OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF SOME DIFFERENCE EQUATIONS

A. Sternal, Z. Szafrański and B. Szmanda

Communicated by Gradimir Milovanović

Abstract

We consider the oscillation and asymptotic behaviour of nonoscillatory solutions of a class of nonlinear difference equations.

1. Introduction

We consider a nonlinear difference equation

$$
\begin{equation*}
\Delta\left(r_{n} \Delta\left(u_{n}+p_{n} u_{n-k}\right)\right)=q_{n} f\left(u_{n-l}\right), \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where Δ denotes the forward difference operator, i.e., $\Delta v_{n}=v_{n+1}-v_{n}$ for any sequence (v_{n}) of real number, k and l are nonnegative integers, $\left(p_{n}\right)$ and $\left(q_{n}\right)$ are sequences of real numbers with $q_{n} \geq 0$ eventually, $\left(r_{n}\right)$ is a sequence of positive numbers and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{r_{n}}=\infty . \tag{2}
\end{equation*}
$$

The function f is real valued function satisfying $u f(u)>0$ for $u \neq 0$.
By a solution of (1) we mean a sequence (u_{n}) which is defined for $n \geq$ $-\max \{k, l\}$ and satisfies (1) for all large n. A nontrivial solution $\left(u_{n}\right)$ of (1) is said to be oscillatory if for every positive integer n_{0} there exists $n \geq n_{0}$ such that $u_{n} u_{n+1} \leq 0$. Otherwise it is called nonoscillatory.

Recently, there has been considerable interest in the study of oscillation and asymptotic behaviour of solutions of difference equations; see for example [2], [3], [$\mathbf{5 - 1 5]}$ and the references cited therein. For the general theory of difference equations one can refer to [1] and [4].

AMS Subject Classification (1991): Primary 39A10
Key Words: nonoscillatory solution, difference equation, asymptotic properties.

Our purpose is to study the oscillatory and asymptotic behaviour of nonoscillatory solutions of equation (1). The obtained results extend those contained in [14].

2. Main results

Here we give some oscillatory and asymptotic properties of solution of (1).
We will need the following assumptions:
$f(u)$ is bounded away from zero if u is bounded away from zero,

$$
\begin{equation*}
\sum_{n=0}^{\infty} q_{n}=\infty \tag{3}
\end{equation*}
$$

The following lemma describes some asymptotic properties of the sequence $\left(z_{n}\right)$ defined as follows:

$$
\begin{equation*}
z_{n}=u_{n}+p_{n} u_{n-k}, \tag{5}
\end{equation*}
$$

where $\left(u_{n}\right)$ is a nonoscillatory solution of (1).
Lemma. Assume that (3) and (4) hold and there exists a constant P_{1} such that $P_{1} \leq p_{n} \leq 0$.
(a) If (u_{n}) is an eventually positive solution of (1), then the sequences $\left(z_{n}\right)$ and $\left(r_{n} \Delta z_{n}\right)$ are eventually monotonic and either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=\infty \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=0, \quad \Delta z_{n}<0 \text { and } z_{n}>0 \tag{7}
\end{equation*}
$$

(b) If $\left(u_{n}\right)$ is an eventually negative solution of (1), then the sequences $\left(z_{n}\right)$ and $\left(r_{n} \Delta z_{n}\right)$ are eventually monotonic and either

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=-\infty \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=0, \quad \Delta z_{n}>0 \text { and } z_{n}<0 \tag{9}
\end{equation*}
$$

Proof. Let $\left(u_{n}\right)$ be an eventually positive solution of (1), say $u_{n-k}>0$ and $u_{n-l}>0$ for $n \geq n_{0}$. From (1) we have

$$
\begin{equation*}
\Delta\left(r_{n} \Delta z_{n}\right)=q_{n} f\left(u_{n-l}\right) \geq 0 \quad \text { for } n \geq n_{0} \tag{10}
\end{equation*}
$$

that is $\left(r_{n} \Delta z_{n}\right)$ is nondecreasing, which implies that $\left(\Delta z_{n}\right)$ is eventually of constant sign and in consequence $\left(z_{n}\right)$ is eventually monotonic.

