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ON FORMAL PRODUCTS AND

THE SEIDEL SPECTRUM OF GRAPHS

Mirko Lepovi�c

Communicated by Slobodan Simi�c

Abstract. In [2] using the formal product and the so-called formal generat-
ing functions, we proved some results concerning cospectral graphs. In this paper,
we de�ne the Seidel formal product and investigate some properties of the Seidel
spectrum. In particular, for any two overgraphs GS1 and GS2 of G we give nec-
essary and suÆcient conditions under which GS1 and GS2 have the same Seidel
spectrum.

In this paper we consider only simple graphs. The vertex set of a graph G
is denoted by V (G), and its order by jGj. The spectrum of such a graph is the
collection �1 � �2 � � � � � �n of eigenvalues of its (0,1) adjacency matrix and it is
denoted with �(G). The Seidel spectrum ��(G) is the collection ��1 � ��2 � � � � � ��n
of eigenvalues of its Seidel (�1; 1; 0) adjacency matrix.

In the sequel, for any graph G denote by A = A(G) = [aij ], A
� = A�(G) =

[a�ij ], PG(�) and P �G(�), the adjacency matrix, the Seidel adjacency matrix, the
characteristic polynomial and the Seidel characteristic polynomial, respectively. If
G and H are two graphs which have the same Seidel spectrum, we shall say that
G and H are Seidel cospectral.

Let S be any (possibly empty) subset of the vertex set V (G). Denote by GS

the graph obtained from the graph G by adding a new vertex x (x =2 V (G)), which
is adjacent exactly to the vertices in S. The family of overgraphs GS of the graph
G is denoted by G(G), and it is called the overset of G.

For a matrix M denote by fMg the adjoint of M , and let sumM denote the
sum of all elements in M .

Let G be an arbitrary graph of order n and let A = [Aij] = f�I � Ag.
Of course, we have Aij = Aji (i; j = 1; 2; . . .; n). For any two subsets X;Y of
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the vertex set V (G), let hX;Y i =
P

i2X

P
j2Y Aij. In [2] the expression hX;Y i

was de�ned as the formal product of the sets X and Y , associated with the graph
G. For any two subsets X;Y � V (G), de�ne hX;Y i� =

P
i2X

P
j2Y A

�

ij, where

A� = [A�ij] = f�I�A�g. In this paper hX;Y i� is called the Seidel formal product of

the sets X and Y , associated with the graph G. Since A�ij = A�ji (i; j = 1; 2; . . .; n)

we obtain that hX;Y i� = hY;Xi� for any two subsets X;Y � V (G). If X \ Y = ;,
then the union of X and Y is denoted by X+Y . Let X;Y; Z � V (G) be any three
subsets of V (G) such that X \ Y = ;. Then we �nd the relation

hX + Y; Zi� = hX;Zi� + hY; Zi� :

Let S � V (G) and GS be the corresponding overgraph of G. For any set
S � V (G) let T = V (G) r S. In [2] we proved the next result.

Theorem 1 [2]. For any graph G and any set S � V (G), we have

(1) PGS (�) = �PG(�)� hS; Si : �

Similar results were proved by E. Heilbronner (see [1, p. 59]) and by A.
Schwenk (see [3]).

Using the same method as in the proof of Theorem 1, one can easily see that
the Seidel characteristic polynomial of GS reads

(2) P �GS (�) = �P �G(�) � hS; Si� � hT; T i� + 2hS; T i� :

Let S� = V (G) and denote the corresponding overgraph of G by G�. Since
hS�; S�i� = hS + T; S + T i�, using (2) we obtain that

(3) P �GS (�) = P �G�(�) + 4 hS; T i� :

Further, let S be any subset of the vertex set V (G). To switch G with respect
to S means:

� to remove all edges connecting S with T = V (G)r S; and

� to introduce an edge between all nonadjacent vertices x; y such that one of
them belongs to S and the other to T .

