
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie, tome 63 (77), 1998, 75{80

EXISTENCE RESULT FOR THE DISPLACEMENT
FIELD OF ELASTIC BODY.

THE CASE OF A LOCKING SUPPORT

Ivan �Sestak and Bo�sko Jovanovo�c

Communicated by Gradimir Milovanovi�c

Abstract. The problem of existence result for displacement �eld of elastic
body in contact with locking support is considered in this paper. Mathematically
the problem is refered to, so called, hemivariational inequalities [4]. The existence
result is obtained by making use of the theory of pseudo{monotone operators as in
[4] or [1].

1. Introduction

Many inequality problems in mechanics are formulated not only as variational
inequalities, but also in terms of, so called, hemivariational inequalities [5], [4].
Hemivariational inequalities are derived from nonconvex nondi�erentiable super-
potentials by making use of the generalized gradient introduced by Clarke [2].

This paper deals with the existence of solutions of problem related to hemi-
variational inequalities which correspond to superpotential on the boundary of the
body having their nonconvex and nondi�erentiable part with in�nite branches on
closed and convex subsets. The theory of pseudo{monotone set{valued mappings
introduced by Browder and Hess [1] is the main tool of the problem under consid-
eration.

For the reader's convenience let us recall some de�nitions (all of them can be
found in [4]).

We denote by V a reexive Banach space with dual V �. The pairing over
V � � V and a norm on V will be denoted by h � ; � iV and k � kV respectively.
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Let the convex function f : V ! �R = R[f+1g be not everywhere di�eren-
tiable. A vector u� 2 V � for which f(v)�f(u) � hu�; v�uiV for all v 2 V hold,
where f(v) is �nite, is called a subgradient of f at u and the set of such vectors is
denoted by @f(u).

The directional derivative f0(u; v) of Clarke at u in the direction v is given
for f Lipschitzian near u by the expression

f0(u; v) = lim sup
h!0
�!0+

1

�

�
f(u+ h+ � v)� f(u+ h)

�

and the generalized gradient �@f(u) of f at u 2 V , f(u) �nite, is de�ned as �@f(u) =�
u� 2 V � : f0(u�; v � u) � hu; v � uiV for all v 2 V

	
. If f is convex, then

�@f( � ) = @f( � ) .

Let T be a mapping from a real reexive Banach space V into 2V
�

. Then T
is said to be pseudo{monotone if the following conditions hold:

a) The set Tu is nonempty, bounded, closed and convex for all u 2 V .

b) T is upper semicontinuous for each �nite dimensional subset F of V to the
weak topology of V �.

c) If fuig is a sequence in V converging weakly to u, and if u�i 2 Tui is such
that lim sup hu�i ; ui�uiV � 0 , then to each element v 2 V there exists u�(v) 2 Tu
with the property that lim inf hu�i ; ui � uiV � hu�(v); u� viV .

Let T be a mapping from V into V �. Then T is said to be quasi{bounded
if for each M > 0 there exists K(M) > 0 such that, whenever (u; u�) lies in the
graph G(T ) =

�
(v; v�) 2 V � V � : v� 2 Tv

	
of T and hu�; uiV � M kukV ,

kukV �M , then ku�kV � � K(M) .

Let T be a mapping from V into V �. Then T is said to be strongly quasi{
bounded if for each M > 0 there exists K(M) > 0 such that for all (u; u�) 2 G(T )
with hu�; uiV �M , kukV �M we have ku�kV � � K(M) .

2. Classical Formulation

Let 
 be an open, bounded and connected subset of Rn , n = 2 or 3, occupied by a
linear elastic body in its undeformed state. The body is refered to an orthogonal
Cartesian coordinate system. The boundary � of 
 is assumed to be Lipschitzian.

