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Abstract. We give an elementary proof of a theorem of A.O.L. Atkin on
psuedo-squares. As pointed out by Atkin, from this theorem it immediately follows
that there exists an in�nite sequence of positive integers, whose j th term s(j)
satis�es s(j) = j2 +O(log(j)), such that the set of integers representable as a sum
of two distinct terms of this sequence is of positive asymptotic density.

1. Introduction. In [1] Atkin proves the existence of an in�nite sequence
of positive integers, whose j th term s(j) satis�es s(j) = j2 +O(log(j)), such that
the set of integers representable as a sum of two distinct terms of this sequence is
of positive asymptotic density. See also [2, Ch. 3, Sec. 2, p. 113]. Atkin deduces
this result as an immediate consequence of the following theorem.

Let N and M be positive integers such that M satis�es a= log(N) � M �
b= log(N) for some positive real numbers a and b. This assumption will hold
throughout.

Let L(N;M) denote the set of mappings from the set f1; 2; . . . ; Ng into the
set of integers in the closed interval [�M;M ]. For any � in L(N;M), let =(N; �)
denote the set f(N+1)2+�(1); . . . ; (N+k)2+�(k); . . . ; (2N)2+�(N)g. Let R(N; �)
denote the number of integers representable as a sum of two distinct elements of
=(N; �).

Theorem. For suÆciently large N there exists � in L(N;M) such that

R(N; �)� N2.

Using a combinatorial argument, Atkin reduces the proof of this theorem to
the estimation of a certain integral. This estimation is then done in [1] by the
Hardy{Littlewood method.

The purpose of this note is to point out that arranging the combinatorial
content of [1] di�erently yields a simple and elementary proof of the above theorem.
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2. Proof of the theorem. For any integer k and any � in L(N;M) let
r(k; �) denote the number of ordered pairs (s; t) of distinct elements of the set
=(N; �) such that s+ t is k. Clearly one has

X
k2Z

r(k; �) = N2 �N (1)

R(N; �) is the number of integers k for which r(k; �) 6= 0. Therefore, if
the sum

P
r2(k; �) taken over all integers k, is denoted by T (N; �), the Cauchy{

Schwarz inequality gives

R(N; �) � (N2 �N)2=T (N; �) (2)

Inequality (2) reduces the proof of the theorem to that of Lemma 1.

Lemma 1. For suÆciently large N there exists � in L(N;M) such that

T (N; �)� N2.

Lemma 1 is an immediate corollary to the following lemma.

Lemma 2. For suÆciently large N the arithmetic mean A(N;M) of T (N; �)
over all � in L(N;M) satis�es A(N;M)� N2.

Proof: For any integer k let P (N; k) be the number of ordered quadruples
q = (q1; q2; q3; q4) of distinct elements of the set f1; 2; . . . ; Ng satisfying (3), below.
We rewrite (3) as (4).

(N + q1)
2 + (N + q2)

2 � (N + q3)
2 � (N + q4)

2 = k (3)

(q1 � q3)(2N + q1 + q3) = (q4 � q2)(2N + q2 + q4) + k (4)

Note that P (N; k) = P (N;�k) for all integers k.
Assume k � 0. Denote the right-hand side of (4) by h + k. We have the

following relations.

p
jh+ kj � 2N + q1 + q3 � 4N; 2N + q1 + q3 divides h+ k (5)p

jhj � 2N + q2 + q4 � 4N; 2N + q2 + q4 divides h (6)

�3N2 � h � 3N2 (7)

Motivated by (5), (6) and (7) we de�ne, for any integer h, �1(h) to be the

number of positive integers s satisfying
pjhj � s � 4N , s divides h. It is immediate

that

P (N; k) �
X

�3N2�h�3N2

�1(h)�1(h+ jkj) for all integers k (8)
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In Section 2, assuming N is suÆciently large, we will prove the following
inequality.

A(M;N) � 2(N2 �N) +
1

2M + 1

X
0�jkj�4M

P (N; k) (9)

To �nish the proof of Lemma 2 we will use the following estimates whose
proofs will be given in Section 3. These estimates have perhaps already appeared
in the literature in another context. For the lack of suitable references we include
their proofs.

X
�3N2�h�3N2

�21 (h)� N2 log(N) (10)

X
1�k�4N

X
�3N2�h�3N2

�1(h)�1(h+ k)� N2M (11)

Combining (8){(11) we obtain (12) below, for suÆciently large N .

A(N;M)� N2
�
1 +

log(N)

M

�
� N2 (12)

This completes the proof of Lemma 2.

3. An inequality for A(N;M). Lemma 3. For suÆciently large N
inequality (9) holds.

Proof. Let }(N) denote the set of all ordered quadruples q = (q1; q2; q3; q4)
of elements of the set f1; 2; . . . ; Ng satisfying q1 6= q2; q3 6= q4. We will use the
letter q to denote a general element of }(N). We will denote L(N;M) by L and
it's cardinality by jLj.

From the de�nition of T (N; �) given in Section 1 it follows that T (N; �) is
the number of q satisfying (13) below for a given �. We rewrite (13) as (14).

