the Cantor
ternary set, and let p = (1=2; 1) 2 R2 . For each c 2 C let Lc denote the straight
line segment joining p with (c; 0). Then the Cantor fan FC is de�ned as the union

(3.9) FC =
[
fLc : c 2 Cg:

3.10. Theorem. The Cantor fan does not have the PR-property.

Proof. The proof for the Cantor fan runs in a similar way as Kato's proof of
Theorem 2.13 for the Gehman dendrite. Namely since the set EndFC of end points
of FC is homeomorphic with C, we take the homeomorphism g : EndFC ! EndFC
such that

(2.5) P (g) = ; and R(g) = C;
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we extend it to the needed mapping f : FC ! FC de�ned so that f(p) = p, and
if q 2 Lc n fpg for some c 2 C (note that such a c is uniquely determined), then
f(q) 2 Ld, where (d; 0) = g((c; 0)) and �y(f(q)) = �y(q). It can be observed that,
even without using the homeomorphism h satisfying (2.6), as previously (see (2.11)
and (2.12)) we have P (f) = fpg, and R(f) = fpg[EndFC , whence the conclusion
follows.

Theorem 3.10 and Proposition 3.2 imply a corollary.

3.12. Corollary. If a continuum X contains the Cantor fan FC as its retract,

then X does not have the PR-property.

3.13. Remark . Observe that the Cantor fan does not contain the Gehman den-
drite, thus the assumption in Theorem 3.8 that the continuum X is a dendrite is
indispensable.

The result of Kato can be seen also from the inverse limits point of view.
Namely the Gehman dendrite G is the inverse limit of an increasing sequence of
trees Tn � G with monotone retractions rn : Tn+1 ! Tn as bonding mappings.
Let f : G ! G be the mapping satisfying (2.1), and take a sequence of mappings
fn : Tn ! Tn such that f = invlim fn. Then for each n 2 N the mapping fn
satis�es equality (1.5) by the result of Ye quoted above (Theorem 1.7), while the
inverse limit mapping f does not. Thus we have the following statement.

3.14. Statement. Equality (1.5) is not preserved under the inverse limits of

trees.

This interpretation of the Kato's result directs our attention to inverse limits
of arcs, and thus it motivates the following question.

3.15. Question. Is equality (1.5) preserved under the inverse limits of arcs? In oth-
er words: can the Coven and Hedlund's result (Theorem 1.6 above) be generalized
to arc-like continua?

As a particular cases of the above question consider:
a) the sin(1=x)-curve S = invlim fXn; �ng, where for each n 2 N we have Xn = I,
and �nI :! I is de�ned by

�n(t) = 2t for t 2 [0; 1=2] and �n(t) = 3=2� t for t 2 [1=2; 1];

it is well-known that S is homeomorphic to the following subcontinuum of the plane
R2 :

S = f(0; y) 2 R2 : y 2 [�1; 1]g [ f(x; sin(1=x)) 2 R2 : x 2 (0; 1]g;
b) the simplest indecomposable continuum B = invlim fXn;  ng, where for each
n 2 N we have Xn = I, and  n : I! I is de�ned by

 n(t) = 2t for t 2 [0; 1=2] and  n(t) = 2� 2t for t 2 [1=2; 1];

it is well-known that B is homeomorphic to the plane continuum described as
Example 1 of [22, x48, V, p. 204] (see e.g. [29]).

The following result has recently been obtained in [6, Corollary 5.10, p. 117].
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3.16. Theorem. The sin(1=x)-curve S has the PR-property.

3.17. Question. Has the simplest indecomposable continuum B the PR-property?

Recall that the inverse limits of continua, especially of arcs, were extensively
studied during the last decade from the dynamical system point of view, see e.g. [1],
[2], [5], [17], [18], and [19], where further references can be found. In particular,
Ye have shown (see [35, Corollary 3.5, p. 92] that if an arc-like continuum X is
hereditarily decomposable and Order(X) is �nite (see [35, p. 87] for the de�nition;
compare [15]), then the equality P (f) = R(f) holds for every homeomorphism
f : X ! X . Note that the sin(1=x)-curve S is an example of such a continuum X .