First suppose there exists $n_{1} \geq n_{0}$ such that $\Delta z_{n_{1}} \geq 0$, then since $q_{n} \equiv 0$ eventually, there exists $n_{2} \geq n_{1}$ such that $r_{n} \Delta z_{n} \geq r_{n_{2}} \Delta z_{n_{2}}=c>0$ for $n \geq n_{2}$. Summing the above inequality, by (2) we have

$$
z_{n} \geq z_{n_{2}}+c \sum_{i=n_{2}}^{n-1} \frac{1}{r_{i}} \rightarrow \infty \quad n \rightarrow \infty
$$

hence $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Since $u_{n} \geq z_{n}$, so $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then summing (10) we get

$$
r_{n} \Delta z_{n}=r_{n_{2}} \Delta z_{n_{2}}+\sum_{i=n_{2}}^{n-1} q_{i} f\left(u_{i-l}\right)
$$

which in view of (3) and (4), implies that $r_{n} \Delta z_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and thus (6) holds.

Now, if $\Delta z_{n}<0$ for $n \geq n_{0}$, then $r_{n} \Delta z_{n} \rightarrow L \leq 0$ as $n \rightarrow \infty$. Summing (10) from n to m and letting $m \rightarrow \infty$ gives

$$
\sum_{i=n}^{\infty} q_{i} f\left(u_{i-l}\right)=L-r_{n} \Delta z_{n}<\infty
$$

The last inequality together with (3) and (4) implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf u_{n}=0 \tag{11}
\end{equation*}
$$

Suppose that $L<0$. Then we have $r_{n} \Delta z_{n} \leq L$ for $n \geq n_{0}$. Also, we can choose $n_{3} \geq n_{0}$ such that $z_{n_{3}}<0$. Summing the above inequality we get

$$
z_{n} \leq z_{n_{3}}+L \sum_{i=n_{3}}^{n-1} \frac{1}{r_{i}}<L \sum_{i=n_{3}}^{n-1} \frac{1}{r_{i}} \text { for } n>n_{3}
$$

and, by assumption, we obtain

$$
P_{1} u_{n-k} \leq p_{n} u_{n-k}<z_{n}<L \sum_{i=n_{3}}^{n-1} \frac{1}{r_{i}}, \quad n>n_{3}
$$

so

$$
u_{n-k}>\frac{L}{P_{1}} \sum_{i=n_{3}}^{n-1} \frac{1}{r_{i}} \rightarrow \infty \quad n \rightarrow \infty
$$

which contradicts (11). Thus $\lim _{n \rightarrow \infty} r_{n} \Delta z_{n}=0$. Next we show that $z_{n}>0$ for $n \geq n_{0}$. If not, then there exists $n_{4} \geq n_{0}$ such that $z_{n_{4}} \leq 0$, then since $\Delta z_{n}<0$ for $n \geq n_{0} z_{n}<z_{n_{5}}<0$ for $n \geq n_{5} \geq n_{4}$ that is

$$
\begin{equation*}
u_{n}<z_{n_{5}}-p_{n} u_{n-k} \text { for } n \geq n_{5} \tag{12}
\end{equation*}
$$

By (11), there is an increasing sequence of positive integers $\left(n_{i}\right)$ such that $u_{n_{i}-k} \rightarrow 0$ as $i \rightarrow \infty$. This together with the assumption about $\left(p_{n}\right)$ and (12) implies that there exists i_{0} such that $u_{n_{i_{0}}}<z_{n_{5}} / 2<0$, contradicting $u_{n}>0$ eventually.

Since $\left(z_{n}\right)$ is decreasing, $z_{n} \rightarrow L_{1} \geq 0$. If $L_{1}>0$, then $u_{n} \geq z_{n} \geq L_{1}$, contradicting (11) Thus (7) holds and (a) is proved.

