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Abstract. Belov in [2] gave necessary and suÆcient condition for rotational
surface generated by a special quadrangular meridian, to be rigid. Belov's theorem
disproved the hypothesis of Boyarski that each toroid rotational surface with convex
meridian is rigid. We give another proof of Belov's theorem. The �eld of in�nitesimal
bendings is determined, the rotational �eld is obtained too. The method, used here,
can be applied in a case of every rotational surface generated by a simple polygon
[6] .

0. Introduction

One of the basic problems of in�nitesimal bendings theory in E3 is to point
out nonrigid surfaces, and, if possible, to determine the in�nitesimal bending �eld
and the �eld of rotations.

It is known [3] that a circular torus is rigid. Among surfaces topological-
ly equivalent to the torus Belov [2] pointed out a class of nonrigid toroids with
quadrangular meridian of a special form, which can be convex or nonconvex.

We give a new proof of Belov's theorem by using matrices. Such a proof of
Belov's theorem makes possible to determine the in�nitesimal bending �eld and
the rotational �eld when the surface is nonrigid. The Belov's proof is only a proof
of the existence of the bending �eld. Using this procedure we have proved the
rigidity of toroid rotational surface with triangular meridian, not containing a side
orthogonal to axis of rotation (see [5]). This procedure is also applied in the case
of a toroid with a meridian in the form of a simple polygon [6].

We quote some well-known de�nitions and properties that we shall use after-
wards. At �rst, we de�ne in�nitesimal deformation of a surface, and then in�nites-
imal bending, as a particular case ([1], [3], [4]).
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De�nition 1. Let S be a regular surface of the class Cm (m � 3), de�ned in
a vector form

S : �r = �r(u; v);

included in a family of surfaces

(0.1) S" : �r"(u; v) = �r(u; v) + "�z(u; v);

where "("! 0); u; v 2 R1 and �r0(u; v) = �r(u; v). It is said that the surfaces S" are
in�nitesimal deformations of the surface S.

De�nition 2. The surfaces S" are in�nitesimal bendings of a surface S if
for line elements of these surfaces we have

(0.2) ds2" � ds2 = O("):

In�nitesimal bending can be de�ned in another manner, too, which follows
from the following theorem:

Theorem 1. [1,3,4] The condition (0:2) is equivalent to each of the condi-
tions

ds" � ds = O(");(0.3)

d�rd�z = 0;(0.4)

@s"
@"
j"=0 = 0;(0.5)

�ru�zu = �rv�zv = �ru�zv + �rv�zu = 0:(0.6)

De�nition 3. A vector �eld �z(u; v), de�ned at points of the surface S satis-
fying the conditions of De�nition 2, i.e., any of the conditions (0.2){(0.6), is an
in�nitesimal bending �eld of the surface S.

The �eld

(0.7) �z = �a� �r +�b;

where �a;�b are constant vectors and � denotes a vector product, satis�es identically
(0.4). It is known [3] that the vector �z, in this case, induces only a motion of the
surface as a solid body, without intrinsic deformations.

De�nition 4. The �eld �z of the form (0.7) is a trivial in�nitesimal bending
�eld or in�nitesimal motion �eld.

If �z = const, then we have a particular case of (0.7).

De�nition 5. If a surface possesses only a trivial in�nitesimal bending �eld,
then it is rigid, otherwise it is nonrigid.
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1. A new proof of Belov's theorem

Theorem 2. (Belov [2]) The quadrangle B, with apexes A(�1; b), B(0; b +
c1), C(1; b), D(0; b � c2), rotates around u-axis of the coordinate system u0�. A
necessary and suÆcient condition for nonrigidity of the toroid rotational surface
generated by the meridian B is

(1.1) 1=c2 � 1=c1 = k2=b;

where k � 2 is an integer.

