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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR

OF SOME DIFFERENCE EQUATIONS

A. Sternal, Z. Szafra�nski and B. Szmanda

Communicated by Gradimir Milovanovi�c

Abstract. We consider the oscillation and asymptotic behaviour of nonoscil-
latory solutions of a class of nonlinear di�erence equations.

1. Introduction

We consider a nonlinear di�erence equation

�(rn�(un + pnun�k)) = qnf(un�l); n = 0; 1; 2; . . . (1)

where � denotes the forward di�erence operator, i.e., �vn = vn+1 � vn for any
sequence (vn) of real number, k and l are nonnegative integers, (pn) and (qn) are
sequences of real numbers with qn � 0 eventually, (rn) is a sequence of positive
numbers and

1X
n=0

1

rn
=1: (2)

The function f is real valued function satisfying uf(u) > 0 for u 6= 0.

By a solution of (1) we mean a sequence (un) which is de�ned for n �
�maxfk; lg and satis�es (1) for all large n. A nontrivial solution (un) of (1) is
said to be oscillatory if for every positive integer n0 there exists n � n0 such that
unun+1 � 0. Otherwise it is called nonoscillatory.

Recently, there has been considerable interest in the study of oscillation and
asymptotic behaviour of solutions of di�erence equations; see for example [2], [3],
[5{15] and the references cited therein. For the general theory of di�erence equa-
tions one can refer to [1] and [4].
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Our purpose is to study the oscillatory and asymptotic behaviour of nonoscil-
latory solutions of equation (1). The obtained results extend those contained in
[14].

2. Main results

Here we give some oscillatory and asymptotic properties of solution of (1).

We will need the following assumptions:

f(u) is bounded away from zero if u is bounded away from zero, (3)

1X
n=0

qn =1: (4)

The following lemma describes some asymptotic properties of the sequence (zn)
de�ned as follows:

zn = un + pnun�k; (5)

where (un) is a nonoscillatory solution of (1).

Lemma. Assume that (3) and (4) hold and there exists a constant P1 such

that P1 � pn � 0.

(a) If (un) is an eventually positive solution of (1), then the sequences (zn)
and (rn�zn) are eventually monotonic and either

lim
n!1

zn = lim
n!1

rn�zn =1 (6)

or

lim
n!1

zn = lim
n!1

rn�zn = 0; �zn < 0 and zn > 0: (7)

(b) If (un) is an eventually negative solution of (1), then the sequences (zn)
and (rn�zn) are eventually monotonic and either

lim
n!1

zn = lim
n!1

rn�zn = �1 (8)

or

lim
n!1

zn = lim
n!1

rn�zn = 0; �zn > 0 and zn < 0: (9)

Proof. Let (un) be an eventually positive solution of (1), say un�k > 0 and
un�l > 0 for n � n0. From (1) we have

�(rn�zn) = qnf(un�l) � 0 for n � n0 (10)

that is (rn�zn) is nondecreasing, which implies that (�zn) is eventually of constant
sign and in consequence (zn) is eventually monotonic.
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First suppose there exists n1 � n0 such that �zn1 � 0, then since qn � 0
eventually, there exists n2 � n1 such that rn�zn � rn2�zn2 = c > 0 for n � n2.
Summing the above inequality, by (2) we have

zn � zn2 + c

n�1X
i=n2

1

ri
!1 n!1;

hence zn !1 as n!1.

Since un � zn, so un !1 as n!1. Then summing (10) we get

rn�zn = rn2�zn2 +

n�1X
i=n2

qif(ui�l)

which in view of (3) and (4), implies that rn�zn ! 1 as n ! 1, and thus (6)
holds.

Now, if �zn < 0 for n � n0, then rn�zn ! L � 0 as n!1. Summing (10)
from n to m and letting m!1 gives

1X
i=n

qif(ui�l) = L� rn�zn <1:

The last inequality together with (3) and (4) implies

lim
n!1

inf un = 0: (11)

Suppose that L < 0. Then we have rn�zn � L for n � n0. Also, we can choose
n3 � n0 such that zn3 < 0. Summing the above inequality we get

zn � zn3 + L

n�1X
i=n3

1

ri
< L

n�1X
i=n3

1

ri
for n > n3

and, by assumption, we obtain

P1un�k � pnun�k < zn < L

n�1X
i=n3

1

ri
; n > n3

so

un�k >
L

P1

n�1X
i=n3

1

ri
!1 n!1;

which contradicts (11). Thus limn!1 rn�zn = 0. Next we show that zn > 0 for
n � n0. If not, then there exists n4 � n0 such that zn4 � 0, then since �zn < 0 for
n � n0 zn < zn5 < 0 for n � n5 � n4 that is

un < zn5 � pnun�k for n � n5 (12)
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By (11), there is an increasing sequence of positive integers (ni) such that uni�k ! 0
as i ! 1. This together with the assumption about (pn) and (12) implies that
there exists i0 such that uni0 < zn5=2 < 0, contradicting un > 0 eventually.