Two graphsG andH are switching (Seidel switching) equivalent if one of them
is obtained from the other by switching. It is known that switching equivalent
graphs have the same Seidel spectrum. We notice that, if S � V (G) then the
corresponding graphs GS and GT are switching equivalent.

On the other hand, since hS; T i� = hT; Si�, using relation (3) we obtain that
GS and GT are Seidel cospectral graphs for any S � V (G). Also, by (3) we obtain
the following statement.
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Corollary 1. Let GS1
and GS2

be two arbitrary overgraphs of G. Then GS1

and GS2
are Seidel cospectral if and only if hS1; T1i� = hS2; T2i�. �

For any adjacency matrix A, let Ak = [a
(k)
ij ]. In [2] was proved that the

formal product hS; Si and the characteristic polynomial PGS (�) (S � V (G)) can
be expressed by the entries of Ak for all values of k. In this paper, we shall show
that hS; Si� and P �GS (�) can be expressed by the entries of (A

�)k = [(a�ij)
(k)], where,

as usual, A� is the Seidel adjacency matrix of G.

We �rst recall some results and de�nitions concerning canonical graphs which
are given in [4] and [5].

Let G be an arbitrary connected graph of order n. We say that two vertices
x; y 2 V (G) are equivalent in G and write x � y if x is nonadjacent to y, and x and
y have exactly the same neighbors in G. Relation � is obviously an equivalence
relation on the vertex set V (G). The corresponding quotient graph is denoted by
~G, and is called the canonical graph of G.

We say that G is canonical if G = ~G or equivalently jGj = j ~Gj, i.e., if G
has no two equivalent vertices. Let ~G be the canonical graph of G, j ~Gj = k, and
N1; N2; . . .; Nk be the corresponding sets of equivalent vertices in G. Then we
write G = ~G(N1; N2; . . .; Nk), or simply G = ~G(n1; n2; . . .; nk), where jNij = ni
(i = 1; 2; . . .; k), understanding that ~G is a labelled graph.

It was proved in [4] that the characteristic polynomial PG(�) of the graph G
takes the form

(4) PG(�) = n1 � n2 � . . . � nk �
n�k

�������������

�

n1
� ~a12 . . . � ~a1k

� ~a21
�

n2
. . . � ~a2k

...
...

. . .
...

� ~ak1 � ~ak2 . . .
�

nk

�������������

;

where [~aij ] is the adjacency matrix of the canonical graph ~G.

Using the same method as in [4] for obtaining relation (4), one can see that
the Seidel characteristic polynomial P �G(�) of the graph G reads

(5) P �G(�) = (� + 1)n�k

���������

�+ 1� n1 � n1 ~a
�

12 . . . � n1 ~a
�

1k

� n2 ~a
�

21 �+ 1� n2 . . . � n2 ~a
�

2k
...

...
. . .

...
� nk ~a

�

k1 � nk ~a
�

k2 . . . �+ 1� nk

���������
;

where [~a�ij ] is the Seidel adjacency matrix of the canonical graph ~G.

Let G be any (not necessarily canonical) graph of order n. Let Gx1;x2;...;xm

be the overgraph of G obtained by adding new vertices x1; x2; . . .; xm equivalent to
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a vertex i of G, say i = 1, so that the vertices x1; x2; . . .; xm; 1 are mutually non-
adjacent, and have the same neighbors in G. According to (5), applying the same
method as in [4] for deriving relation (4), one can see that the Seidel characteristic
polynomial of Gx1;x2;...;xm reads

(6) P �Gx1;x2;...;xm (�) = (� + 1)m

���������

��m � (m+ 1)a�12 . . . � (m+ 1)a�1n

� a�21 � . . . � a�2n
...

...
. . .

...
� a�n1 � a�n2 . . . �

���������
;

where [a�ij ] is the Seidel adjacency matrix of the graph G.