Proof. Designating � on sides AB; . . . ; DA with �(1); �(2); �(3); �(4), we get

(1.2)
�(1) = b+ c1 (u+ 1) ; �(2) = b+ c1 (1� u) ;

�(3) = b+ c2 (u� 1) ; �(4) = b� c2 (u+ 1)

If �e is the ort of the u-axis, �a(v) the ort of �-axis, v the angle between �a and the
plane of initial position of meridian � = � (u), then [1, p. 90] the rotational surface
generated by the meridian � = � (u) at the coordinate system with orthonormal
base �e; �a (v) ; �a0 (v) is:

(1.3) �r(u; v) = u�e+ �(u)�a(v):

It is known, [1, p. 91], that for every k 2 f2; 3; . . .g there is a �eld of in�nitesimal
bendings

(1.4) �z(u; v) = �zk(u; v) =
�
'k(u)e

ikv + ~'k(u)e
�ikv

�
�e

+ [ k(u)e
ikv + ~ k(u)e

�ikv ]�a(v) +
�
�k(u)e

ikv + ~�k(u)e
�ikv

�
�a0(v)

for the surface (1.3), where e.g., ~'k (u) is the conjugate value for 'k(u). The
functions  k (u) and �k (u) satisfy the same equation

(1.5) �(u)�00 (u) + (k2 � 1)�00 (u)� (u) = 0;

and also the equations

(1.6)
'0k(u) + �0(u) 0k(u) = 0;  k (u) + ik�k (u) = 0;

ik'k (u) + �0 (u) [ik k (u)� �k (u)] + � (u)�0k (u) = 0:

are valid.

At turning points u = � of the meridian � = �(u) we have [1, p. 112, eq.
(15)]:

(1.7) �(�)[ 0k(� + 0)�  0k(� � 0)] + (k2 � 1) k(�)[�
0(� + 0)� �0(� � 0)] = 0;
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supposing that the �eld �zk(u) is continuous at these points. We have analogous
equation for �k(u).

Omitting the index k, we designate  k(u) by  (u) and by  (1)(u); . . . ;  (4)(u)
the corresponding values on the sides AB; . . . ; DA respectively. According to (1.5)
and (1.2) we have the linearity of the functions  (i)(u), i.e.,

(1.8)  (i)(u) =Miu+Ni; (i = 1; . . . ; 4):

From the continuity of the functions  (i)(u) at the apexes we have

 (1)(�1) =  (4)(�1);  (1)(0) =  (2)(0);  (2)(1) =  (3)(1);  (3)(0) =  (4)(0);

from which one gets

(1.9) �M1 +N1 = �M4 +N4; N1 = N2; M2 +N2 =M3 +N3; N3 = N4:

At the apex A, according to (1.7), we will replace  0k(� � 0) with  0(4)(�1)
and  0k(�+0) with  0(1)(�1). Analogously at the apex C we will replace  0k(�� 0)

with  0(2)(1) and  
0

k(� + 0) with  0(3)(1). In such a way we have at A:

�(�1)[ 0(1)(�1)�  0(4)(�1)] + (k2 � 1) (1)(�1)[�01(�1)� �04(�1)] = 0;

i.e.,

(1.10 a) b(M1 �M4) + (k2 � 1)(N1 �M1)(c1 + c2) = 0;

and for the apexes B;C;D:

(b+ c1)(M2 �M1)� 2(k2 � 1)c1N1 = 0;(1.10 b)

b(M3 �M2) + (k2 � 1)(c1 + c2)(M2 +N2) = 0;(1.10 c)

(b� c2)(M4 �M3)� 2(k2 � 1)c2N3 = 0:(1.10 d)

We consider equations (1.9) and (1.10) as a system with respect to Mi; Ni (i =
1; . . . ; 4). At �rst, let us consider (1.9) as a system with respect to Ni. The
extended matrix of this system is

N1 N2 N3 N4

(1.11) P =

2
666664

1 0 0 �1 ... M1 �M4

1 �1 0 0
... 0

0 1 �1 0
... �M2 +M3

0 0 1 �1 ... 0

3
777775
�

N1 N2 N3 N4
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�

2
666664

1 0 0 �1 ... M1 �M4

0 �1 0 1
... �M1 +M4

0 0 �1 1
... �M1 �M2 +M3 +M4

0 0 0 0
... �M1 �M2 +M3 +M4

3
777775
,

where M is the matrix of the system (1.9) (with respect to Ni formed by �rst four
columns of P ). The system (1.9) is compatible if and only if rankP = rankM , i.e.

