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Abstract. It is a classical result of F. Klein that for any nonorientable
(regular enough) surface X there is an orientable surface O2 and an involution
without �xed point of O2 such that X is isomorphic to the quotient space of O2

with respect to the group generated by the respective involution.

In this note a reinforcement of the Klein's result is presented and the e�ect
on the vector bundle of covariant tensors of second order on X produced by that
involution is studied.

The projection p : O2 �! X induces an isomorphism between the vector
space of covariant tensors of order two on X and the space of covariant symmetric
tensors of order two on O2 which are invariant with respect to the given involution.

By a nonorientable surface (NOS) X we understand in this paper a di�eren-
tiable 2-dimensional connected manifold which does not admit a orientation. It is
convenient to endow such a manifold with a so-called dianalytic structure, i.e., a
structure de�ned by an atlas A such that every transition function is a conformal
mapping or a mapping whose complex conjugate is conformal (called anticonformal
mapping). It is evident that A does not admit an analtic subatlas A1, since then
(X, A1) would be an orientable (Riemann) surface. Still Felix Klein has foreseen the
role of these surfaces in the complex analysis. Despite the contradiction in terms,
Teichm�uller called them nonorientable Riemann surfaces. The name nonorientable
Klein surface seems to become predominant (see [7]).

As in the orientable case, we can construct the universal covering

� : bX �! X

where bX is a simply connected, hence orientable surface. This covering is a Galois

covering, i.e., the automorphisms group G of bX which conserve the �bers and acts
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transitively on each �ber. It contains necessarily conformal, but also anticonformal
mappings.

If we denote by G1 the subgroup of G formed with the conformal transfor-
mations, then we can easily note that for A 2 G nG1 we have G nG1 = AG1, i.e.,
G is the disjoint union

G = G1 [ AG1:

Moreover, G1 is itself transitive and therefore

O2 := bX=G1

is a Riemann surface whose universal covering is of the form �1 : bX �! O2. For a
�xed A 2 G nG1 we consider the mapping

hA := h : O2 �! O2

de�ned by h(û) = cAu, where û is the �ber of an u 2 bX by the action of G1. It is
evident that h is correctly de�ned and it represents a �xed point free antianalytic
involution of O2.

There is a canonical identi�cation of X with O2=hhi, where hhi is the two
elements group generated by h.

Reciprocally, if there is a �xed point free antianalytic involution h of the
Riemann surface O2, then the quotient space O2=hhi is a NOS endowed with a
dianalytic structure.

On every NOS of class C1 we can de�ne the Riemannian metric

ds = �jdz + �d�zj;

where � is a positive function [6]. If �(z) � 0, the corresponding parameter and
metric are called isothermal. It is easily seen that an isothermal metric on a NOS
X induces a dianalytic structure on X.

Indeed, if the parameters z and z1 correspond to two overlapping local charts,
then in their common domain,

ds = �jdzj = �1jdz1j;

and therefore for the transition function z ! z1 we have:

jdz1j =
�

�1
jdzj:

But dz1 =
@z1
@z

dz +
@z1
@�z

d�z and, by consequence, one of the two partial derivatives

@z1
@z

or
@z1
@�z

must be identically zero. It results that z ! z1 is a conformal or an

anticonformal mapping.
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Reciprocally, if the NOS X is endowed with a dianalytic structure, i.e., for

every transition function z ! z1 we have dz1 =
@z1
@z

dz or dz1 =
@z1
@�z

d�z, then there

is a positive function � such that jdz1j = �jdzj. By consequence,

ds = �1jdz1 + �1d �z1j = �1jdz1j
���1 + �1

d �z1
dz1

��� = �1�jdzj
���1 + �

d�z

dz

���;
which is possible if and only if � = �1 = 0, i.e., if and only if ds is isothermal.

The following theorem represents a reinforcement of a classical result due to
Klein.

Theorem 1. If X is a NOS endowed with a dianalytic structure and if
f : W �! X is a covering of X with W orientable, then W admits a structure
of Riemann surface with respect to which the projection f is dianalytic. For every
symmetry k of W (if it exist any), there is a dianalytic atlas of the quotient space
W=hki such that the canonical projection W �! W=hki is a dianalytic function.
Moreover, W=hki is a nonorientable cover of X. If the dianalytic structure of X has
been induced by the isothermal metric ds = �jdzj, then the analytic structure of W

is induced by the isothermal metric d� = �1jdwj, where �1(w) = �(z(w))
��� @z
@w

+
@z

@ �w

���.
Proof. Let A be a dianalytic atlas on X. For every q 2 W let us chose a

neighborhood Uq of q such that f jUq
is a one to one mapping and f(Uq) is included

in the domain of a local parameter hp on X, where p = f(q). It is easily seen that
the atlas

B = fUq; hp Æ (f jUq
) j q 2Wg

de�nes a dianalytic structure on W and f is a dianalytic function with respect to
this structure.