Let S be any subset of V (G) and let G2S be the overgraph of G obtained by
adding two new non-adjacent vertices x; y which are both adjacent exactly to the
vertices from S. Note that G2S 2 G(GS), and G2S is obtained from GS by adding
a new vertex y which is equivalent to x 2 V (GS). Therefore, using (2) we have the
following relation

P �G2S
(�) = �P �GS (�) � hS; Si� � hT; T i� + 2 hS; T i� ;

where hX;Y i� is the Seidel formal product associated with GS .

Proposition 1. The Seidel characteristic polynomial P �G2S
(�) of the graph

G2S reads

P �G2S
(�) = (�+ 1)

�
(�� 1)P �G(�)� 2 hS; Si� � 2 hT; T i� + 4 hS; T i�

�
;

where hX;Y i� is the Seidel formal product associated with the graph G.

Proof. Without loss of generality we may assume that S = f1; 2; . . .; kg �
V (G) (0 � k � n). Using relation (6), the Seidel characteristic polynomial P �G2S

(�)
takes the form

P �G2S
(�) = (�+ 1)

����������������

� . . . � a�1k . . . � a�1n 1
...

. . .
...

...
...

...
� a�k1 . . . � . . . � a�kn 1
...

...
...

. . .
...

...
� a�n1 . . . � a�nk . . . � �1

2 . . . 2 . . . �2 �� 1

����������������

:

Applying the same method as in the proof of Theorem 1, one can easily obtain
the required statement. �

Let S be any subset of V (G) and let GmS be the overgraph of G obtained by
adding m new mutually non-adjacent vertices x1; x2; . . .; xm, all adjacent exactly
to the vertices in S.
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Corollary 2. The Seidel characteristic polynomial P �GmS (�) (m 2 N) of the
graph GmS reads

P �GmS (�) =

(�+ 1)m�1
�
(��m+ 1)P �G(�) �m hS; Si� �m hT; T i� + 2m hS; T i�

�
: �

By (2) we �nd that hS; Si� + hT; T i� � 2 hS; T i� = �P �G(�) � P �GS (�). Using
Corollary 2 we have the following result.

Corollary 3. Let S � V (G). Then

P �GmS (�) = (�+ 1)m�1
�
mP �GS (�) � (m� 1)(�+ 1)P �G(�)

�
;

for any m 2 N . �

Corollary 4. Let GS1
and GS2

be any two overgraphs of G (S1; S2 � V (G)).
If GS1

and GS2
are Seidel cospectral then GmS1

and GmS2
are also Seidel cospectral

for every m 2 N . �

Now, we shall need some well-known notions and results from the spectral
theory of graphs (see [1]).

Theorem 2 [1]. Let A be the adjacency matrix of a multi-digraph G with

vertices 1; 2; . . .; n, and Ak = [a
(k)
ij ]; further, let Nk(i; j) denote the number of walks

of length k starting at vertex i and terminating at vertex j. Then

Nk(i; j) = a
(k)
ij (k = 0; 1; 2; . . . ) : �

Theorem 3 [1]. Let G be a graph with complement G and let HG(t) =
+1P
k=0

Nkt
k be the generating function of the numbers Nk of walks of length k in

the graph G. Then

(7) HG(t) =
1

t

h
(� 1)n

PG (�1� 1=t)

PG(1=t)
� 1

i
;

where Nk = sumAk (k = 0; 1; 2; . . . ). �

Theorem 4 [1]. If PG(�) is the characteristic polynomial of a graph G and

P �G(�) is the characteristic polynomial of the Seidel adjacency matrix A�(G) of G,

then

(8) PG(�) =
(�1)n

2n
P �G(�2�� 1)

1 +
1

2�
HG

� 1
�

� : �
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According to (7) and (8), by a straightforward calculation we obtain the
relation

(9) P �G(�2�� 1) = 2n�1
�
PG(��� 1) + (�1)nPG(�)

�
:

Since P �GS (�) = P �GT (�) for any S � V (G), then using (9) the next result
follows.