(1.12) �M1 �M2 +M3 +M4 = 0,M4 =M1 +M2 �M3:

From (1.11,12) we get a reduced system,

N1 �N4 =M1 �M4; �N2 +N4 = �M1 +M4; �N3 +N4 = 0

and substituting M4 from (1.12), we get

(1.13) N1 = N2 = �M2 +M3 +N4; N3 = N4:

Substituting (1.12,13) at (1.10) we get a homogeneous system with unknowns M1,
M2, M3, N4:

�(c1 + c2)(k
2 � 1)M1 � [(c1 + c2)(k

2 � 1) + b]M2

+ [(c1 + c2)(k
2 � 1) + b]M3 + (c1 + c2)(k

2 � 1)N4 = 0;

�(b+ c1)M1 + [2c1(k
2 � 1) + b+ c1]M2 � 2c1(k

2 � 1)M3 � 2c1(k
2 � 1)N4 = 0;

�bM2 + [(c1 + c2)(k
2 � 1) + b]M3 + (c1 + c2)(k

2 � 1)N4 = 0;

(b� c2)M1 + (b� c2)M2 + 2(c2 � b)M3 � 2c2(k
2 � 1)N4 = 0:(1.14)

The system (1.14) has nontrivial solutions if and only if the rank of the matrix
N of this system is less then 4. We have to investigate the conditions under which
that is valid. We have

N4 M3 M2 M1

N �

2
64
a11 a12 a13 a14
0 a22 a23 a24
0 0 1 1
0 0 X Y

3
75



A new proof of a theorem of Belov 107

where

a11 = (c1 + c2)(k
2 � 1); a12 = (c1 + c2)(k

2 � 1) + b;

a13 = (c1 + c2)(1� k2)� b; a14 = (c1 + c2)(1� k2);

a22 =
2bc1
c1 + c2

; a23 = b+ c1 � 2bc1
c1 + c2

;

a24 = 2c1(1� k2)� b� c1;

X = �b+ (c1 + c2)(b+ c1)� bc2
c1

� (c1 + c2)(b+ c1)c2k
2

bc1
;

Y =
(c1 + c2)b

c1
+

(2c1k
2 � c1 + b)(c1 + c2)(c2k

2 � b)

bc1
:

Let us consider three possible cases:

1. For X = 0 and Y 6= 0 or X 6= 0 and Y = 0 the system has only trivial
solution and the surface is rigid.

2. X = Y = 0. From X = 0 we have

(1.15) k2c2(b+ c1) = bc1:

Substituting k2 from this equation into the equation Y = 0, we have

(1.16) b(c2 � c1) + c1c2 = 0:

For c1 = c2 we get c1c2 = 0, but then we have c1 = c2 = 0, which is
impossible. If we �nd b from (1.16) and substitute in (1.15), we get k = 1, which
is impossible too, because k 2 f2; 3; . . .g. Therefore, for X = Y = 0 the surface is
rigid.

3. If X 6= 0 and Y 6= 0, we get

N4 M3 M2 M1

(1.17) N �

2
64
a11 a12 a13 a14
0 a22 a23 a24
0 0 1 1
0 0 0 Y �X

3
75

where

Y �X =
2k2

bc1
(c1 + c2)(c1c2k

2 + bc2 � bc1):

The system (1.14) has nontrivial solutions, i.e., the surface is nonrigid if and
only if

Y �X = 0, c1c2k
2 + bc2 � bc1 = 0, 1=c2 � 1=c1 = k2=b;

i.e., when (1.1) is valid. The theorem is proved.