Since (zn) is decreasing, zn ! L1 � 0. If L1 > 0, then un � zn � L1,
contradicting (11) Thus (7) holds and (a) is proved.

The proof of (b) is similar to that of (a) and hence will be omitted.

Theorem 1. Suppose that (3) and (4) holds. If there exists a constant P2
such that P2 � pn � �1, then every nonoscillatory solution (un) of (1) satis�es

junj ! 1 as n!1.

Proof. If (un) is an eventually positive solution of (1) such that (un) does
not tend to 1 as n!1, then (6) cannot hold since zn � un eventually. Thus, by
Lemma (a) (7) holds. Moreover, from the proof of (7) we have (11) holding. But

0 < zn = un + pnun�k � un � un�k;

so un > un�k which contradicts (11). This completes the proof for un > 0. The
proof is similar when (un) is eventually negative.

From Theorem 1 we immediately obtain

Corollary 1. Under the assumptions of Theorem 1 all bounded solutions

of (1) are oscillatory.

Theorem 2. Suppose that there exists a constant P3 such that �1 < P3 �
pn � 0 and that f is a nondecreasing continuous function such that

Z �a
0

du

f(u)
<1; a > 0: (13)

If
1X

n=n0

1

rn�l

nX
i=n�l

qi =1; (14)

then every nonoscillatory solution (un) of (1) satis�es either junj ! 1 or un ! 0
as n!1.

Proof. Assume that (un) is an eventually positive solution of (1) which
does not satisfy our assertion. Then for (zn) de�ned in (5) we see from (1), that
�(rn�zn) � 0 eventually that is (rn�zn) is nondecreasing and (zn)is eventually
monotonic. Now if (zn) is eventually nonpositive, then the assumption concerning
(pn) implies un � �pnun�k � �P3un�k so un+k � �P3un for all n suÆciently
large, say for n � n0. It then follows by induction that for all n � n0 we have
un+ik � (�P3)

iun for every positive integer i. Since 0 < �P3 < 1, the last in-
equality implies that un ! 0 as n ! 1 which contradicts our assumption. Also,
if there exists n1 � n0 such that �zn1 � 0, then there is n2 � n1 such that
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rn�zn � rn2�zn2 > 0 for n � n2 which, by (2), implies that zn ! 1 as n ! 1.
Since un � zn we have un !1 as n!1, again a contradiction to our assumptions
on (un).

Therefore we have zn > 0 and �zn < 0 for n � n0. Since 0 < zn � un and f
is nondecreasing from (1) we get

�(rn�zn) � qnf(zn�l) for n � n1 = n0 + l

Summing the above inequality we obtain

rn+1�zn+1 � rn�l�zn�l �

nX
i=n�l

qif(zi�l)

and so
nX

i=n�l

qif(zi�l) � �rn�l�zn�l n � n1:

In view of monotonicity of (zn) and f we see that

f(zn�l)

rn�l

nX
i=n�l

qi � ��zn�l;

and further

1

rn�l

nX
i=n�l

qi �
��zn�l
f(zn�l)

�

Z zn�l

zn+1�l

du

f(u)
; n � n1:

Summing the last inequality from n1 to n by (13) we get

nX
j=n1

1

rj�l

nX
i=n�l

qi �

Z zn1�l

zn+1�l

du

f(u)
<

Z zn1�l

0

du

f(u)
<1;

which contradicts (14). The proof is similar when (un) is eventually negative.

Corollary 2. Under the assumptions of Theorem 2 any bounded solution

of (1) is either oscillatory or tends to zero as n!1.

Theorem 3. Assume that there exist constants P3 and P4 such that either

�1 < P3 � pn � 0 (15)

or

0 � pn � P4 < 1: (16)
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Then every unbounded solution (un) of (1) is either oscillatory or satis�es junj ! 1
as n!1.

Proof. Let (un) be an unbounded solution of (1) which is eventually positive,
say un�k > 0 and un�l > 0 for n � n0. Then as before we have �(rn�zn) � 0 for
n � n0, so (rn�zn) is nondecreasing and hence (zn) is monotonic.

First assume that (15) holds. Then it follows that zn > 0 for n � n1 � n0.
Otherwise, there exists n2 � n1 such that un + pnun�k = zn � 0 for n � n2 and
(15) implies that un � �P3un�k � un�k. This implies that (un) is bounded, a
contradiction.