The proof of (b) is similar to that of (a) and hence will be omitted.
Theorem 1. Suppose that (3) and (4) holds. If there exists a constant P_{2} such that $P_{2} \leq p_{n} \leq-1$, then every nonoscillatory solution $\left(u_{n}\right)$ of (1) satisfies $\left|u_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. If $\left(u_{n}\right)$ is an eventually positive solution of (1) such that $\left(u_{n}\right)$ does not tend to ∞ as $n \rightarrow \infty$, then (6) cannot hold since $z_{n} \leq u_{n}$ eventually. Thus, by Lemma (a) (7) holds. Moreover, from the proof of (7) we have (11) holding. But

$$
0<z_{n}=u_{n}+p_{n} u_{n-k} \leq u_{n}-u_{n-k}
$$

so $u_{n}>u_{n-k}$ which contradicts (11). This completes the proof for $u_{n}>0$. The proof is similar when $\left(u_{n}\right)$ is eventually negative.

From Theorem 1 we immediately obtain
Corollary 1. Under the assumptions of Theorem 1 all bounded solutions of (1) are oscillatory.

Theorem 2. Suppose that there exists a constant P_{3} such that $-1<P_{3} \leq$ $p_{n} \leq 0$ and that f is a nondecreasing continuous function such that

$$
\begin{equation*}
\int_{0}^{ \pm a} \frac{d u}{f(u)}<\infty, \quad a>0 \tag{13}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{r_{n-l}} \sum_{i=n-l}^{n} q_{i}=\infty \tag{14}
\end{equation*}
$$

then every nonoscillatory solution $\left(u_{n}\right)$ of (1) satisfies either $\left|u_{n}\right| \rightarrow \infty$ or $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Assume that $\left(u_{n}\right)$ is an eventually positive solution of (1) which does not satisfy our assertion. Then for $\left(z_{n}\right)$ defined in (5) we see from (1), that $\Delta\left(r_{n} \Delta z_{n}\right) \geq 0$ eventually that is $\left(r_{n} \Delta z_{n}\right)$ is nondecreasing and $\left(z_{n}\right)$ is eventually monotonic. Now if $\left(z_{n}\right)$ is eventually nonpositive, then the assumption concerning $\left(p_{n}\right)$ implies $u_{n} \leq-p_{n} u_{n-k} \leq-P_{3} u_{n-k}$ so $u_{n+k} \leq-P_{3} u_{n}$ for all n sufficiently large, say for $n \geq n_{0}$. It then follows by induction that for all $n \geq n_{0}$ we have $u_{n+i k} \leq\left(-P_{3}\right)^{i} u_{n}$ for every positive integer i. Since $0<-P_{3}<1$, the last inequality implies that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$ which contradicts our assumption. Also, if there exists $n_{1} \geq n_{0}$ such that $\Delta z_{n_{1}} \geq 0$, then there is $n_{2} \geq n_{1}$ such that
$r_{n} \Delta z_{n} \geq r_{n_{2}} \Delta z_{n_{2}}>0$ for $n \geq n_{2}$ which, by (2), implies that $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Since $u_{n} \geq z_{n}$ we have $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$, again a contradiction to our assumptions on $\left(u_{n}\right)$.

Therefore we have $z_{n}>0$ and $\Delta z_{n}<0$ for $n \geq n_{0}$. Since $0<z_{n} \leq u_{n}$ and f is nondecreasing from (1) we get

$$
\Delta\left(r_{n} \Delta z_{n}\right) \geq q_{n} f\left(z_{n-l}\right) \quad \text { for } n \geq n_{1}=n_{0}+l
$$

Summing the above inequality we obtain

$$
r_{n+1} \Delta z_{n+1}-r_{n-l} \Delta z_{n-l} \geq \sum_{i=n-l}^{n} q_{i} f\left(z_{i-l}\right)
$$

and so

$$
\sum_{i=n-l}^{n} q_{i} f\left(z_{i-l}\right) \leq-r_{n-l} \Delta z_{n-l} \quad n \geq n_{1}
$$

In view of monotonicity of $\left(z_{n}\right)$ and f we see that

$$
\frac{f\left(z_{n-l}\right)}{r_{n-l}} \sum_{i=n-l}^{n} q_{i} \leq-\Delta z_{n-l}
$$

and further

$$
\frac{1}{r_{n-l}} \sum_{i=n-l}^{n} q_{i} \leq \frac{-\Delta z_{n-l}}{f\left(z_{n-l}\right)} \leq \int_{z_{n+1-l}}^{z_{n-l}} \frac{d u}{f(u)}, \quad n \geq n_{1} .
$$

Summing the last inequality from n_{1} to n by (13) we get

$$
\sum_{j=n_{1}}^{n} \frac{1}{r_{j-l}} \sum_{i=n-l}^{n} q_{i} \leq \int_{z_{n+1-l}}^{z_{n_{1}-l}} \frac{d u}{f(u)}<\int_{0}^{z_{n_{1}-l}} \frac{d u}{f(u)}<\infty
$$

which contradicts (14). The proof is similar when $\left(u_{n}\right)$ is eventually negative.
Corollary 2. Under the assumptions of Theorem 2 any bounded solution of (1) is either oscillatory or tends to zero as $n \rightarrow \infty$.

