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PERTURBED INTERPOLATION PROBLEMS
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Communicated by Miroljub Jevti�c

Abstract. A sort of perturbations of interpolation problems is used, which
enables to transfer the known results on interior interpolation problems of Pick{
Nevanlinna type to boundary value interpolation problems. It is shown that the
nonnegativity and the so called absence-of-residues property of the Pick kernel are
necessary and suÆcient condition for solvability of a matricial directional boundary
value interpolation problem of Pick{Nevanlinna type.

1. Introduction. The classical Pick{Nevanlinna interpolation problem [1],
[2] involves �nding a condition ensuring the existence of a complex function  ,
analytic and with a nonnegative imaginary part in the open upper half-plane C+

of the complex plane, taking prescribed values at points of a given �nite set E � C+.
The problem has been solved independently by Pick [1] and Nevanlinna [2]. Pick
established the condition in the form of nonnegativity of a certain matrix (the
so called Pick matrix), while Nevanlinna expressed his condition as a sequence of
inequalities.

The Pick{Nevanlinna and similar interpolation problems have been studied
very much. A variety of generalizations of the mentioned problem have been con-
sidered. Nevanlinna already considered multiple interpolation on an in�nite set E
[2]. Next generalization allowed the demanded function to be meromorphic [3]. In
a latter paper [4] Nevanlinna \moved" the set E to the boundary of the domain
C+. The so arisen problem is called the Pick{Nevanlinna boundary value inter-
polation problem. It turned out to be natural in such a problem to prescribe also
some estimate of the radial derivative of the unknown function at each point in E.
Loewner [5] solved the boundary problem with interpolation data given on a full
interval of the real axis. Rosenblum and Rovnyak [6] studied a di�erent type of
boundary interpolation problems, in which E is a Borel subset of the boundary.
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Fed�cina [7] introduced the next considerable generalization of the problem, where
the unknown function is a matrix function and one prescribes not its full values
but rather only values in given directions at points in E (directional or tangential
matricial interpolation problem). Such problems were thereafter very intensively
studied, in view of manifold applications to problems of technics and physics.

Among other numerous generalizations of the problem, we mention here only
the problems on multilply connected domains and the interpolation problems for
functions of several independent variables. As well, a great number of various
approaches and methods were applied.

The interior interpolation problems (i.e., the problems in which E � C+)
are better studied than the boundary problems (where E � R). In this paper
we consider a sort of perturbations of interpolation problems which enables us to
transfer known results on the interior problems to the boundary ones. In this way we
will establish our result which asserts that nonnegativity of an analogue to the Pick
matrix (called Pick kernel), together with the so called absence-of-residues property,
is necessary and suÆcient for solvability of a directional matricial boundary value
interpolation problem. Ball and Helton [8] proved a similar result, in a more general
setting, by a di�erent method.

2. Interpolation. Let us describe the problem which we will consider.

Let H be a �nite dimensional Hilbert space and let L(H) denote the set of
all linear mappings from H into H . Let E be a �nite set of points on the real
axis R, let for each x 2 E a subspace Hx of H be given, and two linear mappings:
' : Hx ! H and '1(x) : Hx ! Hx, such that Px'(x)Px and '1(x) are self-adjoint,
where Px denotes the orthogonal projection in H onto Hx.

The problem is to �nd an operator function  : C+ ! L(H) having the
properties: (i)  is analytic on C+; (ii) Im (z) � 0, z 2 C+; (iii) for each x 2 E,
there exists lim

y#0
 (x+ iy) =:  (x), Im (x) = 0 and  (x)=Hx = '(x); (iv) for each

x 2 E, there exists lim
y#0

1

y
Im (x + iy) =:  0(x) and h 0(x)a; aiH � h'1(x)a; aiH ,

a 2 Hx.

(The above radial limits  (x) and  0(x) exist at least in the sense of weak
operator convergence. Since H is �nite dimensional, it follows that these radial
limits exist also in the sense of uniform operator convergence.)

Denote the above boundary value interpolation problem by I('; '1).

In connection with the problem I('; '1) we introduce an operator valued
kernel P which will be called Pick kernel. Let

P('; '1;x; t) = P(x; t) :=
1

t� x
Pt['(t)

� � '(x)]Px

for t 6= x, x; t 2 E, and

P('; '1;x; x) = P(x; x) := Px'
1Px; x 2 E:
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If P � 0, i.e., if P is positive semide�nite, then there exists a unique functional
Hilbert space h('; '1) = h, whose reproducing kernel is P [9]. (The proof given in
[9] concerns the scalar case, but it works also in the general.) The elements of h
are functions de�ned on E and valued in H . In fact, they are linear combinations
of functions of the form P(x; �)a, x 2 E, a 2 Hx.