In what follows the surface satisfying the conditions of the Theorem 2 will be
named Belov's surface.
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2. Determination of the in�nitesimal bending �eld

In order to determine the bending �eld �z(u; v) by virtue of (1.4), we have to
�nd the functions '(i)(u),  (i)(u), �(i)(u), i = 1; . . . ; 4. The following lemma is
valid:

Lemma 1. The functions '(i)(u);  (i)(u); �(i)(u); i = 1; . . . ; 4, where the
index in the brackets is related respectively to the sides AB, BC, CD, DA of the
meridian, have the values

(2.1.1)

'(1)(u) = �c1M1u;  (1)(u) = (u� P )M1;

�(1)(u) =
i

k
(u� P )M1;

(2.1.2)

'(2)(u) = �c1M1u;  (2)(u) = �(u+ P )M1;

�(2)(u) = � i

k
(u+ P )M1;

(2.1.3)

'(3)(u) = �c1M1u;  (3)(u) =

�
c1
c2
(u� 1)� (P + 1)

�
M1;

�(3)(u) =
i

k

�
c1
c2
(u� 1)� (P + 1)

�
M1;

(2.1.4)

'(4)(u) = �c1M1u;  (4)(u) = �
�
c1
c2
(u+ 1) + P + 1

�
M1;

�(4)(u) = � i

k

�
c1
c2
(u+ 1) + P + 1

�
M1;

where is M1 6= 0 an arbitrary constant, and

(2.2) P =
b+ c1

c1(k2 � 1)
=

bc2 + c1c2
bc1 � bc2 � c1c2

;

Proof. According to (1.17) for Y-X=0 we can get reduced system

(2.3)

(c1 + c2)(k
2 � 1)N4 + [(c1 + c2)(k

2 � 1) + b]M3

+ [(c1 + c2)(1� k2)� b]M2 + (c1 + c2)(1� k2)M1 = 0;

2bc1
c1 + c2

M3 + (b+ c1 � 2bc1
c1 + c2

)M2 + [2c1(1� k2)� b� c1]M1 = 0;

M2 +M1 = 0:



A new proof of a theorem of Belov 109

From (2.3) and (1.13) we have

(2.4)

M2 = �M1; M3 =
�c2
c1

+
c1 + c2
b

k2
�
M1;

N4 = �
�
c2
c1

+
c1 + c2
b

k2 +
k2

k2 � 1
+

b

c1(k2 � 1)

�
M1 = N3:

Further, from (1.12,13), we get

(2.5) M4 = �
�c2
c1

+
c1 + c2
b

k2
�
M1; N1 = N2 = � b+ c1

c1(k2 � 1)
M1:

From (1.1) we obtain

k2 =
(c1 � c2)b

c1c2
;

c2
c1

+
c1 + c2
b

k2 =
c1
c2
;(2.6)

c22
c1

+
c1c2 + c22

b
k2 = c1;

k2

k2 � 1
=

b(c1 � c2)

bc1 � bc2 � c1c2
;(2.7)

b

c1(k2 � 1)
=

bc2
bc1 � bc2 � c1c2

:(2.8)

Using (2.6), we obtain

b+ c1
c1(k2 � 1)

=
bc2 + c1c2

bc1 � bc2 � c1c2
) (2:2);

and from (2.4){(2.8), we get

(2.9)

M2 = �M1; M3 =
c1
c2
M1;

N4 = N3 = �
�
c1
c2

+
bc1

bc1 � bc2 � c1c2

�
M1 = �

�
c1
c2

+ P + 1

�
M1:

Further, by virtue of (1.12,13), (2.2) we have

(2.10) M4 = �c1
c2
M1; N1 = N2 = �PM1:

From (2.9,10) the magnitudes Mi Ni (i = 1; . . . ; 4) are expressed by M1 (undeter-
mined constant). Consequently, from (1.8) one gets the values of  (i)(u), given in
(2.1).