Theorem 3. Assume that there exist constants P_{3} and P_{4} such that either

$$
\begin{equation*}
-1<P_{3} \leq p_{n} \leq 0 \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
0 \leq p_{n} \leq P_{4}<1 \tag{16}
\end{equation*}
$$

Then every unbounded solution $\left(u_{n}\right)$ of (1) is either oscillatory or satisfies $\left|u_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Let $\left(u_{n}\right)$ be an unbounded solution of (1) which is eventually positive, say $u_{n-k}>0$ and $u_{n-l}>0$ for $n \geq n_{0}$. Then as before we have $\Delta\left(r_{n} \Delta z_{n}\right) \geq 0$ for $n \geq n_{0}$, so $\left(r_{n} \Delta z_{n}\right)$ is nondecreasing and hence $\left(z_{n}\right)$ is monotonic.

First assume that (15) holds. Then it follows that $z_{n}>0$ for $n \geq n_{1} \geq n_{0}$. Otherwise, there exists $n_{2} \geq n_{1}$ such that $u_{n}+p_{n} u_{n-k}=z_{n} \leq 0$ for $n \geq n_{2}$ and (15) implies that $u_{n} \leq-P_{3} u_{n-k} \leq u_{n-k}$. This implies that $\left(u_{n}\right)$ is bounded, a contradiction.

Further we claim that $\left(\Delta z_{n}\right)$ is eventually positive. Otherwise, $\left(z_{n}\right)$ is decreasing and hence is bounded from above, say $0<z_{n} \leq M$ for some constant M. Therefore $u_{n}=z_{n}-p_{n} u_{n-k} \leq M-P_{3} u_{n-k}$. Since $\left(u_{n}\right)$ is unbounded there is an increasing sequence of positive integers $\left(n_{i}\right)$ such that $u_{n_{i}} \rightarrow \infty$ as $i \rightarrow \infty$ and $u_{n_{i}}=\max _{n_{1} \leq n \leq n_{i}} u_{n}$. Then we have

$$
u_{n_{i}} \leq M-P_{3} u_{n_{i}-k} \leq M-P_{3} u_{n_{i}}
$$

so $\left(1+P_{3}\right) u_{n_{i}} \leq M$ for all i which is impossible in view of (15)
Finally, observe, as in the proof of Lemma, that $\left(r_{n} \Delta z_{n}\right)$ nondecreasing and $\left(\Delta z_{n}\right)$ eventually positive implies that $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and hence $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$ since $u_{n} \geq z_{n}$.

Now assume that (16) holds. Then it is clear that $z_{n}>0$ for $n \geq n_{0}$. Also we see that $\left(\Delta z_{n}\right)$ is eventually positive. In fact, if not, then $\left(z_{n}\right)$ is decreasing and so is bounded from above and since $z_{n} \geq u_{n} \quad\left(u_{n}\right)$ is bounded, a contradiction.

As previously we conclude that $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Since $z_{n} \leq u_{n}+P_{4} z_{n-k} \leq$ $u_{n}+P_{4} z_{n}$ we have $\left(1-P_{4}\right) z_{n} \leq u_{n}$ which in view of (16), implies $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

A similar argument treats the case of eventually negative solution.
Theorem 4. Suppose that there exist constants P_{5} and P_{6} such that $P_{5} \leq$ $p_{n} \leq P_{6}<-1$ and f is a nondecreasing continuous function such that

$$
\begin{equation*}
\int_{\varepsilon}^{\infty} \frac{d u}{f(u)}<\infty, \quad \int_{-\varepsilon}^{-\infty} \frac{d u}{f(u)}<\infty, \quad \varepsilon>0 \tag{17}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{r_{n-l}} \sum_{i=n-k+1}^{\infty} q_{i}=\infty \quad \text { when } l \geq k \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{1}{r_{n}} \sum_{i=n}^{\infty} q_{i}=\infty \quad \text { when } l<k \tag{19}
\end{equation*}
$$

then all bounded solutions of (1) are oscillatory.