Corollary 5. Let S � V (G). Then

PGS (�)� PGT (�) = (�1)n
�
PGS (��� 1)� PGT (��� 1)

�
: �

In [2] using the so-called generalized adjacency matrices, we proved that for
any S � V (G) the formal product

(10) hS; Si =
PG(�)

�
FS

� 1

�

�
;

where FS(t) =
+1P
k=0

d(k) tk
�
jtj < ��11 ; �1 2 �(G)

�
, and d(k) =

P
i2S

P
j2S

a
(k)
ij for any

non-negative integer k. We note that d(k) is the number of walks of length k with
endpoints in S.

The function FS(t) is called the\formal generalized function" associated with
the graph GS . Similarly, the function

F �S;T (t) =

+1X
k=0

e
(k)
� tk (jtj <

�
��1)

�1; ��1 2 ��(G)
�
;

will be called the \Seidel formal generating function" associated with the graph

GS , where T = V (G)r S and e
(k)
� =

P
i2S

P
j2T

(a�ij)
(k) (k = 0; 1; 2; . . . ).

We shall prove that for any S � V (G), the Seidel formal product

(11) hS; T i� =
P �G(�)

�
F �S;T

� 1

�

�
:

The last relation may be proved by using some \Seidel generalized matrices",
in a way similar to that used to prove (10). However, in this paper we shall give
an alternative proof of relation (11), as follows.

First, let

H�

G(t) =

+1X
k=0

N�

k t
k

�
jtj < (��1)

�1; ��1 2 ��(G)
�
;
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where N�

k =
nP
i=1

nP
j=1

(a�ij)
(k) (k = 0; 1; 2; . . . ). In this paper, H�

G(t) is called the

\Seidel generating function". If we set

(12) [H�

G(t)] =

+1X
k=0

(A�)ktk (jtj < (��1)
�1) ;

then, it is clear that H�

G(t) = sum [H�

G(t)].

Proposition 2. Let X;Y be any two sets of the vertex set V (G). Then

hX;Y i� =
P �G(�)

�
F �X;Y

� 1

�

�
;

where F �X;Y (t) =
+1P
k=0

c
(k)
� tk and c

(k)
� =

P
i2X

P
j2Y

(a�ij)
(k) (k = 0; 1; 2; . . . ).

Proof. Using (12) we �nd that

[H�

G(t)] = (I � t A�)�1 =
fI � t A�g

jI � t A�j
:

If we set [B�ij] = fI � t A�g, then from the previous relation we obtain

B�ij = tn P �G

� 1

t

� +1X
k=0

(a�ij)
(k)tk (1 � i; j � n) :

If we set t = 1=� and substitute t in the last relation, we can easily see that

1

�n�1
A�ij =

1

�n
P �G(�)

+1X
k=0

(a�ij)
(k) 1

�k
;

where [A�ij] = f�I�A�g. Consequently, for any two setsX;Y � V (G) the following
relation is obtained

hX;Y i� =
X
i2X

X
j2Y

A�ij =
P �G(�)

�

X
i2X

X
j2Y

� +1X
k=0

(a�ij)
(k) 1

�k

�

=
P �G(�)

�

+1X
k=0

� X
i2X

X
j2Y

(a�ij)
(k)

�
1

�k

=
P �G(�)

�
F �X;Y

� 1
�

�
: �
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In particular, for Y = X we denote the corresponding Seidel formal generating
function F �X;X(t) by F

�

X(t). Therefore, according to (10), for any S � V (G) we have

hS; Si� =
P �G(�)

�
F �S

� 1

�

�
;

where F �S (t) =
+1P
k=0

d
(k)
� tk and d

(k)
� =

P
i2S

P
j2S

(a�ij)
(k).

Corollary 6. Let X;Y � V (G). Then the formal product

hX;Y i =
PG(�)

�
FX;Y

� 1

�

�
;

where FX;Y (t) =
+1P
k=0

c(k)tk and c(k) =
P
i2X

P
j2Y

a
(k)
ij (k = 0; 1; 2; . . . ). �

We note that FX;Y (t) is the generating function for the number of walks of
length k with starting point in X and endpoint in Y .