The kernel P will be said to have the absence-of-residues property if the
following holds: whenever

(1)
X
x2D

P(x; �)ax = 0

for some set D � E and some nonzero vectors ax, ax 2 Hx, x 2 D, and

(2) av :=
X
x2D

1

v � x
ax 2 H

for some v 2 E nD, then is

(3) '(v)av =
X
x2D

1

v � x
'(x)ax:

If an operator function  : C+ ! B(H) satis�es (i) and (ii) (without assuming
that H is �nite dimensional), then there exists a unique functional Hilbert space
H( ) with the reproducing kernel

K(w; z) :=
1

z � �w
[ (z)�  (w)�]; z; w 2 C+:

(B(H) stands for the set of all bounded linear operators on H .) In the scalar case:
dimH = 1, this fact is established in [10, Th. 5]) and in the general case it can be
established by a procedure quite analogous to that in [10].

For convenience of the reader, we shall present this procedure here. The main
tool will be the following representation of  , called the Herglotz representation:
there exists a unique Hermitian nondecreasing, left continuous operator function
� : [�1;+1]! B(H), such that �(�1) = 0 and

(4)  (z) =

Z +1

�1

1 + tz

t� z
d�(t) + Re (i); z 2 C+;

where the integral exists in the sense of the uniform operator norm. Such a repre-
sentation for the scalar case can be found, for example, in [11, pp. 40 and 67]. The
general case follows easily from the scalar one. See also [12].

From (4) it follows that

K(w; z) =

Z +1

�1

1 + t2

(t� z)(t� �w)
d�(t); z; w 2 C+:
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According to this, whenever w1; w2; . . . ; wn are points in C+ and a1; a2; . . . ; an
some vectors in H , then we have

nX
j;k=1

hK(wj ; wk)aj ; akiH =
nX

j;k=1

Z +1

�1

1 + t2

(t� wk)(t� �wj)
hd�(t)aj ; akiH

=

Z +1

�1

(1 + t2)
D
d�(t)

nX
j=1

1

t� �wj
aj ;

nX
k=1

1

t� �wk
ak

E
H
� 0:

This shows that K � 0, which implies, by [9], that there exists a unique functional
Hilbert space whose reproducing kernel is K.

Theorem 1. A necessary and suÆcient condition for the problem I('; '1) to
have a solution is that the kernel P is nonnegative and has the absence-of-residues

property.

Note that in the case Hx � H , x 2 E, the nonnegativity of P alone is
necessary and suÆcient for solvability of the problem I('; '1), as in the scalar
case. Namely, in that case the nonnegativity of P implies the absence-of-residues
property. This can be proved in the same way as in the necessity part of the below
proof, for the kernel K=E2. (See the derivation of (6) from (5).)

Proof . Necessity. Assume that  is a solution to the problem. Then  
satis�es (i) and (ii) and there exists the space H( ). According to [13, Remark 1],
(iii) and (iv) imply that the functions in z

K(x; z)a :=
1

z � x
[ (z)�  (x)]a; x 2 E; a 2 H;

belong to H( ) and that hK(x; �)a;K(t; �)biH( ) = hK(x; t)a; biH , x; t 2 E, a; b 2
H , with K(x; x) :=  0(x), x 2 E. Then we have P(x; t) = PtK(x; t)Px for x 6= t,
x; t 2 E, and P(x; x) � PxK(x; x)Px, x 2 E, which shows that P � K, where
K(x; t) := PtK(x; t)Px, x; t 2 E. Thus, the nonnegativity of P follows from the
nonnegativity of (the extended) K.

In order to show that P has the absence-of-residues property, let (1) and (2)
hold. Since P � K (as we have seen above), it follows that

X
x2D

K(x; �)ax = 0;

which implies X
x2D

K(x; �)ax = 0:

In particular, we have

(5)
X
x2D

hK(x; �)ax;K(v; �)aiH( ) = 0
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for any a 2 H . From (5), we obtain further

X
x2D

1

v � x
[h (v)ax; aiH � h (x)ax; aiH ] = 0;

and, according to (iii),

(6) h'(v)av ; aiH �
DX
x2D

1

v � x
'(x)ax; a

E
H
= 0:

Since (6) holds for any vector a in H , it follows that (3) holds. The absence-of-
residues property of P is established.