The functions  (i)(u) =  (i)k(u) are de�ned by (2.1, 2) for k 2 f2; 3; . . .g.
According to (1.6) we get the functions '(i)k(u) = '(i)(u); �(i)k(u) = �(i)(u), given
at (2.1). The Lemma is proved.
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As we mentioned, the problem of in�nitesimal bendings can be considered
solved only if the in�nitesimal bendings �eld �z(u; v) is determined, as in this case
by virtue of (0.1) the deformed surface S� can be presented. In this case we have:

Theorem 3. The in�nitesimal bendings �eld �z(u; v) of Belov's toroid is de-
�ned by the equations

(2.11.1)

�z(1)k(u; v) =� 2c1M1u cos kv �e+ 2 (u� P )M1 cos kv�a(v)

+ 2 (P � u)
M1

k
sin kv�a0(v); u 2 [�1; 0]; v 2 [0; 2�];

(2.11.2)

�z(2)k(u; v) =� 2c1M1u cos kv �e� 2 (u+ P )M1 cos kv �a(v)

+ 2 (P + u)
M1

k
sin kv �a0(v); u 2 [0; 1]; v 2 [0; 2�];

(2.11.3)

�z(3)k(u; v) =� 2c1M1u cos kv �e+ 2
c1
c2

(u�Q)M1 cos kv �a(v)

+ 2
c1
kc2

(Q� u)M1 sin kv�a
0(v); u 2 [0; 1]; v 2 [0; 2�];

(2.11.4)

�z(4)k(u; v) =� 2c1M1u cos kv �e� 2
c1
c2

(u+Q)M1 cos kv �a(v)

+ 2
c1
kc2

(Q+ u)M1 sin kv �a
0(v); u 2 [�1; 0]; v 2 [0; 2�];

where M1 is an undetermined constant, P is given by (2:2), the parameters b, c1,
c2, k 2 f2; 3; . . .g satisfy (1:1) and

Q =
bc1 � c1c2

bc1 � bc2 � c1c2
:

The index in the brackets (i = 1; . . . ; 4) is related to the parts of the surface obtained
by the rotation of the sides AB; . . . ; DA of the Belov's quadrangle respectively.

Proof. According to (1.4) with respect to (2.1.1{4), where, for example,

'ke
ikv + ~'ke

�ikv = 2Re('k) cos kv � 2 Im('k) sin kv;

'k = Re('k) + i Im('k);

we obtain (2.11.1{4).
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3. A �eld of rotations

In the study of in�nitesimal bendings of surfaces an important role plays the
�eld of rotations �y(u; v) (see [1], [4]), related to �z(u; v), �r(u; v) by the equation

(3.1) d�z = �y � d�r:

As given in [3, p. 331], the rotational �eld �y, in the coordinate system with base
the �r1, �r2, ��, has coordinates

y1 =
1p
a

�
b12z

1+b22z
2+

@z0
@u2

�
; y2 = � 1p

a

�
b11z

1+b12z
2+

@z0
@u1

�
;(3.10a; b)

y0 =
1

2
p
a

� @z2
@u1

� @z1
@u2

�
;(3.10 c)

where u1 = u, u2 = v, �z = zi�ri + z0��, �y = yi�ri + y0��, a = det(aij), aij , bij are

the �rst and the second fundamental tensor of the surface, �ri =
@�r
@ui , �� is the unit

normal vector of the surface.

By virtue of (2.11) we see that the �eld �z is determined in the frame �e, �a, �a0,
and from (3.10) it follows that we need the coordinates of this �eld in the frame �r1,
�r2, ��. We shall prove the needy lemma for the part S(1) of the surface. One can
prove it analogously for the other parts, too.