(N+q1)
2+�(q1)+(N+q2)

2+�(q2) = (N+q3)
2+�(q3)+(N+q4)

2+�(q4) (13)

(N+q1)
2+(N+q2)

2�(N+q3)
2�(N+q4)

2 = �(q4)+�(q3)��(q1)��(q2) (14)

(N + q1)
2 + (N + q2)

2 � (N + q3)
2 � (N + q4)

2 = k(q) (15)

For any q, we denote the left hand side of (14) by k(q) and denote by m(q) the
number of � in L for which (14) is satis�ed by the given q. It then follows that

X
�2L

T (N; �) =
X

q2}(N)

m(q) (16)

Remark 1. If jk(q)j > 4M then m(q) = 0.
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Since � takes values in [�M;M ] it follows that the right hand side of (14)
lies in [�4M; 4M ]. Hence the remark.

Remark 2. If jk(q)j � 4M and k(q) 6= 0 then q1; q2; q3; q4 are all distinct.

Suppose q1 = q3. If q2 6= q4, then the left hand side of (15) is of the order N
while the right hand side if of the order M . Since M is o(N) this gives a contra-
diction for suÆciently large N . Hence q2 = q4 and therefore k(q) = 0 contradicting
k(q) 6= 0. Thus q1 6= q3. In a similar manner we dispose o� all possibilities of
equality between q1; q2; q3; q4 till we arrive at the remark. Note that q1 = q2 or
q3 = q4 are impossible by de�nition of }(N).

Let }1(N) consist of all those q with either q1 = q3 and q2 = q4 or q1 = q4
and q2 = q3. The cardinality of }1(N) is clearly 2(N2 �N). Further k(q) = 0 for
q in }1(N). Also one has

Remark 3. If k(q) = 0 then either q1; q2; q3; q4 are distinct or q is in }1(N).

Combining the above remarks we have (17), below,where
P

1 denotes that
the summation is only over those q with q1; q2; q3; q4 distinct.

X
q2}(N)

m(q) =
X

q2}1(N)

m(q) +
X

0�jkj�4M

1
m(q) (17)

Remark 4. If q is in }1(N) then m(q) is jLj.
Remark 5. If the q1; q2; q3; q4 are distinct then m(q) is at most jLj=2M + 1.

When q1; q2; q3; q4 are distinct then m(q) is at most the number of mappings
from an N � 1 element subset of f1; 2; . . . ; Ng into the set of integers in the closed
interval [�M;M ]. This in our notation is jLj=2M + 1. Hence Remark 5.

Combining the Remarks (4){(6) with (17) and recalling the de�nition of
P (N; k) from Section 1, we obtain the inequality (9).

4. Upper bounds for the �1 sums. Here we prove (10) and (11). First a
lemma.

Lemma 4. We have for all integers k � 0 the following inequality

X
�3N2�h�3N2

�1(h)�1(h+ k) � 4
X

1�s�4N
1�t�4N

k
gcd(s; t) (18)

Above
P

k indicates that the summation is only over those (s; t) with gcd(s; t)
dividing k. Note that when k is 0,

P
k is the same as

P
.

Proof. Recalling the de�nition of �1 and interchanging the summations in-
volved we obtain (19), below, where

P
1 indicates that the summation is only over

those h in [�3N2; 3N2] satisfying the conditions h � 0 (mod s) and h + k � 0
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(mod t). Clearly, the conditions h � 0 (mod s) and h+ k � 0 (mod t) imply that
gcd(s; t) divides k. Hence the appearance of

P
k in (19).

X
�3N2�h�3N2

�1(h)�1(h+ k) �
X

1�s�4N
1�t�4N

k
X

1�
p
jhj�s

1�
p
jh+kj�t

1
1 (19)

Assume that s � t. The Chinese Remainder Theorem gives an integer p such
that for any h satisfying the conditions h � 0 (mod s) and h + k � 0 (mod t), h

satis�es h � p (mod lcm(s; t)). If, in addition, 1 �
p
jhj � s then there are at

most 2s2= lcm(s; t) + 1 such h. With this we obtain the inequalities (20), below.
When s > t we argue with h+k in place of h and t in place of s to obtain the same
inequalities. Combining (19) and (20), Lemma 4 follows.

X

1�
p
jhj�s

1�
p
jh+kj�t

1
1 �
� 2s2

lcm(s; t)
+ 1
�
=
�2s
t
gcd(s; t) + 1

�
� 4 gcd(s; t) (20)

To obtain (10) and (11) we note the following inequalities.

X

1�s�4N
1�t�4N

gcd(s; t) =
X

1�l�4N

l
X

1�s�4N
1�t�4N

l
1 �

X
1�l�4N

l
�4N

l

�2
� N2 log(N) (21)

where
P

l denotes that the summation is only over those (s; t) for which gcd(s; t)
is l.
X

1�k�4M

X

1�s�4N
1�t�4N

k
gcd(s; t) =

X
1�m�4N

m
X

1�s;t�4N
1�k�4M

m
1 �

X
1�m�4N

m
�4M
m

��4N
m

�2
�N2M

(22)
where

P
m indicates that the summation is only over those (k; s; t) such that

gcd(s; t) is m and m divides k.

Combining (21) and (22) with Lemma 4 we obtain (10) and (11).
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