SuÆciency. First case: Hx � H , x 2 E; P > 0. For any y > 0 set '(x+iy) :=
'(x) + i'1(x), x 2 E, and

Py(x; t) :=
1

t� x+ 2iy
['(t+ iy)� '(x+ iy)�]; x; t 2 E:

It is clear that
lim
y#0

Py = P :

Since P > 0, i.e., P is positive de�nite, we can make Py positive by choosing a
suÆciently small y. (Namely, we may replace the positivity of Py, resp. P , by the
positivity of the Gram matrix Gy, resp. G, of the set of vectors Py(x; �)ej , x 2 E,
1 � j � dimH , resp. P(x; �)ej , x 2 E, 1 � j � dimH , using an orthonormal basis
(ej) in H , and then make the Sylvester determinants of Gy positive, as those of G
are positive.) For any y > 0 we pose the problem of �nding an operator function
 : C+ ! L(H) having the properties (i), (ii) and

(iiiy)  (x+ iy) = '(x + iy); x 2 E:

If the Pick kernel Py (i.e., the Pick matrix) of the interior problem (i){(iiiy)
is positive, then this problem has a solution (for ex. [14]). Let  y denote a solution
to this problem. Since for any a 2 H , a 6= 0, the scalar functions

[h y(z)a; aiH � iha; aiH ]=[h y(z)a; ai+ iha; aiH ]

form a normal family, we can choose a sequence (yn) of positive numbers tending to
0 and such that the sequence of functions h na; aiH , n 2 N, ( n :=  yn) converges

uniformly on compact subsets of C+, where the limit can be 1 in the whole C+

or nowhere in C+. Starting with an orthonormal basis (ej) in H , putting above
ej , ej � ek, ej � iek (1 � j; k � dimH) instead of a, and passing several times to
a subsequence, we can get a sequence (yn) such that yn ! 0, n ! 1, and that
h nej ; ekiH converges uniformly on compact subsets of C+ as n!1, for any j, k,
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1 � j; k � dimH . This implies that for any two vectors a; b 2 H , h na; biH
converges uniformly on compact subsets of C+.

Denote the reproducing kernel of the space H( n) by Kn, n 2 N. Thus

Kn(w; z) =
1

z � �w
[ n(z)�  n(w)

�]; z; w 2 C+:

If y > 0 and yn � y, then we have

(7) Kn(x+ iy; x+ iy) � Kn(x+ iyn; x+ iyn)

(see [13, Remark 2] ) and therefore

jhKn(x+iyn; x+iy)a;biH j
2 � hKn(x+iyn; x+iyn)a; aiH �hKn(x+iy; x+iy)b; biH

� hKn(x+ iyn; x+ iyn)a; aiH � hKn(x+ iyn; x+ iyn)b; biH

= h'1(x)a; aiH � h'1(x)b; biH ; x 2 E; a; b 2 H:

Since

Kn(x+ iyn; x+ iy) =
1

i(y + yn)
[ n(x+ iy)� '(x + iyn)

�];

it follows

(8) jh[ n(x+ iy)� '(x + iyn)
�]a; biH j

2 � (y + yn)
2h'1(x)a; aiH � h'1(x)b; biH ;

x 2 E, a; b 2 H . This shows that h n(x + iy)a; biH cannot tend to 1, and,
consequently, that  n converges to a function  : C+ ! L(H) satisfying (i) and
(ii).

Let n!1 in (8). Then we obtain

jh[ (x + iy)� '(x)]a; biH j
2 � y2h'1(x)a; aiH h'

1(x)b; biH ;

which shows that
lim
y#0

 (x+ iy) = '(x); x 2 E;

i.e., that  satis�es (iii).

Rewrite (7) in the form Kn(x+ iy; x+ iy) � '1(x), and let n!1: K(x+ iy;
x + iy) � '1(x), x 2 E. Since K(x + iy; x + iy) is Hermitian nonincreasing in y
[13, Remark 2], it follows that there exist the limits

(9) lim
y#0

K(x+ iy; x+ iy) =: K(x; x); x 2 E;

and that

(10) K(x; x) � '1(x); x 2 E:
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Since K(x+ iy; x+ iy) = 1
y
Im (x+ iy), the relations (9) and (10) show that (iv)

is also satis�ed.

Thus  is a solution to the problem I('; '1).

Second case: Hx � H , x 2 E. Take an " > 0 and add "I to '1(x), to obtain
'1"(x) := '1(x) + "I , x 2 E. Denote the corresponding Pick kernel by P". It is
clear that P" > 0.