Indeed, given the fact that for two charts (V1; g1), (V2; g2) in B with gi =
hi Æ (f jVi), i = 1; 2, we have g2 Æ g1

�1 = h2 Æ h1
�1 in g1(V1 \ V2) the dianalyticity

of the atlas B and of the function f is granted. We can enlarge B, if necessary,
including for every chart, the chart de�ned by the complex conjugate parameter.
Given the fact that W has been supposed orientable, there is a partial atlas of B
previously enlarged which contains only charts compatible with a given orientation
of W. This atlas de�nes an analytic structure on W.

Let �1 :W �!W=hki be the canonical projection. For every p 2W=hki we
chose q 2 W such that p = �1(q) and a neighborhood Uq of q with the property
that �1jUq is a one to one mapping and Uq is contained in the domain of a local
parameter hq on W. A local chart at p is (�1(Uq); hq Æ (�1jUq

)�1). It is easily seen
that the set of these charts forms a dianalytic atlas on W=hki and that �1 is a
dianalytic function with respect to this atlas. Taking into account that the partial
order in the set of the coverings endows this set with a lattice structure and the
fact that hhi contains only two elements, it results that we have the following chain
of coverings
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Let (V; g) be a local chart on W. Then V = Uq0 for a certain q0 2 W

and g = hp0 Æ (f jV ), for a local parameter hp0 on X, with p0 = f(q0). If z =
hp0(p), p 2 f(V ) and w = g(q); q 2 V , then w ! z is a conformal mapping or

anticonformal mapping. We de�ne �1(w) = �(z(w))
��� @z
@w

��� if w ! z is a conformal

mapping and �1(w) = �(z(w))
��� @z
@ �w

��� if w ! z is an anticonformal mapping. In both

cases �1(w)jdwj = �(z)jdzj. It can be easily checked that �1(w)jdwj is symmetric
and it induces the previously mentioned conformal structure of W.

In [1] and [2] a theory of integration on NOS endowed with dianalytic struc-
tures has been developed, in which the orientable surface O2 plays an essential
role.

In the following we will de�ne the coverings of certain geometric objects on X
by O2 and we will study the e�ect on them produced by an antianalytic involution
h of O2 .

LetS2(T �X) =
S
x2X S2(T �xX) where T �xX is the cotangent space at the point

x and S2(T �xX) is the space of covariant tensors of second order at x. The triplet

E = (S2(T �X); �;X)

where � is the canonical projection, is a vector bundle.

Analogously we de�ne the vector bundle eE = (S2(T �O2); e�;O2).

Let us denote by S(eE) the space of di�erentiable sections of class C1 in the

vector bundle eE. A section � 2 S(eE) is a covariant symmetric tensor �eld of order
two on O2. We say that � is h-invariant (respectively h-antiinvariant) if h�� = �

(respectively h�� = ��), where h� is the transformation induced by h on S(eE).
Let us denote

Ss(eE) := f� 2 S(eE)jh�� = �g and Sa(eE) := f� 2 S(eE)jh�� = ��g:

Obviously, S(eE) is a C1(O2;R)-module.

Let us de�ne the symmetrisation and antisymmetrisation operators S and A

on S(eE) respectively by:

S� :=
1

2
(� + h��); A� :=

1

2
(� � h��):
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It can be easily checked that S and A are orthogonal projectors on S(eE), i.e., they
ful�ll the following equalities:

S Æ S = S;A ÆA = A;S ÆA = A Æ S = 0;S +A = Id
S(eE) and S �A = h�:

(h� is an involution).

Let us notice that Ss(eE) and Sa(eE) are invariant spaces with respect to the
operators S and A. Moreover, we have the following result:

Theorem 2. a) Ss(eE) and Sa(eE) are vector subspaces of S(eE);
b) S(eE) = Ss(eE)LSa(eE);
c) The projection p : O2 �! X induces an isomorphism between the vector space

of covariant tensors of order two on X, on the space Ss(eE).
Proof. The points a) and b) are obvious. To prove c), let us denote

� : S(E) �! Ss(eE)
an application de�ned punctually by �(�) = e�, where e� is chosen such that for
every u 2 O2,

(1) e�u( eA; eB) = �x(p� eA; p� eB);
where x = p(u) and p is the dual application of p�, p being a local di�eomorphism.
Then

p� : TuO2 �! Tx(X)

is an isomorphism, therefore � is correctly de�ned and it is a one-to-one application.

Let us show now that e� is h-invariant, i.e., it belongs to Ss(eE). We have
p Æ h = p and this relation implies

(2) p� Æ h� = p�

where p� is the di�erential.

Let p� be the dual of p�. Then, for every u 2 O2 and arbitrary eA; eB in TuO2,
we have

(h�e�)u( eA; eB) = e�hu(h� eA; h� eB) = e�u(h� eA; h� eB)
= �x(p�h� eA; p�h� eB) = �x(p� eA; p� eB);

where x = p(u) = p(hu). Hence, indeed h�e� = e�.
It remains to prove that � is onto. Let e� 2 Ss(eE) be arbitrary. We chose �

in S(E) such that for every couple A;B 2 TxX,

(3) �x(A;B) = e�u( eA; eB);
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where x = p(u) and where eA; eB 2 TuO2 are uniquely de�ned by the isomorphism

p� such that p� eA = A and p� eB = B.