Further we claim that (�zn) is eventually positive. Otherwise, (zn) is de-
creasing and hence is bounded from above, say 0 < zn �M for some constant M .
Therefore un = zn � pnun�k � M � P3un�k. Since (un) is unbounded there is
an increasing sequence of positive integers (ni) such that uni ! 1 as i ! 1 and
uni = maxn1�n�ni un. Then we have

uni �M � P3uni�k �M � P3uni ;

so (1 + P3)uni �M for all i which is impossible in view of (15)

Finally, observe, as in the proof of Lemma, that (rn�zn) nondecreasing and
(�zn) eventually positive implies that zn ! 1 as n ! 1 and hence un ! 1 as
n!1 since un � zn.

Now assume that (16) holds. Then it is clear that zn > 0 for n � n0. Also
we see that (�zn) is eventually positive. In fact, if not, then (zn) is decreasing and
so is bounded from above and since zn � un (un) is bounded, a contradiction.

As previously we conclude that zn !1 as n!1. Since zn � un+P4zn�k �
un+P4zn we have (1�P4)zn � un which in view of (16), implies un !1 as n!1.

A similar argument treats the case of eventually negative solution.

Theorem 4. Suppose that there exist constants P5 and P6 such that P5 �
pn � P6 < �1 and f is a nondecreasing continuous function such that

Z 1
"

du

f(u)
<1;

Z �1
�"

du

f(u)
<1; " > 0: (17)

If
1X

n=n0

1

rn�l

1X
i=n�k+1

qi =1 when l � k; (18)

or
1X

n=n0

1

rn

1X
i=n

qi =1 when l < k (19)

then all bounded solutions of (1) are oscillatory.
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Proof. Assume that there exists a bounded nonoscillatory solutions (un) of
(1) and let un > 0 eventually, say un�k�l > 0 for n � n0. Then as before for the
sequence (zn) de�ned in (5) it follows that (rn�zn) is a nondecreasing sequence and
in consequence (zn) is eventually monotonic. We show �rst that (zn) is eventually
negative. If there exists n1 � n0 such that zn1 > 0, then by the assumptions
we get un1 = zn1 � pn1un1�k > �P6un1�k. Then it follows by induction that
un1+ik > (�P6)

iun1 , which implies uni+ik ! 1 as i ! 1 contradicting the
boundedness of (un). Therefore (zn) is eventually negative, say for n � n0. Now
we observe that �zn < 0 for n � n0. If not, then a similar argument as in
the proof of Lemma leads to the fact that zn ! 1 contradicting zn < 0 for
n � n0. By assumption, we have P5un�k � pnun�k < zn < 0, which implies that
0 < zn+k=P5 < un for n � n0.

In view of monotonicity of f from (1) we see that

�(rn�zn) � qnf
�zn+k�l

P5

�
for n � n1 = n0 + l (20)

Summing (20) from n� k to m > n� k we obtain

rm+1�zm+1 � rn�k�zn�k �

mX
i=n�k

qif
�zi+k�l

P5

�
:

After letting m!1, we have

�rn�k�zn�k �
1X

i=n�k

qif
�zi+k�l

P5

�
�

1X
i=n�k+1

qif
�zi+k�l

P5

�
;

from which we get

�rn�k�zn�k � f
�zn+1�l

P5

� 1X
i=n�k+1

qi: (21)

Since (rn�zn) is nondecreasing, for l � k we have rn�l�zn�l � rn�k�zn�k and
further from (21) we obtain

1

rn�l

1X
i=n�k+1

qi � �
�zn�l

f
�zn+1�l

P5

� for n � n1: (22)

In view of monotonicity of (zn) and f for zn�l=P5 � u � zn+1�l=P5 we have

1

f(u)
�

1

f
�zn+1�l

P5

�
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and so Z zn+1�l=P5

zn�l=P5

du

f(u)
�

1

P5

�zn�l

f
�zn+1�l

P5

� for n � n1: (23)

Now using (23) in (22) and summing both sides from n1 to n we get

nX
j=n1

1

rj�l

1X
i=j�k+1

qi � �P5

Z zn+1�l=P5

zn1�l=P5

du

f(u)
; n � n1

which in view of (17) contradicts the condition (18).

If l < k, then summing (20) from n to m > n and letting m!1 we obtain

�rn�zn �

1X
i=n

qif
�zi+k�l

P5

�
� f

�zn+k�l
P5

� 1X
i=n

qi: (24)

Since n+ k � l � n+ 1, it follows that

f
�zn+1

P5

�
� f

�zn+k�l
P5

�
:

Therefore from (24) we get

1

rn

1X
i=n

qi � �
�zn

f
�zn+1

P5

� for n � n1

and the rest of the proof follows analogously to that as above.
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