According to the preceding case, the problem I('"; '
1
") has a solution  ", for

each " > 0. Just as above, we can choose a sequence ("n) tending to 0 and such that
 n :=  "n converges uniformly on compact subsets of C+ to an operator function
 : C+ ! L(H). Now h n(z)a; aiH cannot tend to 1, because of  n(x) = '(x).
Then  satis�es (i) and (ii).

Reasoning quite analogously as in the preceding case, we show that

lim
y#0

 (x+ iy) = '(x)

and

lim
y#0

1

y
Im (x+ iy) � '1(x); x 2 E:

Thus  satis�es also (iii) and (iv) and therefore it is a solution to the problem
I('; '1).

Third case: Hx 6� H for some x 2 E; for each equality of the form (1) in h
it must be av 2 Hv for any v 2 E nD. Then we can extend the kernel P in the
following way.

Let v 2 E be such that Hv 6� H and let a0 be a nonzero vector in H 	Hv .
Denote by He

v the linear span of Hv [ fa0g, set 'e(v)a0 := '(v)�a0 and 'e(v)a :=
'(v)a for a 2 Hv , and then extend 'e(v) to He

v by linearity. It is easily seen
that then the operator P ev'e(v)P

e
v is self-adjoint, where P ev denotes the orthogonal

projection in H onto He
v .

Denote by hv the subspace of h generated by functions of the form P(x; �)a,
x 2 E n fvg, a 2 Hx. Let F0 be the hv function for which

hF0(x); aiH =
1

x� v
[ha0; '(x)aiH � h'e(v)a0; aiH ]; x 2 E n fvg; a 2 Hx:

To show that F0 is well-de�ned, it is enough (and necessary) to check that the
functional

f0 : P(x; �)a! hF0(x); aiH ; x 2 E n fvg; a 2 Hx;

can be extended to a linear functional on hv (i.e., that F0 gives the Riesz repre-
sentation of a linear functional on hv). The functional f0 really can be linearly
extended to hv, since for any equality of the form (1) in hv, i.e., such that v =2 D,
it holds X

x2D

hF0(x); axiH = 0:



62 Georgijevi�c

Namely, the last equality is equivalent to the following:

D
a0;
X
x2D

1

v � x
'(x)ax

E
H
� h'e(v)a0; aviH = 0;

which is true since it must be av 2 Hv and

'(v)av =
X
x2D

1

v � x
'(x)ax:

Now, set h'1e(v)a0; aiH :=ha0; '
1
e(v)aiH :=hF0(v); aiH for any vector a 2 Hv ,

h'1e(v)a0; a0iH := kF0k
2
h+1, h'1e(v)a; biH := h'1(v)a; biH for a; b 2 Hv, and extend

h'1e(v)a; biH to He
v �He

v by linearity and antilinearity. It is easy to see that then
h'1e(v)a; biH is an Hermitian bilinear form on He

v �He
v and that its restriction to

Hv �Hv coincides with h'1(v)a; biH .

Let further 'e(x) := '(x) and '1e(x) := '1(x) for x 2 E n fvg, and let Pe be
the kernel P('e; '

1
e ; �; �).

The kernel Pe is nonnegative and has the absence-of-residues property. Really,
nonnegativity follows from the fact that PtPe(x; t)Px = P(x; t), x; t 2 E, that P is
nonnegative, and that

(11) PtPe(v; t)a0 = F0(t); t 2 E;

and

(12) hPe(v; v)a0; a0iH > kF0k
2
h:

Denote by he the corresponding space h('e; '
1
e). Then h is isomorphic to

the functional Hilbert subspace ~h of he whose reproducing kernel is Pe(x; t)Px,

x; t 2 E, and an isomorphism from ~h onto h is the mapping � : F ! FP , F 2 ~h,
where FP (t) := PtF (t), t 2 E.

It follows from (11) and (12) that the function Pe(v; �)a0 is not in ~h, since oth-
erwise �Pe(v; v)a0 = F0 and hPe(v; v)a0; a0iH = kF0k

2
h. This means that Pe(v; �)a0

cannot be a linear combination of functions of the form Pe(x; �)a, x 2 E, a 2 H ,
so that there is no new equality of the form (1) in he, in comparison with those in

h (more precisely, in ~h). It follows that Pe has the absence-of-residues property,
since P has.

Evidently, every solution of the problem I('e; '
1
e) is also a solution of the

initial problem I('; '1).