Proof. Assume that there exists a bounded nonoscillatory solutions (u_{n}) of (1) and let $u_{n}>0$ eventually, say $u_{n-k-l}>0$ for $n \geq n_{0}$. Then as before for the sequence $\left(z_{n}\right)$ defined in (5) it follows that $\left(r_{n} \Delta z_{n}\right)$ is a nondecreasing sequence and in consequence $\left(z_{n}\right)$ is eventually monotonic. We show first that $\left(z_{n}\right)$ is eventually negative. If there exists $n_{1} \geq n_{0}$ such that $z_{n_{1}}>0$, then by the assumptions we get $u_{n_{1}}=z_{n_{1}}-p_{n_{1}} u_{n_{1}-k}>-P_{6} u_{n_{1}-k}$. Then it follows by induction that $u_{n_{1}+i k}>\left(-P_{6}\right)^{i} u_{n_{1}}$, which implies $u_{n_{i}+i k} \rightarrow \infty$ as $i \rightarrow \infty$ contradicting the boundedness of $\left(u_{n}\right)$. Therefore $\left(z_{n}\right)$ is eventually negative, say for $n \geq n_{0}$. Now we observe that $\Delta z_{n}<0$ for $n \geq n_{0}$. If not, then a similar argument as in the proof of Lemma leads to the fact that $z_{n} \rightarrow \infty$ contradicting $z_{n}<0$ for $n \geq n_{0}$. By assumption, we have $P_{5} u_{n-k} \leq p_{n} u_{n-k}<z_{n}<0$, which implies that $0<z_{n+k} / P_{5}<u_{n}$ for $n \geq n_{0}$.

In view of monotonicity of f from (1) we see that

$$
\begin{equation*}
\Delta\left(r_{n} \Delta z_{n}\right) \geq q_{n} f\left(\frac{z_{n+k-l}}{P_{5}}\right) \quad \text { for } n \geq n_{1}=n_{0}+l \tag{20}
\end{equation*}
$$

Summing (20) from $n-k$ to $m>n-k$ we obtain

$$
r_{m+1} \Delta z_{m+1}-r_{n-k} \Delta z_{n-k} \geq \sum_{i=n-k}^{m} q_{i} f\left(\frac{z_{i+k-l}}{P_{5}}\right)
$$

After letting $m \rightarrow \infty$, we have

$$
-r_{n-k} \Delta z_{n-k} \geq \sum_{i=n-k}^{\infty} q_{i} f\left(\frac{z_{i+k-l}}{P_{5}}\right) \geq \sum_{i=n-k+1}^{\infty} q_{i} f\left(\frac{z_{i+k-l}}{P_{5}}\right)
$$

from which we get

$$
\begin{equation*}
-r_{n-k} \Delta z_{n-k} \geq f\left(\frac{z_{n+1-l}}{P_{5}}\right) \sum_{i=n-k+1}^{\infty} q_{i} \tag{21}
\end{equation*}
$$

Since $\left(r_{n} \Delta z_{n}\right)$ is nondecreasing, for $l \geq k$ we have $r_{n-l} \Delta z_{n-l} \leq r_{n-k} \Delta z_{n-k}$ and further from (21) we obtain

$$
\begin{equation*}
\frac{1}{r_{n-l}} \sum_{i=n-k+1}^{\infty} q_{i} \leq-\frac{\Delta z_{n-l}}{f\left(\frac{z_{n+1-l}}{P_{5}}\right)} \quad \text { for } n \geq n_{1} \tag{22}
\end{equation*}
$$