Let us show that �x is correctly de�ned, i.e., it does not depend on the choice
of u for which x = p(u). Indeed, � being h-invariant, we have

(4) e�u( eA; eB) = e�hu(h� eA; h� eB):

On the other hand, taking into account (2), we have

(5) p�h� eA = p� eA = A and p�h� eB = p� eB = B:

The relations (3), (4) and (5) imply

(6) �x(A;B) = e�hu(h� eA; h� eB);
which shows that �x is indeed correctly de�ned. The R-linearity of � implies that
it is an isomorphism.

We recall that a Riemannian metric g on X is a symmetric, doubly covariant,
positively de�ned tensor �eld at every point of X. The set of Riemannian metrics
on X is denoted by M(X). Every metric g 2 M(X) is a section of the vector
bundle E such that at every point x 2 X,

g(x) 2 Jx(X) � S2(T �X);

where Jx(X) is the convex cone of bilinear symmetric and positively de�ned forms
on Tx(X).

The previous theorem implies that there is an isomorphism between the cone
of h-invariant Riemannian metrics on O2 and the coneM(X). From the same theo-
rem it results that every Riemannian metric eg on O2 has a canonical decomposition

eg = egs + ega
where egs is a h-invariant Riemannian metric and ega 2 Sa(eE).

The involution h is an isometry with respect to the component egs of g and
the projection p is a local isometry between the Riemannian manifolds (O2; egs) and
(X; g), where g is the element of M(X) corresponding to gs by the isomorphism
mentioned in the previous theorem.

Example 1. Let M = fz = x + iy j y > 0;�1=2 < x � 1=2; jzj > 1g [ fei� j
�=3 � � � �=2g. For every � 2M, let us denote by �� the lattice fm+n� j m;n 2
Zg identi�ed with the group of translations of the complex plane C , z �! z+m+n� .

Let us denote by G the group generated by the mappings U; V : C �! C

de�ned by

U(z) = z + � ; V (z) = �z +
1

2
:
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Let G1 be the subgroup of G formed with the conformal mappings. It can be
easily checked that G consists of all translations with elements from �� and by
consequence the orbit space C =G1 := T (�) is a torus.

It is known (see [4]) that every torus is conformally equivalent to a torus T (�)
and that T (�) is symmetric if and only if Re (�) = 0 (see [3] and [7]).

If T (�) is symmetric then it represents the orientable double cover of the
Klein bottle C =G.

The Euclidian metric g = jdzj2 in the complex plane C being invariant with
respect to both U and V , is invariant with respect toG1, so it induces a Riemannian
metric on the torus C =G1. Such a metric can be de�ned by ~g( _z) = jdzj2, where _z
is the orbit of z with respect to G1:

_z = z +�� = fz +m+ n� j m;n 2 Zg:

It is obvious that h : T (�) �! T (�) de�ned by

h( _z) := �z +
1

2
+ ��

is an antianalytic involution. The h-invariant component of ~g is given by

~gs( _z) =
1

2
[~g( _z) + ~g(h( _z))] =

1

2

�
jdzj2 + jd(�z +m+ n�)j2

�
=

1

2
(jdzj2 + jd�zj2) = jdzj2 = ~g( _z):

By consequence ~g is a symmetric metric. We should have expected this result since
the Riemannian metric induced by g on the Klein bottle C =G should be the same,
given its obvious invariance with respect to G.

Example 2. Let R > 1 and let AR be the annulus fz 2 C j 1=R < jzj < Rg.
Let h : AR �! AR de�ned by h(z) = �1=�z. (AR; h) is a symmetric Riemann
surface and the quotient space AR=hhi is a M�obius strip. The Euclidian metric

eg = ds2 = dx2 + dy2

is not h-invariant. Its h-invariant component is

egs = d�2 =
1

4

�
1 +

1

x2 + y2

�2
(dx2 + dy2):

Indeed, with the notations z = x+ iy and w = u+ iv = �1=�z we have:

d� =
1

2
(ds+ ds Æ h) that is d�(z) =

1

2
(jdzj+ jdwj) =

1

2

�
1 +

1

jzj2

�
jdzj;

equality which means exactly the previous formula for ~gs.
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Example 3. One denotes, as usual, by Ĉ the extended complex plane, iden-
ti�ed with the Riemann sphere. Let h : Ĉ �! Ĉ de�ned by h(z) = �1=�z (with

the conventions 1=0 =1 and 1=1 = 0). The pair (Ĉ ; h) is a symmetric Riemann

surface and the quotient space P2 := bC =hhi is the real projective plane.
The natural (Riemannian) metric on Ĉ is the spheric metric ~g = da2 de�ned

by

da(z) =
jdzj

1 + jzj2
:

The h-invariant component of ~g is ~gs = d�2, where

d�(z) =
1

2

�
jdzj

1 + jzj2
+

jdh(z)j

1 + jh(z)j2

�
= da(z):

This last equality means that the spheric metric on Ĉ is h-invariant and therefore

~g = ~gs =
dx2 + dy2

(1 + x2 + y2)2
:
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