4. Final remarks

In connection with the result of Coven and Hedlund (Theorem 1.6) and its
generalization by Ye (Theorem 1.7) recall other concepts which are important in
the study of dynamical behavior of mappings on continua. They are connected with
another aspect of the result of Kato (Theorem 2.13). Repeat that for a mapping
f : X ! X on a space X the symbol 
(f) means the set of all nonwandering
points of X under f . Let 
1(f) = 
(f) and, for each positive integer n put

n+1(f) = 
(f j
n(f)). Then


1(f) =
\
f
n(f) : n 2 Ng

is called the (Birkho�) centre of f . The minimal n 2 N [ f1g such that 
n(f) =

1(f) is called the depth of the centre of f .

For X = I the following result is known (see Nitecki's expository paper [27,
Theorems (3.3a) and (3.3b), pp. 30{31]; for a simpler proof see [33]; Nitecki credits
A. Block for the �rst equality in (4.2), and Coven and Hedlund [9] for the second
one).

4.1. Theorem. For every mapping f : I! I the equalities hold

(4.2) 
2(f) = clP (f) = 
1(f);

and the depth of the centre of f is at most 2.

This result has been extended by Wu in [32] to mappings of an n-od to itself
(by an n-od is meant a set homeomorphic to fz 2 C : zn 2 Ig). A similar result,
being a version of Theorem 4.1 and of the result of Wu, has been shown by Ye (see
[34, Theorem 2.7, p. 349]) for mappings of trees. It runs as follows.

4.3. Theorem (Ye). Let T be a tree equipped with a metric �, and let RamT be

the set of rami�cation points of T . Then for every mapping f : T ! T there is a

set A � RamT such that �(A; clP (f)) > 0, and

(4.4) 
2(f) = A [ clP (f);
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whence it follows that

(4.5) 
1(f) = clP (f);

and the depth of the centre of f is at most 3.

Consider once more the Gehman dendrite G and its mapping f : G ! G
de�ned by (2.8). Its property (2.10) assures us not only that (2.11) and (2.12) are
true, but also that

(4.6) 
(f) = R(f) = fpg [ EndG;

whence it follows by the de�nition of f that

(4.7) 
n(f) = fpg [ EndG for each n > 2;

and consequently

(4.8) 
1(f) = fpg [ EndG;

and thus 
1(f) 6= clP (f) by (2.12) and (4.8). Therefore we see that neither (4.4)
nor (4.5) of Theorem 4.3 is true if dendrites in place of trees are under consideration.
So, we have the following observation.

4.9. Observation. The mapping f : G ! G de�ned by Kato on the Gehman

dendrite G according to (2.8) shows not only that Theorem 1.7 of Ye is not true

for dendrites, but also that Theorem 4.3 of Ye cannot be generalized from trees to

arbitrary dendrites as well.

Thus the result of Illanes (Theorem 3.8 above) motivates the following ques-
tion.

4.10. Question. Can Theorem 4.3 of Ye be generalized from trees to dendrites
which do not contain any homeomorphic copy of the Gehman dendrite?

The main result of Worth's paper [31, Theorem 1.3, p. 623] states that every
mapping f : T ! T of a tree T into itself such that the intersection

Tffn(T ) : n 2
Ng is not a singleton must have at least two periodic points. Below it is shown that
this result cannot be extended to mappings of dendrites.

4.11. Theorem. For every dendrite D which contains a Gehman dendrite G there

exists a mapping m : D ! G � D such that the intersection
Tfmn(D) : n 2 Ng is

G and that P (m) is a singleton.

Proof. Let r : D ! G be a retraction (see (2.3)), and let f : G ! G be a
surjective mapping de�ned by (2.8). Put m = f Æ r. Then, according to Lemma
3.1, we get mn(D) = fn(r(D)) = fn(G) = G for each n 2 N, whence the �rst part
of the conclusion follows. Further, again by Lemma 3.1, we have P (m) = P (f), so
the second part holds by (2.12). The argument is complete.
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4.12. Question. Can the above mentioned result of Worth be extended to map-
pings of dendrites which do not contain any homeomorphic copy of the Gehman
dendrite?

Acknowledgement. The author thanks Dr. W. J. Charatonik for valuable
discussions on the topic of this paper.
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