In view of monotonicity of $\left(z_{n}\right)$ and f for $z_{n-l} / P_{5} \leq u \leq z_{n+1-l} / P_{5}$ we have

$$
\frac{1}{f(u)} \geq \frac{1}{f\left(\frac{z_{n+1-l}}{P_{5}}\right)}
$$

and so

$$
\begin{equation*}
\int_{z_{n-l} / P_{5}}^{z_{n+1-l} / P_{5}} \frac{d u}{f(u)} \geq \frac{1}{P_{5}} \frac{\Delta z_{n-l}}{f\left(\frac{z_{n+1-l}}{P_{5}}\right)} \quad \text { for } n \geq n_{1} \tag{23}
\end{equation*}
$$

Now using (23) in (22) and summing both sides from n_{1} to n we get

$$
\sum_{j=n_{1}}^{n} \frac{1}{r_{j-l}} \sum_{i=j-k+1}^{\infty} q_{i} \leq-P_{5} \int_{z_{n_{1}-l} / P_{5}}^{z_{n+1-l} / P_{5}} \frac{d u}{f(u)}, \quad n \geq n_{1}
$$

which in view of (17) contradicts the condition (18).
If $l<k$, then summing (20) from n to $m>n$ and letting $m \rightarrow \infty$ we obtain

$$
\begin{equation*}
-r_{n} \Delta z_{n} \geq \sum_{i=n}^{\infty} q_{i} f\left(\frac{z_{i+k-l}}{P_{5}}\right) \geq f\left(\frac{z_{n+k-l}}{P_{5}}\right) \sum_{i=n}^{\infty} q_{i} \tag{24}
\end{equation*}
$$

Since $n+k-l \geq n+1$, it follows that

$$
f\left(\frac{z_{n+1}}{P_{5}}\right) \leq f\left(\frac{z_{n+k-l}}{P_{5}}\right)
$$

Therefore from (24) we get

$$
\frac{1}{r_{n}} \sum_{i=n}^{\infty} q_{i} \leq-\frac{\Delta z_{n}}{f\left(\frac{z_{n+1}}{P_{5}}\right)} \quad \text { for } n \geq n_{1}
$$

and the rest of the proof follows analogously to that as above.

References

1 R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
2 M . Budincevic, Oscillations and the asymptotic behaviour of certain second order neutral difference equation, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21 (1991), 165-172.
3 J. W. Hooker and W. T. Patula, Second order nonlinear difference equation: oscillation and asymptotic behaviour, J. Math. Anal. Appl. 91 (1983), 9-29.
4 V. Lakshmikantham and D. Trigiante, Theory of Difference Equations Numerical Methods and Applications, Academic Press, New York, 1988.
5 B. S. Lalli, B. G. Zhang and J. Z. Li, On the oscillation of solutions and existence of positive solutions of neutral difference equations, J. Math. Anal. Appl. 158 (1991), 213-233.
6 B. S. Lalli and B. G. Zhang, On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl. 166 (1992), 272-287.
7 H. J. Li and S. S. Cheng, Asymptotically monotone solutions of a nonlinear difference equation, Tamkang J. Math. 24 (1993), 269-282.
8 J. Popenda and B. Szmanda, On the oscillation of some difference equations, Demonstr. Math. 17 (1984), 153-164.
9 Z. Szafranski and B. Szmanda, A note on the oscillation of some difference equations, Fasc. Math. 21 (1990), 57-63.

10 Z. Szafranski and B. Szmanda, Oscillation and asymptotic behaviour of certain nonlinear difference equations, Riv. Math. Univ. Parma 4 (1995), 231-240.
11 B. Szmanda, Characterization of oscillation of second order nonlinear difference equations, Bull. Polish Acad. Sci. Math. 34 (1986), 133-141.
12 B. Szmanda, Oscillatory behaviour of certain difference equations, Fasc. Math. 21 (1990), 65-78.

13 E. Thandapani, Asymptotic and oscillatory behaviour of solutions of nonlinear second order difference equations, Indian J. Pure. Appl. Math. 24 (1993), 365-372.
14 E. Thandapani, Asymptotic and oscillatory behaviour of solutions of a second order nonlinear neutral delay difference equation, Riv. Math. Univ. Parma 1 (1992), 105-113.
15 B. G. Zhang and S. S. Cheng, Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math. 25 (1995), 13-32.

Institute of Mathematics
(Received 1012 1997)
Poznań University of Technology
60-965 Poznań
Poland