In the framework of linear elasticity and small deformations, the following
relations hold

�� + f = 0 in 
(1)

2 "(u) = ru+ (ru)T in 
(2)

� = C "(u) in 
(3)
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where � = f�ijg (resp. " = f"ijg), i; j = 1; . . . ; n , is the stress (resp. strain)
tensor and C is Hooke's elasticity tensor ful�lling the well known ellipticity and
symmetry properties [4]. Moreover, let u = fuig and f = ffig , i = 1; . . . ; n be
the displacement and volume force respectively. Further, let � = ��U [ ��F [ ��S
with properties: �U \ �F \ �S = ; and meas (�U ) > 0 .

We assume that

u = 0 on �U ;(4)

� n = F on �F ;(5)

where n = fnig , i = 1; . . . ; n , is the outward unit normal vector to �F .

Let K be a given convex and closed subset of displacement vector �eld of
points on �S , and let IK( � ) be indicator function for the displacement vectors on
�S , i.e., IK(v) = 0 if v 2 K and IK(v) = +1 if v 62 K .

Here the nonmonotone multivalued reaction{displacement law with in�nite
branches on K will be de�ned by a nonmonotone superpotential j(x; u); then the
boundary conditions on �S is given by [4]:

(6) �S 2 �@j( � ; u) + @IK(u) on �S :

The relation (6) describes the adhesive contact with a locking support, e.g. a rubber
support with limited compressibility [4].

Now we can formulate the classical problem (P) for displacement �eld as:
For given f , C , F , j and K �nd the displacement �eld u(x); x 2 �
, such that the
relations (1){(6) will be satis�ed.

3. Variational Formulation

To give the variational, i.e. hemivariational formulation of the classical problem
(P) we introduce the kinematically admisible space

(7) V =
�
v 2

�
H1(
)

�n
: v = 0 on �U

	
:

From (1) and (2) we obtain the variational equality (by application of the
Green{Gauss theorem):

(8)

Z



� �
�
"(v)� "(u)

�
d
 =

Z



f � (v � u) d
+

Z
�F

F � (v � u) d�

+

Z
�S

S � (v � u) d� for all v 2 V :
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The relation (6) is equivalent to the following one:
(9)

� 2 R
n ; j0(x; �; � � �) + IK(�)� IK(�) � (�S) (� � �) for all � 2 R

n :

Then, by (9), the equality (8) becomes an hemivariational inequality of the form:

(10)
a(u; v � u) + IK(v) � IK(u) +

Z
�S

j0(x; u(x); v(x)� u(x)) d� � l(v � u)

for all v 2 V ;

where, by de�nition

a(u; v) =

Z



C "(u) � "(v) d
 ;(11)

l(v) =

Z



f � v d
 +

Z
�F

F � v d� :(12)

If we introduce the linear operator A : V ! V � as hAu; viV = a(u; v) ,
and the linear functional g : V ! R by hg; viV = l(v) then we can for-

mulate the following hemivariational problem (V): For given f 2
�
L2(
)

�n
,

C 2
�
L1(
)

�n�n�n�n
, F 2

�
L2(�F )

�n
, j and K �

�
L2(�S)

�N
, N � 1, �nd

the displacement �eld u(x), x 2 �
, such that

(13)
hAu� g; v � uiV + IK(v)� IK(u) +

Z
�S

j0(x; u(x); v(x)�u(x)) d� � 0

for all v 2 V :

The functional JS : L2(�S ; R
N )! R , N � 1, indicated in (13), de�ned by

(14) JS(v) =

Z
�S

j(x; v(x)) d� ;

to be locally Lipschitz on L2(�S ; R
N ), for the function j : �S � R

N ! R , the
following conditions are introduced [2]:

(i) for all � 2 R
N the function x! j(x; �) is measurable on �S ;

(ii) for almost all x 2 �S the function � ! j(x; �) is locally Lipschitz on
RN ;

(iii) the function j( � ; 0) is �nitely integrable on �S , i.e., j( � ; 0) 2 L1(�S);

(iv) for almost all x 2 �S and each � 2 RN : �S 2 �@j(x; �) ) jSj �
c (1 + j�j)p�1 for some constant c > 0 not depending on x 2 �S . (In our example
p = 2).