If He
v 6� H or Hu 6� H for some u 2 E n fvg, then Pe can be extended in the

same way as P above. Continuing in this way, we come, in �nitely many steps, to
a problem of the type I('; '1) for which Hx � H , x 2 E, and whose every solution
is also a solution of the initial problem I('; '1). Thus the case under consideration
is reduced to the preceding one.
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Fourth case: there is an equality of the form (1) in h such that av =2 Hv for
some v 2 E nD. Then we can extend the kernel P in the following way.

Starting with an equality (1) and a v 2 E nD such that av =2 Hv , we set

'e(v)av :=
X
x2D

1

v � x
'(x)ax:

The absence-of-residues property of P implies independence of the vector 'e(v)av
on the relation (1), for �xed v and av.

To establish this, it is enough to show that for any equality of the form (1)
such that av = 0 for some v 2 E nD it must be

(13)
X
x2D

1

v � x
'(x)ax = 0:

This is true whenever P has the absence-of-residues property, since (13) is the
condition (3) in the case av = 0.

Consider the following h function:

F0 :=
X
x2D

1

v � x
P(x; �)ax:

Compute its inner product with any function of the form P(u; �)a, u 2 E n fvg,
a 2 Hu:

hF0;P(u; �)aih =
X
x2D

1

v � x
hP(x; u)ax; aiH +

1

u� v

X
x2D

hP(x; u)ax; aiH

=
X
x2D

u� x

(u� v)(v � x)
hP(x; u)ax; aiH

=
1

u� v

X
x2Dnfug

1

v � x
[hax; '(u)aiH � h'(x)ax; aiH ]

=
1

u� v
[hav ; '(u)aiH � h'e(v)av ; aiH ];

because of hau; '(u)aiH = h'(u)au; aiH .

Thus,

hF0(u); aiH =
1

u� v
[hav; '(u)aiH � h'e(v)av ; aiH ; u 2 E n fvg; a 2 Hu:

Verify that h'e(v)av ; aiH = hav ; '(v)aiH , a 2 Hv. It follows from (1) that

X
x2D

hP(x; v)ax; aiH = 0;
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i.e., X
x2D

1

v � x
[hax; '(v)aiH � h'(x)ax; aiH ] = 0;

which gives hav; '(v)aiH � h'e(v)av ; aiH = 0, a 2 Hv, and we are done.

As well, multiplying (1) by the function F0 (innerly), we obtain h'e(v)av ; aviH
= hav; 'e(v)aviH .

Denote by He
v the linear span of H [ favg, set 'e(v)a := '(v)a for a 2 Hv ,

and extend 'e(v) to H
e
v by linearity. Evidently, then the operator P ev'e(v)P

e
v is

self-adjoint, where P ev denotes the orthogonal projection in H onto He
v .

Now, set h'1e(v)av ; aiH :=hav ; '
1
e(v)aiH :=hF0(v); aiH for any vector a 2 Hv ,

h'1e(v)av ; aviH := kF0k
2
h+1, h'1e(v)a; biH := h'1(v)a; biH for a; b 2 Hv , and extend

h'1e(v)a; biH to He
v �He

v by linearity and antilinearity. It is easy to see that then
h'1e(v)a; biH is an Hermitian bilinear form on He

v �He
v and that its restriction to

Hv �Hv coincides with h'1e(v)a; biH .

For x 2 E n fvg, let 'e(x) := '(x) and '1e(x) := '1(x). Let Pe be the kernel
P('e; '

1
e; �; �).

The kernel Pe is nonnegative and has the absence-of-residues property. This
is proved in the same way as in the previous case.

Evidently, every solution of the problem I('e; '
1
e) is also a solution of the

initial problem I('; '1).

If there exists some equality of the form (1) in he, such that av =2 Hv for some
v 2 E nD, then we can continue to extend the kernel in the same way as above.
So we reduce, in �nitely many steps, the problem I('; '1) to a problem of the type
I('; '1) such that there exists no equality of the form (1) with av =2 Hv for some
v 2 E nD.

The proof is completed.

The interpolation problem (i){(iii) considered in the suÆciency part of the
above proof is obtained by a perturbation of the problem I('; '1). That is the
earlier mentioned perturbed interpolation problem.

We can easily extend our result to the case when the set E is in�nite, in a
quite natural way, using an adequate limit process. This can lead to a generalization
of the classical Loewner theorem [5], where we prescribe the full matrix values of
 and  0 at points of an open subset of R. That generalization will be published
elsewhere.
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