Lemma 2. The in�nitesimal bendings �eld �z for the part S(1) of the Belov's
surface in the frame �r1, �r2, �� has the contravariant coordinates

z1(1) = �
2c1PM1

p
cos kv; z2(1) = (P � u)

2M1 sin kv

k(c1u+ b+ c1)
;(3.2 a,b)

z0(1) = 2M1

�
Pp
p
�ppu

�
cos kv:(3.2 c)

Proof. From (1.2,3) we get for S(1)

(3.3.1)
�r(1)(u; v) = u�e+ �(1)(u)�a(v) = u�e+ (c1u+ b+ c1)�a(v);

�r(1)u = �e+ c1�a(v); �r(1)v = (c1u+ b+ c1)�a
0(v);

(3.4.1) ��(1) =
(c1u+ b+ c1)(c1�e� �a)

jc1u+ b+ c1j jc1�e� �aj =
c1�e� �a(v)p

p
; p = (c1)

2 + 1;

as c1u + b + c1 > 0 (c1u + b + c1 � 0 , u � � b
c1
� 1 < �1, which is impossible,

because in the considered case juj � 1; b; c1 > 0).

According to (3.3,4) we have

�z(1)k = z1(1)�r(1)u + z2(1)�r(1)v + z0(1)��(1)

=
h
z1(1) +

c1z0(1)p
p

i
�e+

h
c1z

1
(1) �

z0(1)p
p

i
�a(v) + z2(1)(c1u+ b+ c1)�a

0(v):



112 Velimirovi�c

Comparing this equation with (2.11.1), we get equations from which we get
the values (3.2).

We can prove now the theorem related to the determination of the �eld of
rotations �y.

Theorem 4. The �eld �y(u; v) of in�nitesimal rotations of Belov's toroid is
de�ned by equations

�y(i)k = y1(i)�r(i)u + y2(i)�r(i)v + y0(i)��(i); i = 1; . . . ; 4

where

y1(1) =
2M1 sin kv

k(c1u+ b+ c1)[(c1)2 + 1]

n
uk2[(c1)

2 + 1]� u� b+ c1
c1

o
;(3.5.1a)

y2(1) =
2M1 cos kv

c1u+ b+ c1
;(3.5.1b)

y0(1) =
�2M1 sin kv

k
p
(c1)2 + 1

; u 2 [�1; 0]; v 2 [0; 2�];(3.5.1c)

y1(2) =
2M1 sin kv

k(�c1u+ b+ c1)[(c1)2 + 1]

n
u� uk2[(c1)

2 + 1]� b+ c1
c1

o
;(3.5.2a)

y2(2) =
2M1 cos kv

c1u� b� c1
;(3.5.2b)

y0(2) =
2M1 sin kv

k
p
(c1)2 + 1

; u 2 [0; 1]; v 2 [0; 2�];(3.5.2c)

y1(3) =
2M1c1 sin kv

kc2(c2u+ b� c2)[(c2)2 + 1]

n
uk2[(c2)

2 + 1]� u� b� c2
c2

o
;(3.5.3a)

y2(3) =
2M1c1 cos kv

c2(c2u+ b� c2)
;(3.5.3b)

y0(3) =
�2M1c1 sin kv

kc2
p
(c1)2 + 1

; u 2 [0; 1]; v 2 [0; 2�];(3.5.3c)

y1(4) =
2M1c1 sin kv

kc2(�c2u+ b� c2)[(c2)2 + 1]

n
u� uk2[(c1)

2 + 1]� b� c2
c2

o
;(3.5.4a)

y2(4) =
2M1c1 cos kv

c2(c2u� b+ c2)
;(3.5.4b)

y0(4) =
2M1c1 sin kv

kc2
p
(c2)2 + 1

; u 2 [�1; 0]; v 2 [0; 2�](3.5.4c)

and the indices in the brackets are related to the parts of the surface obtained by
rotation of the sides AB, BC, CD, DA of Belov's quadrangle, M1 is an arbitrary
constant.