Moreover, we suppose that
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(v) for almost all x 2 �S and each � 2 R
N : j0(x; �; ��) � �(x) (1 + j�js) ,

where 0 � s < 2 and �( � ) is a nonnegative function from Lq(�S) with q =
p=(p� s) . (In our example p = 2).

Then the hemivariational inequality (13) can be presented in the form:

(15) hAu� g; v � uiV + IK(v)� IK(u) + J0S(i u; i v � i u) � 0 for all v 2 V ;

where i is the compact injection from Y (�S) =
�
H1=2(�S)

�n
into L2(�S ; R

N ).

The dual of Y (�S) is denoted by Y �(�S), i.e. Y �(�S) =
�
H�1=2(�S)

�n
.

4. Existence

The hemivariational inequality (15) is equivalent to the inclusion [4]:

(16) g 2 Au+ @IK(u) + �@iJS(u) ;

where

(17) �@iJS(u) =
�
� 2 Y �(�S) : J0S(i u; i v) � h�; viY (�S) for all v 2 Y (�S)

	
:

The theorem below provides conditions which guarantee the existence of so-
lution to the problem (V). This theorem is a slight modi�cation of theorems 4.28
and 4.26 in [4].

Theorem 1. Let A be a pseudo{monotone operator from the reexive Banach
space V into V �. Let us suppose that the injection Y (�Q) � Lp(�Q; R

N ), N � 1,
�Q � �, is compact for some 2 � p < 1, and that j : �Q � R

N ! R ful�lls
the requirements (i){(v). Further, assume that the functional '

Q
: Y (�Q) ! �R =

R [f+1g is convex, lower semicontinuous and proper. Suppose that the following
hypotheses hold:

(H1) u0 2 Dom (@'
Q
) ;

(H2) either Au0 (Au0v = A(v + u0)) is quasibounded or @'
Qu0

is strongly

quasibounded;

(H3) there exists a function c : R+ ! R with c(r) � r as r !1, such that
for all v 2 V and � 2 �@iFQ(v) :

hAv; v � u0iV + h�; v � u0iY (�Q) � c(kvkV ) kvkV ;

where the functional FQ : Lp(�Q; R
N ) ! R, N � 1, is de�ned by FQ(v) =R

�Q
j(x; v) d� , and �@iFQ(v) as �@iJS(u) by (17).
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Then the hemivariational inequality

(18) hAu� g; v � uiV + '
Q
(v)� '

Q
(u) + F 0

Q(i u; i v � i u) � 0 for all v 2 V

has at least one solution.

Proof: Hemivariational inequality (18) can be written equivalently as g 2
Au+ @'

Q
(u) + �@iFQ(u) . Thus the problem is reduced to the question whether g

belongs to the range of A+@'
Q
+ �@iFQ . The operator @'

Q
is maximal monotone

by properties of the functional '
Q
[3]. Similarly as in theorem 4.23 in [4] we can

prove that the operator �@iFQ is pseudo{monotone. Since A + �@iFQ is coercive,
A+ �@iFQ + @'

Q
is coercive too, because of the existence of an aÆne minorant of

'
Q
. Then theorem 2.12 in [4] implies that the range of A+ �@iFQ+ @'

Q
coincides

with the whole V �. This establishes the existence of solution of (18). �

All conditions of Theorem 1 for the problem (V) are ful�lled. Obviously
�Q = �S , 'Q = IK , p = 2 and FQ = JS , and it remains to verify the hypotheses
(H2) and (H3). The operator A0 = A is quasi{bounded (u0 = 0, for example)
because the bilinear form a(u; v) is bounded. By the ellipticity, Korn's inequality
and the estimate

h�; viY (�S) � k�kY �(�S) kvkY (�S) � c kvkV ;

the hypothesis (H3) is ful�led.

Then the problem (V) has at least one solution.
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