As an immediate consequence of Proposition 2 and Corollary 1, we get:

Corollary 7. Let GS1
and GS2

be two arbitrary overgraphs of G. Then

GS1
and GS2

are Seidel cospectral if and only if F �S1;T1
(t) = F �S2;T2

(t). �

For any S � V (G), we shall de�ne a function

F �[S](t) = F �S (t) + F �T (t)� 2F �S;T (t) ;

where T = V (G) r S. Now, using (2) and (11) we can easily see that the Seidel
characteristic polynomial of GS reads

(13) P �GS (�) = P �G(�)
h
��

1

�
F �[S]

� 1

�

� i
:

Let S� = V (G) and denote the corresponding overgraph of G by G�. Using
Proposition 2, we �nd that F �S�(t) = H�

G(t). Since T
� = V (G) r S� = ;, it follows

that hT �; Xi� = 0 for any X � V (G). Whence we obtain F �[S�](t) = F �S�(t). Using

(13) and the last relation, we have

P �G�(�) = �P �G(�)�
P �G(�)

�
H�

G

� 1

�

�
:

Finally, using the Seidel formal generating functions, we shall prove an ele-
mentary result.

Let G be the complete graph Kn and S be any subset of V (Kn). Denote by
K(m) the corresponding overgraph of Kn, where jSj = m (0 � m � n).
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Proposition 3. If S � V (Kn) and jSj = m, then

P �K(m)(�) = (�� 1)n�2
�
�3 + (n� 2)�2 � (2n� 1)�+ 4m2 � 4mn+ n

�
:

Proof. Since Kn is a regular graph of degree n � 1, we obtain that N�

k =

(�1)kn(n � 1)k. Let �k = (a�11)
(k) and �k = (a�12)

(k) (k = 0; 1; 2; . . . ). It is
clear that (a�ii)

(k) = �k (i = 1; 2; . . .; n) and (a�ij)
(k) = �k (i 6= j). Therefore,

(�1)kn(n� 1)k = n�k + (n2 � n)�k. Since �k = � (n� 1)�k�1, the expression for

�k =
(�1)k(n� 1)k + (n� 1)

n
and �k =

(�1)k(n� 1)k � 1

n
;

can be obtained by solving the linear recursions

�k = �k�1 + (�1)k(n� 1)k�1 and �k = � (n� 1)�k�1 ;

with �0 = 1 and �0 = 0.

Since d
(k)
� =

P
i2S

P
j2S

(a�ij)
(k) and jSj = m, we have d

(k)
� = m�k + (m2 �m)�k.

Whence we get

(14) d
(k)
� =

(�1)km2(n� 1)k �m2 +mn

n
:

Further, using (14) we �nd

(15) F �S (t) =
m2

n
�
1 + (n� 1)t

� � m2

n(1� t)
+

m

1� t
:

Similarly, we obtain

(16) F �T (t) =
(n�m)2

n
�
1 + (n� 1)t

� � (n�m)2

n(1� t)
+
n�m

1� t
:

Now, denote by e
(k)
� the corresponding coeÆcients of the function F �S;T (t).

Since e
(k)
� = m(n�m)�k, we can see that

F �S;T (t) =
m(n�m)

n
�
1 + (n� 1)t

� + m2

n(1� t)
�

m

1� t
:

Using (15), (16) and the last relation, by an easy calculation we obtain that
the corresponding function F �[S](t) reads

F �[S](t) =
(4mn� 4m2 � n) t+ n�
1 + (n� 1)t

�
(1� t)

:
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Finally, if we set t = 1=� in the previous relation, then by using (13), having
in mind that

P �Kn
(�) = (�1)nPKn

(��) = (�� 1)n�1
�
�+ (n� 1)

�
;

we obtain the statement. �
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