Proof. From (3.3.1) we have

�r(1)uu = 0; �r(1)uv = c1�a
0(v); �r(1)vv = (c1u+ b+ c1)�a

00(v) = �(c1u+ b+ c1)�a(v);
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and for the coeÆcients of the second fundamental form of the surface bij = �rij �� we
have

b(1)11 = b(1)12 = 0; b(1)22 =
1p
p
(c1u+ b+ c1):

According to (3.10a; b) and (3.2) one obtains

y1(1) =
2M1 sin kv

k
p
a(1)p

�
u
�
k2p� 1

�� b+ c1
c1

�
; y2(1) =

2M1 cos kv

c1u+ b+ c1

and because of
a(1) = (c1u+ b+ c1)

2
p; p = (c1)

2 + 1;

we obtain the �rst two equations in (3.5.1).

In order to �nd y0(1) according to (3.10c), �rst of all we have to �nd z1(1),
z2(1), where zi = aipz

p. Based on (3:3:1), we have for S(1)

a11 = (c1)
2 + 1; a12 = 0; a22 = (c1u+ b+ c1)

2;

and from (3.2) we have

z1(1) = �2M1Pc1 cos kv; z2(1) = 2M1(c1u+ b+ c1) (P � u)
sin kv

k
;

@z1(1)

@u2
=
@z1(1)

@v
= 2M1kPc1 sin kv;

@z2
@u1

= (Pc1 � 2c1u� b� c1)
sin kv

k

and substituting into (3.10c) we get the third equation at (3.5.1).

The �eld of rotation for S(1) is

�y(1)k = y1(1)�r(1)u + y2(1)�r(1)v + y0(1)��(1); u 2 [�1; 0]; v 2 [0; 2�];

where y1(1); y
2
(1); y0(1) are given by (3:5:1a�c). The same �eld �y(1)k in the coordinate

system with the basis �e; �a(v); �a0(v) one gets according to (3.3.1), (3.4.1). In the
same way we get components of the �eld of rotations for S(2) S(3) and S(4). For
S(2) we have:

(3.3.2)
�r(2)(u; v) = u�e+ �(2)(u)�a(v) = u�e+ (�c1u+ b+ c1)�a(v);

�r(2)u = �e� c1�a(v); �r(2)v = (�c1u+ b+ c1)�a
0(v);

(3.4.2) ��(2) = � c1�e+ �ap
(c1)2 + 1

;

y1(2) =
2M1 sin kv

k(�c1u+ b+ c1)[(c1)2 + 1]
fu� uk2[(c1)

2 + 1]� b+ c1
c1

g;(3.5.2a)

y2(2) =
2M1 cos kv

c1u� b� c1
;(3.5.2b)
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(3.5.2c) y0(2) =
2M1 sin kv

k
p
(c1)2 + 1

;

�y(2)k = y1(2)�r(2)u + y2(2)�r(2)v + y0(2)��(2); u 2 [�1; 0]; v 2 [0; 2�];

where y1(2); y
2
(2); y0(2) are given by (3.5.2). For S(3):

�r(3)(u; v) = u�e+ �(3)(u)�a(v) = u�e+ (c2u+ b� c2)�a(v);

�r(3)u = �e+ c2�a(v); �r(3)v = (c2u+ b� c2)�a
0(v);

��(3) =
c2�e� �a(v)p

p
; q = (c2)

2 + 1;

�y(3)k = y1(3)�r(3)u + y2(3)�r(3)v + y0(3)��(3); u 2 [0; 1]; v 2 [0; 2�];

where y1(3), y
2
(3), y0(3) are given by (3.5.3).

For S(4):

�r(4)(u; v) = u�e+ �(4)(u)�a(v) = u�e+ (�c2u+ b� c2)�a(v);

�r(4)u = �e� c2�a(v); �r(4)v = (�c2u+ b� c2)�a
0(v);

��(4) = �c2�e� �a(v)p
q

; q = (c2)
2 + 1;

�y(4)k = y1(4)�r(4)u + y2(4)�r(4)v + y0(4)��(4); u 2 [�1; 0]; v 2 [0; 2�];

where y1(4); y
2
(4); y0(4) are given by (3.5.4).
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